Documentation Verification Report

Cardinality

πŸ“ Source: Mathlib/LinearAlgebra/Projectivization/Cardinality.lean

Statistics

MetricCount
DefinitionsequivQuotientOrbitRel, nonZeroEquivProjectivizationProdUnits
2
Theoremscard, card', card'', card_of_finrank, card_of_finrank_two, finite_iff_of_finite, finite_of_finite, isEmpty_of_subsingleton
8
Total10

Projectivization

Definitions

NameCategoryTheorems
equivQuotientOrbitRel πŸ“–CompOpβ€”
nonZeroEquivProjectivizationProdUnits πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
card πŸ“–mathematicalβ€”Nat.card
Projectivization
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Nat.card_unique
Zero.instNonempty
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Nat.card_of_isEmpty
isEmpty_of_subsingleton
MulZeroClass.zero_mul
finite_or_infinite
Fintype.card_subtype_compl
Fintype.card_unique
finite_of_finite
Fintype.card_units
Fintype.card_congr
Fintype.card_prod
not_iff_not
finite_iff_of_finite
Nat.card_eq_zero_of_infinite
zero_tsub
Module.Free.infinite
Module.Free.of_divisionRing
MulZeroClass.mul_zero
card' πŸ“–mathematicalβ€”Nat.card
Projectivization
β€”card
Nat.card_pos
Zero.instNonempty
card'' πŸ“–mathematicalβ€”Nat.card
Projectivization
Field.toDivisionRing
β€”Finite.one_lt_card
EuclideanDomain.toNontrivial
card
card_of_finrank πŸ“–mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Nat.card
Projectivization
Field.toDivisionRing
Finset.sum
Nat.instAddCommMonoid
Finset.range
Monoid.toNatPow
Nat.instMonoid
β€”Finite.one_lt_card
EuclideanDomain.toNontrivial
RingHomInvPair.ids
IsNoetherianRing.strongRankCondition
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Module.Free.of_divisionRing
Module.Free.function
Finite.of_fintype
Module.Free.self
Module.IsNoetherian.finite
isNoetherian_of_isNoetherianRing_of_finite
isNoetherian_of_finite
FiniteDimensional.finiteDimensional_pi'
FiniteDimensional.finiteDimensional_self
Module.finrank_fintype_fun_eq_card
Fintype.card_fin
Nat.card_congr
Nat.card_fun
Nat.card_eq_fintype_card
Nat.cast_mul
Nat.cast_sum
Finset.sum_congr
Nat.cast_pow
LT.lt.le
geom_sum_mul
card
Nat.cast_pred
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
Nontrivial.to_nonempty
Mathlib.Tactic.Contrapose.contraposeβ‚‚
finite_iff_of_finite
Module.finrank_of_not_finite
Mathlib.Tactic.Contrapose.contraposeβ‚„
Module.finite_of_finite
Nat.card_eq_zero_of_infinite
card_of_finrank_two πŸ“–mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Nat.card
Projectivization
Field.toDivisionRing
β€”card_of_finrank
geom_sum_two
finite_iff_of_finite πŸ“–mathematicalβ€”Finite
Projectivization
β€”Finite.of_equiv
Finite.instProd
instFiniteUnits
Subtype.coe_eta
Finite.instSum
Finite.of_fintype
finite_of_finite
finite_of_finite πŸ“–mathematicalβ€”Finite
Projectivization
β€”Finite.of_equiv
Subtype.finite
Finite.prod_left
isEmpty_of_subsingleton πŸ“–mathematicalβ€”IsEmpty
Projectivization
β€”Equiv.isEmpty

---

← Back to Index