| Metric | Count |
DefinitionscongrQuadraticMap, toQuadraticMap, toQuadraticMapAddMonoidHom, toQuadraticMapLinearMap, compQuadraticMap, compQuadraticMap', toQuadraticMap', Anisotropic, IsOrtho, associated, associated', associatedHom, basisRepr, coeFnAddMonoidHom, comp, copy, discr, evalAddMonoidHom, instAdd, instAddCommGroup, instAddCommMonoid, instDistribMulActionOfSMulCommClass, instFunLike, instInhabited, instInvertibleEndOfNat, instModuleOfSMulCommClass, instNeg, instSMul, instSub, instZero, linMulLin, ofPolar, polar, polarBilin, polarSym2, proj, restrictScalars, sq, toFun, toMatrix', weightedSumSquares | 41 |
TheoremscongrQuadraticMap_apply, congrQuadraticMap_refl, congrQuadraticMap_symm, congrQuadraticMap_symm_apply, exists_bilinForm_self_ne_zero, exists_orthogonal_basis, separatingLeft_of_anisotropic, toQuadraticMap_isOrtho, polarBilin_toQuadraticMap, polar_toQuadraticMap, toQuadraticMapAddMonoidHom_apply, toQuadraticMapLinearMap_apply, toQuadraticMap_add, toQuadraticMap_apply, toQuadraticMap_comp_same, toQuadraticMap_eq_zero, toQuadraticMap_list_sum, toQuadraticMap_multiset_sum, toQuadraticMap_neg, toQuadraticMap_smul, toQuadraticMap_sub, toQuadraticMap_sum, toQuadraticMap_zero, compQuadraticMap'_apply, compQuadraticMap_apply, compQuadraticMap_polar, compQuadraticMap_polarBilin, associated_isSymm, eq_zero_iff, all, polar_eq_zero, zero_left, zero_right, add, anisotropic, le_zero_iff, nonneg, smul, add_apply, add_linMulLin, associated_apply, associated_comp, associated_eq_self_apply, associated_flip, associated_isOrtho, associated_isSymm, associated_left_inverse, associated_left_inverse', associated_linMulLin, associated_rightInverse, associated_sq, associated_toQuadraticMap, basisRepr_apply, basisRepr_eq_of_iIsOrtho, canLift, canLift', choose_exists_companion, coeFnAddMonoidHom_apply, coeFn_add, coeFn_neg, coeFn_smul, coeFn_sub, coeFn_sum, coeFn_zero, coe_associatedHom, coe_copy, coe_mk, comp_apply, congr_fun, copy_eq, discr_comp, discr_smul, evalAddMonoidHom_apply, exists_companion, exists_companion', exists_quadraticMap_ne_zero, ext, ext_iff, half_moduleEnd_apply_eq_half_smul, instIsScalarTower, instSMulCommClass, isOrtho_comm, isOrtho_def, isOrtho_polarBilin, isSymm_toMatrix', linMulLinSelfPosDef, linMulLin_add, linMulLin_apply, linMulLin_comp, map_add, map_add_add_add_map, map_add_self, map_neg, map_smul, map_smul_of_tower, map_sub, map_sum, map_sum', map_zero, ne_zero_of_not_isOrtho_self, neg_apply, not_anisotropic_iff_exists, ofPolar_apply, polarBilin_apply_apply, polarBilin_comp, polarBilin_injective, polarSym2_map_smul, polarSym2_sym2Mk, polar_add, polar_add_left, polar_add_left_iff, polar_add_right, polar_comm, polar_comp, polar_neg, polar_neg_left, polar_neg_right, polar_self, polar_smul, polar_smul_left, polar_smul_left_of_tower, polar_smul_right, polar_smul_right_of_tower, polar_sub_left, polar_sub_right, polar_zero_left, polar_zero_right, posDef_iff_nonneg, posDef_of_nonneg, proj_apply, restrictScalars_apply, separatingLeft_of_anisotropic, smul_apply, sq_apply, sub_apply, sum_apply, toFun_eq_coe, toFun_smul, toMatrix'_comp, toMatrix'_smul, toQuadraticMap_associated, toQuadraticMap_polarBilin, two_nsmul_associated, weightedSumSquares_apply, zeroHomClass, zero_apply | 146 |
| Total | 187 |
| Name | Category | Theorems |
Anisotropic π | MathDef | 6 mathmath: not_anisotropic_iff_exists, RootPairing.rootForm_anisotropic, RootSystem.rootForm_anisotropic, PosDef.anisotropic, RootPairing.posRootForm_posForm_anisotropic, posDef_iff_nonneg
|
IsOrtho π | MathDef | 12 mathmath: isOrtho_comm, isOrtho_inl_inl_iff, IsOrtho.all, isOrtho_def, LinearMap.BilinForm.toQuadraticMap_isOrtho, isOrtho_polarBilin, IsOrtho.zero_left, IsOrtho.inr_inl, isOrtho_inr_inr_iff, associated_isOrtho, IsOrtho.zero_right, IsOrtho.inl_inr
|
associated π | CompOp | 11 mathmath: associated_prod, associated_tmul, QuadraticForm.toDualProd_apply, coe_associatedHom, associated_linMulLin, associated_sq, associated_isOrtho, Ring.associated_pi, CliffordAlgebra.changeForm.associated_neg_proof, QuadraticForm.associated_tmul, QuadraticForm.associated_baseChange
|
associated' π | CompOp | 1 mathmath: separatingLeft_of_anisotropic
|
associatedHom π | CompOp | 15 mathmath: canLift, associated_eq_self_apply, associated_rightInverse, associated_apply, toQuadraticMap_associated, associated_left_inverse, associated_toQuadraticMap, two_nsmul_associated, associated_left_inverse', canLift', coe_associatedHom, QuadraticForm.associated_isSymm, associated_comp, associated_flip, associated_isSymm
|
basisRepr π | CompOp | 2 mathmath: basisRepr_eq_of_iIsOrtho, basisRepr_apply
|
coeFnAddMonoidHom π | CompOp | 1 mathmath: coeFnAddMonoidHom_apply
|
comp π | CompOp | 12 mathmath: toMatrix'_comp, QuadraticForm.tmul_comp_tensorComm, comp_apply, QuadraticForm.comp_tensorLId_eq, discr_comp, QuadraticForm.tmul_comp_tensorMap, QuadraticForm.comp_tensorRId_eq, associated_comp, QuadraticForm.tmul_comp_tensorAssoc, polarBilin_comp, linMulLin_comp, LinearMap.BilinMap.toQuadraticMap_comp_same
|
copy π | CompOp | 2 mathmath: coe_copy, copy_eq
|
discr π | CompOp | 2 mathmath: discr_smul, discr_comp
|
evalAddMonoidHom π | CompOp | 1 mathmath: evalAddMonoidHom_apply
|
instAdd π | CompOp | 8 mathmath: LinearMap.BilinMap.toQuadraticMap_add, add_linMulLin, add_toBilin, coeFn_add, LinearMap.BilinMap.toQuadraticMap_list_sum, PosDef.add, linMulLin_add, add_apply
|
instAddCommGroup π | CompOp | 2 mathmath: toQuadraticMap_polarBilin, separatingLeft_of_anisotropic
|
instAddCommMonoid π | CompOp | 42 mathmath: canLift, LinearEquiv.congrQuadraticMap_symm, LinearMap.BilinMap.toQuadraticMapAddMonoidHom_apply, toBilinHom_apply, associated_eq_self_apply, associated_rightInverse, sum_apply, LinearEquiv.congrQuadraticMap_refl, associated_prod, associated_apply, toQuadraticMap_associated, associated_left_inverse, evalAddMonoidHom_apply, associated_tmul, associated_toQuadraticMap, two_nsmul_associated, associated_left_inverse', coeFnAddMonoidHom_apply, LinearMap.BilinMap.toQuadraticMapLinearMap_apply, QuadraticForm.tensorDistrib_tmul, QuadraticForm.toDualProd_apply, canLift', LinearMap.BilinMap.toQuadraticMap_multiset_sum, coe_associatedHom, LinearEquiv.congrQuadraticMap_symm_apply, associated_linMulLin, QuadraticForm.associated_isSymm, LinearMap.BilinMap.toQuadraticMap_sum, associated_sq, associated_comp, associated_isOrtho, Ring.associated_pi, coeFn_sum, CliffordAlgebra.changeForm.associated_neg_proof, separatingLeft_of_anisotropic, LinearEquiv.congrQuadraticMap_apply, QuadraticForm.associated_tmul, tensorDistrib_tmul, associated_flip, associated_isSymm, QuadraticForm.associated_baseChange, LinearMap.dualProd.toQuadraticForm
|
instDistribMulActionOfSMulCommClass π | CompOp | β |
instFunLike π | CompOp | 118 mathmath: polar_zero_left, not_anisotropic_iff_exists, lineDeriv, sum_polar_sub_repr_sq, LinearMap.BilinMap.polar_toQuadraticMap, CliffordAlgebra.ΞΉ_mul_ΞΉ_mul_invOf_ΞΉ, CliffordAlgebra.isUnit_of_isUnit_ΞΉ, map_add_self, neg_apply, map_smul_of_tower, associated_eq_self_apply, polar_prod, sum_apply, linMulLin_apply, CliffordAlgebra.changeFormAux_changeFormAux, CliffordAlgebra.ΞΉ_mul_ΞΉ_comm, CliffordAlgebra.ΞΉ_sq_scalar, QuadraticForm.tmul_tensorMap_apply, polar_neg_left, ofPolar_apply, ext_iff, zero_apply, map_smul, associated_apply, map_zero, map_finsuppSum, comp_apply, isOrtho_def, polar_add_left, QuadraticForm.baseChange_tmul, proj_apply, CliffordAlgebra.ΞΉ_mul_ΞΉ_mul_ΞΉ, polar_smul_left_of_tower, toBilin_apply, evalAddMonoidHom_apply, polar_self, prod_apply, QuadraticForm.dualProd_apply, LinearMap.compQuadraticMap_polar, CliffordAlgebra.invOf_ΞΉ_mul_ΞΉ_mul_ΞΉ, CliffordAlgebra.EvenHom.contract, zeroHomClass, CliffordAlgebra.ΞΉ_mul_ΞΉ_add_swap, IsometryEquiv.map_app, coeFn_add, CliffordAlgebra.comp_ΞΉ_sq_scalar, map_sub, QuadraticForm.tmul_tensorAssoc_apply, Isometry.map_app, QuadraticForm.tmul_tensorComm_apply, QuadraticForm.tmul_tensorRId_apply, baseChange_ext_iff, CliffordAlgebra.EquivEven.Q'_apply, sub_apply, CliffordAlgebra.isUnit_ΞΉ_iff, smul_apply, PosDef.nonneg, coeFnAddMonoidHom_apply, map_finsuppSum', sq_apply, basisRepr_eq_of_iIsOrtho, QuadraticForm.tensorDistrib_tmul, polar_smul_left, pi_apply_single, PosDef.le_zero_iff, LinearMap.compQuadraticMap_apply, CliffordAlgebra.EquivEven.v_sq_scalar, map_add_add_add_map, lineDifferentiableAt, coeFn_sub, CliffordAlgebra.invOf_ΞΉ, QuadraticForm.tmul_tensorLId_apply, map_sum', map_neg, weightedSumSquares_apply, pi_apply, coeFn_neg, CliffordAlgebra.forall_mul_self_eq_iff, LinearMap.compQuadraticMap'_apply, Isometry.map_app', polar_neg_right, polar_sub_right, polar_add_right, apply_linearCombination', Anisotropic.eq_zero_iff, polar_sub_left, IsOrtho.polar_eq_zero, toFun_eq_coe, IsometryEquiv.map_app', polar_smul_right_of_tower, apply_linearCombination, coeFn_sum, CliffordAlgebraComplex.Q_apply, nonneg_prod_iff, nonneg_pi_iff, LinearMap.BilinMap.toQuadraticMap_apply, map_sum, posDef_iff_nonneg, sum_repr_sq_add_sum_repr_mul_polar, coeFn_zero, coe_mk, exists_companion, polarSym2_map_smul, coeFn_smul, tensorDistrib_tmul, Ring.polar_pi, CliffordAlgebra.GradedAlgebra.ΞΉ_sq_scalar, CliffordAlgebra.EvenHom.contract_mid, polar_smul_right, polar_zero_right, basisRepr_apply, restrictScalars_apply, CliffordAlgebra.contractLeftAux_contractLeftAux, CliffordAlgebraQuaternion.Q_apply, polarBilin_apply_apply, add_apply, congr_fun, hasLineDerivAt
|
instInhabited π | CompOp | β |
instInvertibleEndOfNat π | CompOp | 14 mathmath: canLift, associated_prod, associated_tmul, half_moduleEnd_apply_eq_half_smul, QuadraticForm.toDualProd_apply, associated_linMulLin, QuadraticForm.associated_isSymm, associated_sq, associated_isOrtho, Ring.associated_pi, CliffordAlgebra.changeForm.associated_neg_proof, separatingLeft_of_anisotropic, QuadraticForm.associated_tmul, QuadraticForm.associated_baseChange
|
instModuleOfSMulCommClass π | CompOp | 33 mathmath: canLift, LinearEquiv.congrQuadraticMap_symm, toBilinHom_apply, associated_eq_self_apply, associated_rightInverse, LinearEquiv.congrQuadraticMap_refl, associated_prod, associated_apply, toQuadraticMap_associated, associated_left_inverse, associated_tmul, associated_toQuadraticMap, two_nsmul_associated, associated_left_inverse', LinearMap.BilinMap.toQuadraticMapLinearMap_apply, QuadraticForm.tensorDistrib_tmul, QuadraticForm.toDualProd_apply, canLift', coe_associatedHom, LinearEquiv.congrQuadraticMap_symm_apply, associated_linMulLin, QuadraticForm.associated_isSymm, associated_sq, associated_comp, associated_isOrtho, Ring.associated_pi, CliffordAlgebra.changeForm.associated_neg_proof, LinearEquiv.congrQuadraticMap_apply, QuadraticForm.associated_tmul, tensorDistrib_tmul, associated_flip, associated_isSymm, QuadraticForm.associated_baseChange
|
instNeg π | CompOp | 7 mathmath: neg_apply, QuadraticForm.toDualProd_apply, coeFn_neg, CliffordAlgebra.evenEquivEvenNeg_apply, CliffordAlgebra.evenEquivEvenNeg_symm_apply, CliffordAlgebra.changeForm.associated_neg_proof, LinearMap.BilinMap.toQuadraticMap_neg
|
instSMul π | CompOp | 9 mathmath: smul_toBilin, instIsScalarTower, discr_smul, instSMulCommClass, smul_apply, LinearMap.BilinMap.toQuadraticMap_smul, PosDef.smul, coeFn_smul, toMatrix'_smul
|
instSub π | CompOp | 5 mathmath: CliffordAlgebra.changeForm.zero_proof, sub_apply, coeFn_sub, CliffordAlgebra.changeForm.associated_neg_proof, LinearMap.BilinMap.toQuadraticMap_sub
|
instZero π | CompOp | 139 mathmath: ExteriorAlgebra.isLocalHom_algebraMap, ExteriorAlgebra.GradedAlgebra.liftΞΉ_eq, ExteriorAlgebra.ΞΉ_eq_algebraMap_iff, exteriorPower.basis_apply, ExteriorAlgebra.ΞΉ_inj, exteriorPower.linearMap_ext_iff, ExteriorAlgebra.lift_symm_apply, exteriorPower.coe_basis, exteriorPower.ΞΉMulti_family_linearIndependent_field, exteriorPower.basis_repr_ne, CliffordAlgebraDualNumber.equiv_symm_eps, ExteriorAlgebra.ΞΉMulti_span_fixedDegree, Isometry.proj_comp_single_of_same, ExteriorAlgebra.ΞΉ_eq_zero_iff, ExteriorAlgebra.map_comp_map, exteriorPower.ΞΉMulti_family_span_fixedDegree_of_span, LinearMap.BilinMap.toQuadraticMap_zero, ExteriorAlgebra.liftAlternating_ΞΉ_mul, ExteriorAlgebra.toTrivSqZeroExt_comp_map, exteriorPower.alternatingMapLinearEquiv_ΞΉMulti, ExteriorAlgebra.algebraMap_inj, ExteriorAlgebra.algebraMap_eq_one_iff, ExteriorAlgebra.liftAlternating_comp, exteriorPower.ΞΉMulti_span_of_span, exteriorPower.alternatingMapLinearEquiv_symm_map, exteriorPower.instFree, ExteriorAlgebra.ΞΉMulti_succ_apply, ExteriorAlgebra.map_comp_ΞΉ, ExteriorAlgebra.ΞΉMulti_span, ExteriorAlgebra.map_comp_ΞΉMulti, exteriorPower.ΞΉMultiDual_apply_diag, ExteriorAlgebra.algebraMap_eq_zero_iff, ExteriorAlgebra.lift_ΞΉ_apply, ExteriorAlgebra.ΞΉMulti_zero_apply, zero_apply, TensorAlgebra.toExterior_ΞΉ, ExteriorAlgebra.liftAlternatingEquiv_symm_apply, LinearMap.BilinMap.toQuadraticMap_eq_zero, ExteriorAlgebra.GradedAlgebra.ΞΉ_sq_zero, ExteriorAlgebra.lift_comp_ΞΉ, ExteriorAlgebra.liftAlternating_ΞΉMulti, Isometry.snd_comp_inl, ExteriorAlgebra.liftAlternatingEquiv_apply, IsOrtho.all, ExteriorAlgebra.ΞΉ_comp_lift, exteriorPower.finrank_eq, Isometry.snd_apply, ExteriorAlgebra.invertibleAlgebraMapEquiv_apply_invOf, exteriorPower.map_apply_ΞΉMulti_family, ExteriorAlgebra.ΞΉMulti_range, exteriorPower.zeroEquiv_naturality, ExteriorAlgebra.liftAlternating_apply_ΞΉMulti, exteriorPower.ΞΉMulti_span_fixedDegree_of_span_eq_top, exteriorPower.ΞΉMulti_apply_coe, exteriorPower.oneEquiv_naturality, ExteriorAlgebra.ΞΉ_range_disjoint_one, ExteriorAlgebra.liftAlternating_one, ExteriorAlgebra.ΞΉ_sq_zero, exteriorPower.alternatingMapLinearEquiv_apply_ΞΉMulti, exteriorPower.ΞΉMultiDual_apply_ΞΉMulti, Isometry.proj_comp_single_of_ne, exteriorPower.ΞΉMulti_family_eq_coe_comp, exteriorPower.pairingDual_ΞΉMulti_ΞΉMulti, ExteriorAlgebra.map_apply_ΞΉ, ExteriorAlgebra.ΞΉ_leftInverse, exteriorPower.alternatingMapLinearEquiv_comp_ΞΉMulti, exteriorPower.oneEquiv_symm_apply, exteriorPower.map_comp_ΞΉMulti, ExteriorAlgebra.instGradedMonoidNatSubmoduleExteriorPower, ExteriorAlgebra.ΞΉ_add_mul_swap, exteriorPower.pairingDual_apply_apply_eq_one, ExteriorAlgebra.toTrivSqZeroExt_ΞΉ, LinearMap.BilinMap.toQuadraticMap_list_sum, ExteriorAlgebra.isUnit_algebraMap, ExteriorAlgebra.map_injective_field, ExteriorAlgebra.map_injective, exteriorPower.ΞΉMulti_family_span_of_span, exteriorPower.map_injective_field, Isometry.proj_apply, ExteriorAlgebra.ΞΉMulti_apply, Isometry.fst_apply, exteriorPower.alternatingMapLinearEquiv_comp, exteriorPower.basis_coord, exteriorPower.presentation_relation, Isometry.fst_comp_inl, exteriorPower.instFinite, exteriorPower.alternatingMapToDual_apply_ΞΉMulti, ExteriorAlgebra.map_surjective_iff, CliffordAlgebraRing.ΞΉ_eq_zero, exteriorPower.zeroEquiv_ΞΉMulti, ExteriorAlgebra.liftAlternating_comp_ΞΉMulti, CliffordAlgebraRing.involute_eq_id, exteriorPower.map_injective, exteriorPower.basis_repr_apply, exteriorPower.presentation_R, CliffordAlgebraDualNumber.equiv_ΞΉ, Isometry.fst_comp_inr, ExteriorAlgebra.algebraMap_leftInverse, exteriorPower.map_comp_ΞΉMulti_family, exteriorPower.map_id, ExteriorAlgebra.map_apply_ΞΉMulti, exteriorPower.pairingDual_apply_apply_eq_one_zero, ExteriorAlgebra.lift_unique, CliffordAlgebraRing.reverse_apply, ExteriorAlgebra.hom_ext_iff, ExteriorAlgebra.liftAlternating_algebraMap, ExteriorAlgebra.map_id, CliffordAlgebraDualNumber.ΞΉ_mul_ΞΉ, exteriorPower.basis_repr, exteriorPower.alternatingMapLinearEquiv_symm_apply, ExteriorAlgebra.ΞΉInv_comp_map, CliffordAlgebra.changeForm.associated_neg_proof, exteriorPower.map_apply_ΞΉMulti, ExteriorAlgebra.lhom_ext_iff, ExteriorAlgebra.ΞΉ_range_map_map, exteriorPower.map_comp, exteriorPower.ΞΉMultiDual_apply_nondiag, exteriorPower.presentation_var, ExteriorAlgebra.comp_ΞΉ_sq_zero, exteriorPower.map_surjective, coeFn_zero, ExteriorAlgebra.ΞΉ_mul_prod_list, ExteriorAlgebra.ΞΉMulti_succ_curryLeft, ExteriorAlgebra.leftInverse_map_iff, exteriorPower.presentation_G, exteriorPower.ΞΉMulti_family_linearIndependent_ofBasis, exteriorPower.ΞΉMulti_family_span, exteriorPower.ΞΉMulti_span_fixedDegree, CliffordAlgebraRing.reverse_eq_id, ExteriorAlgebra.GradedAlgebra.ΞΉ_apply, ExteriorAlgebra.invertibleAlgebraMapEquiv_symm_apply_invOf_toQuot, exteriorPower.oneEquiv_ΞΉMulti, exteriorPower.ΞΉMulti_span, exteriorPower.toTensorPower_apply_ΞΉMulti, exteriorPower.zeroEquiv_symm_apply, ExteriorAlgebra.liftAlternating_ΞΉ, exteriorPower.ΞΉMulti_family_apply_coe, exteriorPower.basis_repr_self, Isometry.snd_comp_inr
|
linMulLin π | CompOp | 6 mathmath: linMulLinSelfPosDef, add_linMulLin, linMulLin_apply, associated_linMulLin, linMulLin_comp, linMulLin_add
|
ofPolar π | CompOp | 1 mathmath: ofPolar_apply
|
polar π | CompOp | 36 mathmath: polar_zero_left, lineDeriv, LinearMap.BilinMap.polar_toQuadraticMap, CliffordAlgebra.ΞΉ_mul_ΞΉ_mul_invOf_ΞΉ, polar_add_left_iff, polar_add, polar_prod, CliffordAlgebra.ΞΉ_mul_ΞΉ_comm, polar_neg_left, CliffordAlgebra.mul_add_swap_eq_polar_of_forall_mul_self_eq, polar_smul, polar_add_left, polar_comm, CliffordAlgebra.ΞΉ_mul_ΞΉ_mul_ΞΉ, polar_smul_left_of_tower, toBilin_apply, polar_self, map_add, LinearMap.compQuadraticMap_polar, CliffordAlgebra.invOf_ΞΉ_mul_ΞΉ_mul_ΞΉ, CliffordAlgebra.ΞΉ_mul_ΞΉ_add_swap, polar_smul_left, polarSym2_sym2Mk, polar_comp, polar_neg, polar_neg_right, polar_sub_right, polar_add_right, polar_sub_left, IsOrtho.polar_eq_zero, polar_smul_right_of_tower, Ring.polar_pi, polar_smul_right, polar_zero_right, polarBilin_apply_apply, hasLineDerivAt
|
polarBilin π | CompOp | 14 mathmath: polarBilin_prod, QuadraticForm.polarBilin_baseChange, QuadraticForm.polarBilin_tmul, Ring.polarBilin_pi, polarBilin_injective, choose_exists_companion, two_nsmul_associated, isOrtho_polarBilin, toQuadraticMap_polarBilin, CliffordAlgebra.forall_mul_self_eq_iff, LinearMap.compQuadraticMap_polarBilin, LinearMap.BilinMap.polarBilin_toQuadraticMap, polarBilin_comp, polarBilin_apply_apply
|
polarSym2 π | CompOp | 10 mathmath: sum_polar_sub_repr_sq, map_finsuppSum, map_finsuppSum', polarSym2_sym2Mk, map_sum', apply_linearCombination', apply_linearCombination, map_sum, sum_repr_sq_add_sum_repr_mul_polar, polarSym2_map_smul
|
proj π | CompOp | 1 mathmath: proj_apply
|
restrictScalars π | CompOp | 1 mathmath: restrictScalars_apply
|
sq π | CompOp | 16 mathmath: QuadraticForm.tensorRId_symm_apply, QuadraticForm.tensorRId_apply, QuadraticForm.comp_tensorLId_eq, QuadraticForm.tensorLId_toLinearEquiv, QuadraticForm.tmul_tensorRId_apply, QuadraticModuleCat.toIsometry_hom_leftUnitor, QuadraticModuleCat.toIsometry_hom_rightUnitor, QuadraticForm.tensorLId_symm_apply, sq_apply, QuadraticModuleCat.toIsometry_inv_rightUnitor, QuadraticForm.tensorRId_toLinearEquiv, QuadraticForm.tmul_tensorLId_apply, QuadraticForm.tensorLId_apply, QuadraticForm.comp_tensorRId_eq, associated_sq, QuadraticModuleCat.toIsometry_inv_leftUnitor
|
toFun π | CompOp | 3 mathmath: toFun_smul, exists_companion', toFun_eq_coe
|
toMatrix' π | CompOp | 4 mathmath: QuadraticForm.posDef_toMatrix', toMatrix'_comp, isSymm_toMatrix', toMatrix'_smul
|
weightedSumSquares π | CompOp | 9 mathmath: QuadraticForm.equivalent_signType_weighted_sum_squared, QuadraticForm.equivalent_one_neg_one_weighted_sum_squared, QuadraticForm.equivalent_one_zero_neg_one_weighted_sum_squared, QuadraticForm.equivalent_weightedSumSquares, basisRepr_eq_of_iIsOrtho, QuadraticForm.equivalent_sum_squares, weightedSumSquares_apply, QuadraticForm.equivalent_sign_ne_zero_weighted_sum_squared, QuadraticForm.equivalent_weightedSumSquares_units_of_nondegenerate'
|