Documentation Verification Report

Basic

πŸ“ Source: Mathlib/LinearAlgebra/QuadraticForm/Basic.lean

Statistics

MetricCount
DefinitionscongrQuadraticMap, toQuadraticMap, toQuadraticMapAddMonoidHom, toQuadraticMapLinearMap, compQuadraticMap, compQuadraticMap', toQuadraticMap', Anisotropic, IsOrtho, associated, associated', associatedHom, basisRepr, coeFnAddMonoidHom, comp, copy, discr, evalAddMonoidHom, instAdd, instAddCommGroup, instAddCommMonoid, instDistribMulActionOfSMulCommClass, instFunLike, instInhabited, instInvertibleEndOfNat, instModuleOfSMulCommClass, instNeg, instSMul, instSub, instZero, linMulLin, ofPolar, polar, polarBilin, polarSym2, proj, restrictScalars, sq, toFun, toMatrix', weightedSumSquares
41
TheoremscongrQuadraticMap_apply, congrQuadraticMap_refl, congrQuadraticMap_symm, congrQuadraticMap_symm_apply, exists_bilinForm_self_ne_zero, exists_orthogonal_basis, separatingLeft_of_anisotropic, toQuadraticMap_isOrtho, polarBilin_toQuadraticMap, polar_toQuadraticMap, toQuadraticMapAddMonoidHom_apply, toQuadraticMapLinearMap_apply, toQuadraticMap_add, toQuadraticMap_apply, toQuadraticMap_comp_same, toQuadraticMap_eq_zero, toQuadraticMap_list_sum, toQuadraticMap_multiset_sum, toQuadraticMap_neg, toQuadraticMap_smul, toQuadraticMap_sub, toQuadraticMap_sum, toQuadraticMap_zero, compQuadraticMap'_apply, compQuadraticMap_apply, compQuadraticMap_polar, compQuadraticMap_polarBilin, associated_isSymm, eq_zero_iff, all, polar_eq_zero, zero_left, zero_right, add, anisotropic, le_zero_iff, nonneg, smul, add_apply, add_linMulLin, associated_apply, associated_comp, associated_eq_self_apply, associated_flip, associated_isOrtho, associated_isSymm, associated_left_inverse, associated_left_inverse', associated_linMulLin, associated_rightInverse, associated_sq, associated_toQuadraticMap, basisRepr_apply, basisRepr_eq_of_iIsOrtho, canLift, canLift', choose_exists_companion, coeFnAddMonoidHom_apply, coeFn_add, coeFn_neg, coeFn_smul, coeFn_sub, coeFn_sum, coeFn_zero, coe_associatedHom, coe_copy, coe_mk, comp_apply, congr_fun, copy_eq, discr_comp, discr_smul, evalAddMonoidHom_apply, exists_companion, exists_companion', exists_quadraticMap_ne_zero, ext, ext_iff, half_moduleEnd_apply_eq_half_smul, instIsScalarTower, instSMulCommClass, isOrtho_comm, isOrtho_def, isOrtho_polarBilin, isSymm_toMatrix', linMulLinSelfPosDef, linMulLin_add, linMulLin_apply, linMulLin_comp, map_add, map_add_add_add_map, map_add_self, map_neg, map_smul, map_smul_of_tower, map_sub, map_sum, map_sum', map_zero, ne_zero_of_not_isOrtho_self, neg_apply, not_anisotropic_iff_exists, ofPolar_apply, polarBilin_apply_apply, polarBilin_comp, polarBilin_injective, polarSym2_map_smul, polarSym2_sym2Mk, polar_add, polar_add_left, polar_add_left_iff, polar_add_right, polar_comm, polar_comp, polar_neg, polar_neg_left, polar_neg_right, polar_self, polar_smul, polar_smul_left, polar_smul_left_of_tower, polar_smul_right, polar_smul_right_of_tower, polar_sub_left, polar_sub_right, polar_zero_left, polar_zero_right, posDef_iff_nonneg, posDef_of_nonneg, proj_apply, restrictScalars_apply, separatingLeft_of_anisotropic, smul_apply, sq_apply, sub_apply, sum_apply, toFun_eq_coe, toFun_smul, toMatrix'_comp, toMatrix'_smul, toQuadraticMap_associated, toQuadraticMap_polarBilin, two_nsmul_associated, weightedSumSquares_apply, zeroHomClass, zero_apply
146
Total187

LinearEquiv

Definitions

NameCategoryTheorems
congrQuadraticMap πŸ“–CompOp
4 mathmath: congrQuadraticMap_symm, congrQuadraticMap_refl, congrQuadraticMap_symm_apply, congrQuadraticMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
congrQuadraticMap_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
QuadraticMap
QuadraticMap.instAddCommMonoid
QuadraticMap.instModuleOfSMulCommClass
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
congrQuadraticMap
LinearMap.compQuadraticMap
toLinearMap
β€”RingHomInvPair.ids
smulCommClass_self
congrQuadraticMap_refl πŸ“–mathematicalβ€”congrQuadraticMap
refl
CommSemiring.toSemiring
QuadraticMap
QuadraticMap.instAddCommMonoid
QuadraticMap.instModuleOfSMulCommClass
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”RingHomInvPair.ids
smulCommClass_self
congrQuadraticMap_symm πŸ“–mathematicalβ€”symm
QuadraticMap
CommSemiring.toSemiring
QuadraticMap.instAddCommMonoid
QuadraticMap.instModuleOfSMulCommClass
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
congrQuadraticMap
β€”RingHomInvPair.ids
smulCommClass_self
congrQuadraticMap_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
QuadraticMap
QuadraticMap.instAddCommMonoid
QuadraticMap.instModuleOfSMulCommClass
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
instEquivLike
symm
congrQuadraticMap
LinearMap.compQuadraticMap
toLinearMap
β€”RingHomInvPair.ids
smulCommClass_self

LinearMap

Definitions

NameCategoryTheorems
compQuadraticMap πŸ“–CompOp
3 mathmath: compQuadraticMap_apply, LinearEquiv.congrQuadraticMap_symm_apply, LinearEquiv.congrQuadraticMap_apply
compQuadraticMap' πŸ“–CompOp
3 mathmath: compQuadraticMap_polar, compQuadraticMap'_apply, compQuadraticMap_polarBilin

Theorems

NameKindAssumesProvesValidatesDepends On
compQuadraticMap'_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
QuadraticMap.instFunLike
compQuadraticMap'
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
β€”β€”
compQuadraticMap_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
QuadraticMap.instFunLike
compQuadraticMap
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
β€”β€”
compQuadraticMap_polar πŸ“–mathematicalβ€”QuadraticMap.polar
DFunLike.coe
QuadraticMap
AddCommGroup.toAddCommMonoid
QuadraticMap.instFunLike
compQuadraticMap'
CommRing.toCommSemiring
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
β€”map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
compQuadraticMap_polarBilin πŸ“–mathematicalβ€”QuadraticMap.polarBilin
compQuadraticMap'
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
comprβ‚‚
Semiring.toModule
smulCommClass_self
CommRing.toCommMonoid
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
β€”ext
IsScalarTower.left
smulCommClass_self
QuadraticMap.polarBilin_apply_apply
comprβ‚‚_apply
compQuadraticMap_polar

LinearMap.BilinForm

Theorems

NameKindAssumesProvesValidatesDepends On
exists_bilinForm_self_ne_zero πŸ“–mathematicalLinearMap.IsSymm
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
LinearMap.IsOrtho
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”Nat.instAtLeastTwoHAddOfNat
IsScalarTower.to_smulCommClass
IsScalarTower.right
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
CanLift.prf
QuadraticMap.canLift
QuadraticMap.exists_quadraticMap_ne_zero
QuadraticMap.associated_eq_self_apply
exists_orthogonal_basis πŸ“–mathematicalLinearMap.IsSymm
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
LinearMap.IsOrthoα΅’
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
β€”Nat.instAtLeastTwoHAddOfNat
Fin.isEmpty'
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
eq_or_ne
IsNoetherianRing.strongRankCondition
EuclideanDomain.toNontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Module.Free.of_divisionRing
exists_bilinForm_self_ne_zero
Algebra.to_smulCommClass
FiniteDimensional.finiteDimensional_submodule
LinearMap.IsSymm.domRestrict
finrank_span_singleton
ne_zero_of_map
Submodule.finrank_add_eq_of_isCompl
IsCompl.symm
LinearMap.isCompl_span_singleton_orthogonal
IsCompl.disjoint
Submodule.disjoint_def
Submodule.smul_mem
Submodule.mem_span_singleton_self
Submodule.neg_mem_iff
add_eq_zero_iff_neg_eq
smul_eq_zero
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
IsDomain.toIsCancelMulZero
Submodule.mem_span_singleton
LinearMap.IsOrtho.eq_1
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.smul_apply
map_add
SemilinearMapClass.toAddHomClass
smul_eq_mul
div_mul_cancelβ‚€
add_neg_cancel
MulZeroClass.mul_zero
Module.Basis.coe_mkFinCons
Fin.cons_zero
Fin.cons_succ
LinearMap.IsSymm.eq
Subtype.prop
separatingLeft_of_anisotropic πŸ“–mathematicalQuadraticMap.Anisotropic
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
LinearMap.BilinMap.toQuadraticMap
LinearMap.SeparatingLeft
RingHom.id
β€”β€”
toQuadraticMap_isOrtho πŸ“–mathematicalLinearMap.IsSymm
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
QuadraticMap.IsOrtho
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.BilinMap.toQuadraticMap
LinearMap.IsOrtho
β€”smulCommClass_self
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
add_comm
add_add_add_comm
add_eq_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsCancelAdd.toIsLeftCancelAdd
IsCancelAdd.toIsRightCancelAdd
Algebra.to_smulCommClass
LinearMap.IsSymm.eq
RingHom.id_apply
add_self_eq_zero

LinearMap.BilinMap

Definitions

NameCategoryTheorems
toQuadraticMap πŸ“–CompOp
31 mathmath: polar_toQuadraticMap, toQuadraticMap_add, toQuadraticMapAddMonoidHom_apply, RootPairing.rootForm_anisotropic, toQuadraticMap_zero, QuadraticMap.associated_rightInverse, CliffordAlgebra.changeForm.zero_proof, toQuadraticMap_eq_zero, QuadraticMap.toQuadraticMap_associated, QuadraticMap.associated_left_inverse, RootSystem.rootForm_anisotropic, LinearMap.BilinForm.toQuadraticMap_isOrtho, QuadraticMap.associated_toQuadraticMap, QuadraticMap.associated_left_inverse', QuadraticMap.toQuadraticMap_polarBilin, toQuadraticMap_smul, toQuadraticMapLinearMap_apply, toQuadraticMap_surjective, toQuadraticMap_list_sum, toQuadraticMap_multiset_sum, QuadraticMap.toQuadraticMap_toBilin, toQuadraticMap_sum, CliffordAlgebra.changeForm.associated_neg_proof, RootPairing.posRootForm_posForm_anisotropic, toQuadraticMap_apply, polarBilin_toQuadraticMap, RootPairing.posRootForm_rootFormIn_posDef, toQuadraticMap_neg, toQuadraticMap_comp_same, LinearMap.dualProd.toQuadraticForm, toQuadraticMap_sub
toQuadraticMapAddMonoidHom πŸ“–CompOp
1 mathmath: toQuadraticMapAddMonoidHom_apply
toQuadraticMapLinearMap πŸ“–CompOp
1 mathmath: toQuadraticMapLinearMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
polarBilin_toQuadraticMap πŸ“–mathematicalβ€”QuadraticMap.polarBilin
toQuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.BilinMap
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.addCommMonoid
LinearMap.module
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
LinearMap.instAdd
LinearMap.flip
β€”LinearMap.extβ‚‚
SMulCommClass.symm
polar_toQuadraticMap
polar_toQuadraticMap πŸ“–mathematicalβ€”QuadraticMap.polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
QuadraticMap.instFunLike
toQuadraticMap
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.BilinMap
LinearMap.addCommMonoid
LinearMap.module
β€”map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
add_assoc
add_comm
add_sub_cancel_left
sub_eq_add_neg
add_neg_cancel_left
toQuadraticMapAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
LinearMap.BilinMap
QuadraticMap
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
LinearMap.addCommMonoid
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.module
QuadraticMap.instAddCommMonoid
AddMonoidHom.instFunLike
toQuadraticMapAddMonoidHom
toQuadraticMap
β€”β€”
toQuadraticMapLinearMap_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.BilinMap
QuadraticMap
LinearMap.addCommMonoid
CommSemiring.toSemiring
LinearMap.module
QuadraticMap.instAddCommMonoid
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
QuadraticMap.instModuleOfSMulCommClass
LinearMap.instFunLike
toQuadraticMapLinearMap
toQuadraticMap
β€”LinearMap.instSMulCommClass
toQuadraticMap_add πŸ“–mathematicalβ€”toQuadraticMap
LinearMap.BilinMap
LinearMap.instAdd
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.addCommMonoid
LinearMap.module
QuadraticMap
QuadraticMap.instAdd
β€”β€”
toQuadraticMap_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
QuadraticMap.instFunLike
toQuadraticMap
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.BilinMap
LinearMap.addCommMonoid
LinearMap.module
β€”β€”
toQuadraticMap_comp_same πŸ“–mathematicalβ€”toQuadraticMap
LinearMap.compl₁₂
CommSemiring.toSemiring
QuadraticMap.comp
β€”β€”
toQuadraticMap_eq_zero πŸ“–mathematicalβ€”toQuadraticMap
QuadraticMap
QuadraticMap.instZero
LinearMap.IsAlt
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”QuadraticMap.ext_iff
toQuadraticMap_list_sum πŸ“–mathematicalβ€”toQuadraticMap
LinearMap.BilinMap
LinearMap.instAdd
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.addCommMonoid
LinearMap.module
LinearMap.instZero
QuadraticMap
QuadraticMap.instAdd
QuadraticMap.instZero
β€”map_list_sum
AddMonoidHom.instAddMonoidHomClass
toQuadraticMap_multiset_sum πŸ“–mathematicalβ€”toQuadraticMap
Multiset.sum
LinearMap.BilinMap
LinearMap.addCommMonoid
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.module
QuadraticMap
QuadraticMap.instAddCommMonoid
Multiset.map
β€”map_multiset_sum
AddMonoidHom.instAddMonoidHomClass
toQuadraticMap_neg πŸ“–mathematicalβ€”toQuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.BilinMap
LinearMap.instNeg
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.addCommGroup
LinearMap.module
QuadraticMap
QuadraticMap.instNeg
β€”β€”
toQuadraticMap_smul πŸ“–mathematicalβ€”toQuadraticMap
LinearMap.BilinMap
LinearMap.instSMul
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.addCommMonoid
LinearMap.module
DistribMulAction.toDistribSMul
AddCommMonoid.toAddMonoid
LinearMap.instDistribMulAction
LinearMap.instSMulCommClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
QuadraticMap
QuadraticMap.instSMul
β€”LinearMap.instSMulCommClass
toQuadraticMap_sub πŸ“–mathematicalβ€”toQuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.BilinMap
LinearMap.instSub
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.addCommGroup
LinearMap.module
QuadraticMap
QuadraticMap.instSub
β€”β€”
toQuadraticMap_sum πŸ“–mathematicalβ€”toQuadraticMap
Finset.sum
LinearMap.BilinMap
LinearMap.addCommMonoid
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.module
QuadraticMap
QuadraticMap.instAddCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
toQuadraticMap_zero πŸ“–mathematicalβ€”toQuadraticMap
LinearMap.BilinMap
LinearMap.instZero
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.addCommMonoid
LinearMap.module
QuadraticMap
QuadraticMap.instZero
β€”β€”

Matrix

Definitions

NameCategoryTheorems
toQuadraticMap' πŸ“–CompOp
1 mathmath: PosDef.toQuadraticForm'

QuadraticForm

Theorems

NameKindAssumesProvesValidatesDepends On
associated_isSymm πŸ“–mathematicalβ€”LinearMap.IsSymm
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
LinearMap
QuadraticMap
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
LinearMap.BilinMap
QuadraticMap.instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
QuadraticMap.instModuleOfSMulCommClass
Algebra.toModule
IsScalarTower.to_smulCommClass
IsScalarTower.right
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
QuadraticMap.associatedHom
QuadraticMap.instInvertibleEndOfNat
β€”Nat.instAtLeastTwoHAddOfNat
IsScalarTower.to_smulCommClass
IsScalarTower.right
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
QuadraticMap.associated_isSymm

QuadraticMap

Definitions

NameCategoryTheorems
Anisotropic πŸ“–MathDef
6 mathmath: not_anisotropic_iff_exists, RootPairing.rootForm_anisotropic, RootSystem.rootForm_anisotropic, PosDef.anisotropic, RootPairing.posRootForm_posForm_anisotropic, posDef_iff_nonneg
IsOrtho πŸ“–MathDef
12 mathmath: isOrtho_comm, isOrtho_inl_inl_iff, IsOrtho.all, isOrtho_def, LinearMap.BilinForm.toQuadraticMap_isOrtho, isOrtho_polarBilin, IsOrtho.zero_left, IsOrtho.inr_inl, isOrtho_inr_inr_iff, associated_isOrtho, IsOrtho.zero_right, IsOrtho.inl_inr
associated πŸ“–CompOp
11 mathmath: associated_prod, associated_tmul, QuadraticForm.toDualProd_apply, coe_associatedHom, associated_linMulLin, associated_sq, associated_isOrtho, Ring.associated_pi, CliffordAlgebra.changeForm.associated_neg_proof, QuadraticForm.associated_tmul, QuadraticForm.associated_baseChange
associated' πŸ“–CompOp
1 mathmath: separatingLeft_of_anisotropic
associatedHom πŸ“–CompOp
15 mathmath: canLift, associated_eq_self_apply, associated_rightInverse, associated_apply, toQuadraticMap_associated, associated_left_inverse, associated_toQuadraticMap, two_nsmul_associated, associated_left_inverse', canLift', coe_associatedHom, QuadraticForm.associated_isSymm, associated_comp, associated_flip, associated_isSymm
basisRepr πŸ“–CompOp
2 mathmath: basisRepr_eq_of_iIsOrtho, basisRepr_apply
coeFnAddMonoidHom πŸ“–CompOp
1 mathmath: coeFnAddMonoidHom_apply
comp πŸ“–CompOp
12 mathmath: toMatrix'_comp, QuadraticForm.tmul_comp_tensorComm, comp_apply, QuadraticForm.comp_tensorLId_eq, discr_comp, QuadraticForm.tmul_comp_tensorMap, QuadraticForm.comp_tensorRId_eq, associated_comp, QuadraticForm.tmul_comp_tensorAssoc, polarBilin_comp, linMulLin_comp, LinearMap.BilinMap.toQuadraticMap_comp_same
copy πŸ“–CompOp
2 mathmath: coe_copy, copy_eq
discr πŸ“–CompOp
2 mathmath: discr_smul, discr_comp
evalAddMonoidHom πŸ“–CompOp
1 mathmath: evalAddMonoidHom_apply
instAdd πŸ“–CompOp
8 mathmath: LinearMap.BilinMap.toQuadraticMap_add, add_linMulLin, add_toBilin, coeFn_add, LinearMap.BilinMap.toQuadraticMap_list_sum, PosDef.add, linMulLin_add, add_apply
instAddCommGroup πŸ“–CompOp
2 mathmath: toQuadraticMap_polarBilin, separatingLeft_of_anisotropic
instAddCommMonoid πŸ“–CompOp
42 mathmath: canLift, LinearEquiv.congrQuadraticMap_symm, LinearMap.BilinMap.toQuadraticMapAddMonoidHom_apply, toBilinHom_apply, associated_eq_self_apply, associated_rightInverse, sum_apply, LinearEquiv.congrQuadraticMap_refl, associated_prod, associated_apply, toQuadraticMap_associated, associated_left_inverse, evalAddMonoidHom_apply, associated_tmul, associated_toQuadraticMap, two_nsmul_associated, associated_left_inverse', coeFnAddMonoidHom_apply, LinearMap.BilinMap.toQuadraticMapLinearMap_apply, QuadraticForm.tensorDistrib_tmul, QuadraticForm.toDualProd_apply, canLift', LinearMap.BilinMap.toQuadraticMap_multiset_sum, coe_associatedHom, LinearEquiv.congrQuadraticMap_symm_apply, associated_linMulLin, QuadraticForm.associated_isSymm, LinearMap.BilinMap.toQuadraticMap_sum, associated_sq, associated_comp, associated_isOrtho, Ring.associated_pi, coeFn_sum, CliffordAlgebra.changeForm.associated_neg_proof, separatingLeft_of_anisotropic, LinearEquiv.congrQuadraticMap_apply, QuadraticForm.associated_tmul, tensorDistrib_tmul, associated_flip, associated_isSymm, QuadraticForm.associated_baseChange, LinearMap.dualProd.toQuadraticForm
instDistribMulActionOfSMulCommClass πŸ“–CompOpβ€”
instFunLike πŸ“–CompOp
118 mathmath: polar_zero_left, not_anisotropic_iff_exists, lineDeriv, sum_polar_sub_repr_sq, LinearMap.BilinMap.polar_toQuadraticMap, CliffordAlgebra.ΞΉ_mul_ΞΉ_mul_invOf_ΞΉ, CliffordAlgebra.isUnit_of_isUnit_ΞΉ, map_add_self, neg_apply, map_smul_of_tower, associated_eq_self_apply, polar_prod, sum_apply, linMulLin_apply, CliffordAlgebra.changeFormAux_changeFormAux, CliffordAlgebra.ΞΉ_mul_ΞΉ_comm, CliffordAlgebra.ΞΉ_sq_scalar, QuadraticForm.tmul_tensorMap_apply, polar_neg_left, ofPolar_apply, ext_iff, zero_apply, map_smul, associated_apply, map_zero, map_finsuppSum, comp_apply, isOrtho_def, polar_add_left, QuadraticForm.baseChange_tmul, proj_apply, CliffordAlgebra.ΞΉ_mul_ΞΉ_mul_ΞΉ, polar_smul_left_of_tower, toBilin_apply, evalAddMonoidHom_apply, polar_self, prod_apply, QuadraticForm.dualProd_apply, LinearMap.compQuadraticMap_polar, CliffordAlgebra.invOf_ΞΉ_mul_ΞΉ_mul_ΞΉ, CliffordAlgebra.EvenHom.contract, zeroHomClass, CliffordAlgebra.ΞΉ_mul_ΞΉ_add_swap, IsometryEquiv.map_app, coeFn_add, CliffordAlgebra.comp_ΞΉ_sq_scalar, map_sub, QuadraticForm.tmul_tensorAssoc_apply, Isometry.map_app, QuadraticForm.tmul_tensorComm_apply, QuadraticForm.tmul_tensorRId_apply, baseChange_ext_iff, CliffordAlgebra.EquivEven.Q'_apply, sub_apply, CliffordAlgebra.isUnit_ΞΉ_iff, smul_apply, PosDef.nonneg, coeFnAddMonoidHom_apply, map_finsuppSum', sq_apply, basisRepr_eq_of_iIsOrtho, QuadraticForm.tensorDistrib_tmul, polar_smul_left, pi_apply_single, PosDef.le_zero_iff, LinearMap.compQuadraticMap_apply, CliffordAlgebra.EquivEven.v_sq_scalar, map_add_add_add_map, lineDifferentiableAt, coeFn_sub, CliffordAlgebra.invOf_ΞΉ, QuadraticForm.tmul_tensorLId_apply, map_sum', map_neg, weightedSumSquares_apply, pi_apply, coeFn_neg, CliffordAlgebra.forall_mul_self_eq_iff, LinearMap.compQuadraticMap'_apply, Isometry.map_app', polar_neg_right, polar_sub_right, polar_add_right, apply_linearCombination', Anisotropic.eq_zero_iff, polar_sub_left, IsOrtho.polar_eq_zero, toFun_eq_coe, IsometryEquiv.map_app', polar_smul_right_of_tower, apply_linearCombination, coeFn_sum, CliffordAlgebraComplex.Q_apply, nonneg_prod_iff, nonneg_pi_iff, LinearMap.BilinMap.toQuadraticMap_apply, map_sum, posDef_iff_nonneg, sum_repr_sq_add_sum_repr_mul_polar, coeFn_zero, coe_mk, exists_companion, polarSym2_map_smul, coeFn_smul, tensorDistrib_tmul, Ring.polar_pi, CliffordAlgebra.GradedAlgebra.ΞΉ_sq_scalar, CliffordAlgebra.EvenHom.contract_mid, polar_smul_right, polar_zero_right, basisRepr_apply, restrictScalars_apply, CliffordAlgebra.contractLeftAux_contractLeftAux, CliffordAlgebraQuaternion.Q_apply, polarBilin_apply_apply, add_apply, congr_fun, hasLineDerivAt
instInhabited πŸ“–CompOpβ€”
instInvertibleEndOfNat πŸ“–CompOp
14 mathmath: canLift, associated_prod, associated_tmul, half_moduleEnd_apply_eq_half_smul, QuadraticForm.toDualProd_apply, associated_linMulLin, QuadraticForm.associated_isSymm, associated_sq, associated_isOrtho, Ring.associated_pi, CliffordAlgebra.changeForm.associated_neg_proof, separatingLeft_of_anisotropic, QuadraticForm.associated_tmul, QuadraticForm.associated_baseChange
instModuleOfSMulCommClass πŸ“–CompOp
33 mathmath: canLift, LinearEquiv.congrQuadraticMap_symm, toBilinHom_apply, associated_eq_self_apply, associated_rightInverse, LinearEquiv.congrQuadraticMap_refl, associated_prod, associated_apply, toQuadraticMap_associated, associated_left_inverse, associated_tmul, associated_toQuadraticMap, two_nsmul_associated, associated_left_inverse', LinearMap.BilinMap.toQuadraticMapLinearMap_apply, QuadraticForm.tensorDistrib_tmul, QuadraticForm.toDualProd_apply, canLift', coe_associatedHom, LinearEquiv.congrQuadraticMap_symm_apply, associated_linMulLin, QuadraticForm.associated_isSymm, associated_sq, associated_comp, associated_isOrtho, Ring.associated_pi, CliffordAlgebra.changeForm.associated_neg_proof, LinearEquiv.congrQuadraticMap_apply, QuadraticForm.associated_tmul, tensorDistrib_tmul, associated_flip, associated_isSymm, QuadraticForm.associated_baseChange
instNeg πŸ“–CompOp
7 mathmath: neg_apply, QuadraticForm.toDualProd_apply, coeFn_neg, CliffordAlgebra.evenEquivEvenNeg_apply, CliffordAlgebra.evenEquivEvenNeg_symm_apply, CliffordAlgebra.changeForm.associated_neg_proof, LinearMap.BilinMap.toQuadraticMap_neg
instSMul πŸ“–CompOp
9 mathmath: smul_toBilin, instIsScalarTower, discr_smul, instSMulCommClass, smul_apply, LinearMap.BilinMap.toQuadraticMap_smul, PosDef.smul, coeFn_smul, toMatrix'_smul
instSub πŸ“–CompOp
5 mathmath: CliffordAlgebra.changeForm.zero_proof, sub_apply, coeFn_sub, CliffordAlgebra.changeForm.associated_neg_proof, LinearMap.BilinMap.toQuadraticMap_sub
instZero πŸ“–CompOp
139 mathmath: ExteriorAlgebra.isLocalHom_algebraMap, ExteriorAlgebra.GradedAlgebra.liftΞΉ_eq, ExteriorAlgebra.ΞΉ_eq_algebraMap_iff, exteriorPower.basis_apply, ExteriorAlgebra.ΞΉ_inj, exteriorPower.linearMap_ext_iff, ExteriorAlgebra.lift_symm_apply, exteriorPower.coe_basis, exteriorPower.ΞΉMulti_family_linearIndependent_field, exteriorPower.basis_repr_ne, CliffordAlgebraDualNumber.equiv_symm_eps, ExteriorAlgebra.ΞΉMulti_span_fixedDegree, Isometry.proj_comp_single_of_same, ExteriorAlgebra.ΞΉ_eq_zero_iff, ExteriorAlgebra.map_comp_map, exteriorPower.ΞΉMulti_family_span_fixedDegree_of_span, LinearMap.BilinMap.toQuadraticMap_zero, ExteriorAlgebra.liftAlternating_ΞΉ_mul, ExteriorAlgebra.toTrivSqZeroExt_comp_map, exteriorPower.alternatingMapLinearEquiv_ΞΉMulti, ExteriorAlgebra.algebraMap_inj, ExteriorAlgebra.algebraMap_eq_one_iff, ExteriorAlgebra.liftAlternating_comp, exteriorPower.ΞΉMulti_span_of_span, exteriorPower.alternatingMapLinearEquiv_symm_map, exteriorPower.instFree, ExteriorAlgebra.ΞΉMulti_succ_apply, ExteriorAlgebra.map_comp_ΞΉ, ExteriorAlgebra.ΞΉMulti_span, ExteriorAlgebra.map_comp_ΞΉMulti, exteriorPower.ΞΉMultiDual_apply_diag, ExteriorAlgebra.algebraMap_eq_zero_iff, ExteriorAlgebra.lift_ΞΉ_apply, ExteriorAlgebra.ΞΉMulti_zero_apply, zero_apply, TensorAlgebra.toExterior_ΞΉ, ExteriorAlgebra.liftAlternatingEquiv_symm_apply, LinearMap.BilinMap.toQuadraticMap_eq_zero, ExteriorAlgebra.GradedAlgebra.ΞΉ_sq_zero, ExteriorAlgebra.lift_comp_ΞΉ, ExteriorAlgebra.liftAlternating_ΞΉMulti, Isometry.snd_comp_inl, ExteriorAlgebra.liftAlternatingEquiv_apply, IsOrtho.all, ExteriorAlgebra.ΞΉ_comp_lift, exteriorPower.finrank_eq, Isometry.snd_apply, ExteriorAlgebra.invertibleAlgebraMapEquiv_apply_invOf, exteriorPower.map_apply_ΞΉMulti_family, ExteriorAlgebra.ΞΉMulti_range, exteriorPower.zeroEquiv_naturality, ExteriorAlgebra.liftAlternating_apply_ΞΉMulti, exteriorPower.ΞΉMulti_span_fixedDegree_of_span_eq_top, exteriorPower.ΞΉMulti_apply_coe, exteriorPower.oneEquiv_naturality, ExteriorAlgebra.ΞΉ_range_disjoint_one, ExteriorAlgebra.liftAlternating_one, ExteriorAlgebra.ΞΉ_sq_zero, exteriorPower.alternatingMapLinearEquiv_apply_ΞΉMulti, exteriorPower.ΞΉMultiDual_apply_ΞΉMulti, Isometry.proj_comp_single_of_ne, exteriorPower.ΞΉMulti_family_eq_coe_comp, exteriorPower.pairingDual_ΞΉMulti_ΞΉMulti, ExteriorAlgebra.map_apply_ΞΉ, ExteriorAlgebra.ΞΉ_leftInverse, exteriorPower.alternatingMapLinearEquiv_comp_ΞΉMulti, exteriorPower.oneEquiv_symm_apply, exteriorPower.map_comp_ΞΉMulti, ExteriorAlgebra.instGradedMonoidNatSubmoduleExteriorPower, ExteriorAlgebra.ΞΉ_add_mul_swap, exteriorPower.pairingDual_apply_apply_eq_one, ExteriorAlgebra.toTrivSqZeroExt_ΞΉ, LinearMap.BilinMap.toQuadraticMap_list_sum, ExteriorAlgebra.isUnit_algebraMap, ExteriorAlgebra.map_injective_field, ExteriorAlgebra.map_injective, exteriorPower.ΞΉMulti_family_span_of_span, exteriorPower.map_injective_field, Isometry.proj_apply, ExteriorAlgebra.ΞΉMulti_apply, Isometry.fst_apply, exteriorPower.alternatingMapLinearEquiv_comp, exteriorPower.basis_coord, exteriorPower.presentation_relation, Isometry.fst_comp_inl, exteriorPower.instFinite, exteriorPower.alternatingMapToDual_apply_ΞΉMulti, ExteriorAlgebra.map_surjective_iff, CliffordAlgebraRing.ΞΉ_eq_zero, exteriorPower.zeroEquiv_ΞΉMulti, ExteriorAlgebra.liftAlternating_comp_ΞΉMulti, CliffordAlgebraRing.involute_eq_id, exteriorPower.map_injective, exteriorPower.basis_repr_apply, exteriorPower.presentation_R, CliffordAlgebraDualNumber.equiv_ΞΉ, Isometry.fst_comp_inr, ExteriorAlgebra.algebraMap_leftInverse, exteriorPower.map_comp_ΞΉMulti_family, exteriorPower.map_id, ExteriorAlgebra.map_apply_ΞΉMulti, exteriorPower.pairingDual_apply_apply_eq_one_zero, ExteriorAlgebra.lift_unique, CliffordAlgebraRing.reverse_apply, ExteriorAlgebra.hom_ext_iff, ExteriorAlgebra.liftAlternating_algebraMap, ExteriorAlgebra.map_id, CliffordAlgebraDualNumber.ΞΉ_mul_ΞΉ, exteriorPower.basis_repr, exteriorPower.alternatingMapLinearEquiv_symm_apply, ExteriorAlgebra.ΞΉInv_comp_map, CliffordAlgebra.changeForm.associated_neg_proof, exteriorPower.map_apply_ΞΉMulti, ExteriorAlgebra.lhom_ext_iff, ExteriorAlgebra.ΞΉ_range_map_map, exteriorPower.map_comp, exteriorPower.ΞΉMultiDual_apply_nondiag, exteriorPower.presentation_var, ExteriorAlgebra.comp_ΞΉ_sq_zero, exteriorPower.map_surjective, coeFn_zero, ExteriorAlgebra.ΞΉ_mul_prod_list, ExteriorAlgebra.ΞΉMulti_succ_curryLeft, ExteriorAlgebra.leftInverse_map_iff, exteriorPower.presentation_G, exteriorPower.ΞΉMulti_family_linearIndependent_ofBasis, exteriorPower.ΞΉMulti_family_span, exteriorPower.ΞΉMulti_span_fixedDegree, CliffordAlgebraRing.reverse_eq_id, ExteriorAlgebra.GradedAlgebra.ΞΉ_apply, ExteriorAlgebra.invertibleAlgebraMapEquiv_symm_apply_invOf_toQuot, exteriorPower.oneEquiv_ΞΉMulti, exteriorPower.ΞΉMulti_span, exteriorPower.toTensorPower_apply_ΞΉMulti, exteriorPower.zeroEquiv_symm_apply, ExteriorAlgebra.liftAlternating_ΞΉ, exteriorPower.ΞΉMulti_family_apply_coe, exteriorPower.basis_repr_self, Isometry.snd_comp_inr
linMulLin πŸ“–CompOp
6 mathmath: linMulLinSelfPosDef, add_linMulLin, linMulLin_apply, associated_linMulLin, linMulLin_comp, linMulLin_add
ofPolar πŸ“–CompOp
1 mathmath: ofPolar_apply
polar πŸ“–CompOp
36 mathmath: polar_zero_left, lineDeriv, LinearMap.BilinMap.polar_toQuadraticMap, CliffordAlgebra.ΞΉ_mul_ΞΉ_mul_invOf_ΞΉ, polar_add_left_iff, polar_add, polar_prod, CliffordAlgebra.ΞΉ_mul_ΞΉ_comm, polar_neg_left, CliffordAlgebra.mul_add_swap_eq_polar_of_forall_mul_self_eq, polar_smul, polar_add_left, polar_comm, CliffordAlgebra.ΞΉ_mul_ΞΉ_mul_ΞΉ, polar_smul_left_of_tower, toBilin_apply, polar_self, map_add, LinearMap.compQuadraticMap_polar, CliffordAlgebra.invOf_ΞΉ_mul_ΞΉ_mul_ΞΉ, CliffordAlgebra.ΞΉ_mul_ΞΉ_add_swap, polar_smul_left, polarSym2_sym2Mk, polar_comp, polar_neg, polar_neg_right, polar_sub_right, polar_add_right, polar_sub_left, IsOrtho.polar_eq_zero, polar_smul_right_of_tower, Ring.polar_pi, polar_smul_right, polar_zero_right, polarBilin_apply_apply, hasLineDerivAt
polarBilin πŸ“–CompOp
14 mathmath: polarBilin_prod, QuadraticForm.polarBilin_baseChange, QuadraticForm.polarBilin_tmul, Ring.polarBilin_pi, polarBilin_injective, choose_exists_companion, two_nsmul_associated, isOrtho_polarBilin, toQuadraticMap_polarBilin, CliffordAlgebra.forall_mul_self_eq_iff, LinearMap.compQuadraticMap_polarBilin, LinearMap.BilinMap.polarBilin_toQuadraticMap, polarBilin_comp, polarBilin_apply_apply
polarSym2 πŸ“–CompOp
10 mathmath: sum_polar_sub_repr_sq, map_finsuppSum, map_finsuppSum', polarSym2_sym2Mk, map_sum', apply_linearCombination', apply_linearCombination, map_sum, sum_repr_sq_add_sum_repr_mul_polar, polarSym2_map_smul
proj πŸ“–CompOp
1 mathmath: proj_apply
restrictScalars πŸ“–CompOp
1 mathmath: restrictScalars_apply
sq πŸ“–CompOp
16 mathmath: QuadraticForm.tensorRId_symm_apply, QuadraticForm.tensorRId_apply, QuadraticForm.comp_tensorLId_eq, QuadraticForm.tensorLId_toLinearEquiv, QuadraticForm.tmul_tensorRId_apply, QuadraticModuleCat.toIsometry_hom_leftUnitor, QuadraticModuleCat.toIsometry_hom_rightUnitor, QuadraticForm.tensorLId_symm_apply, sq_apply, QuadraticModuleCat.toIsometry_inv_rightUnitor, QuadraticForm.tensorRId_toLinearEquiv, QuadraticForm.tmul_tensorLId_apply, QuadraticForm.tensorLId_apply, QuadraticForm.comp_tensorRId_eq, associated_sq, QuadraticModuleCat.toIsometry_inv_leftUnitor
toFun πŸ“–CompOp
3 mathmath: toFun_smul, exists_companion', toFun_eq_coe
toMatrix' πŸ“–CompOp
4 mathmath: QuadraticForm.posDef_toMatrix', toMatrix'_comp, isSymm_toMatrix', toMatrix'_smul
weightedSumSquares πŸ“–CompOp
9 mathmath: QuadraticForm.equivalent_signType_weighted_sum_squared, QuadraticForm.equivalent_one_neg_one_weighted_sum_squared, QuadraticForm.equivalent_one_zero_neg_one_weighted_sum_squared, QuadraticForm.equivalent_weightedSumSquares, basisRepr_eq_of_iIsOrtho, QuadraticForm.equivalent_sum_squares, weightedSumSquares_apply, QuadraticForm.equivalent_sign_ne_zero_weighted_sum_squared, QuadraticForm.equivalent_weightedSumSquares_units_of_nondegenerate'

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”
add_linMulLin πŸ“–mathematicalβ€”linMulLin
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
LinearMap.instAdd
QuadraticMap
instAdd
β€”ext
add_mul
Distrib.rightDistribClass
associated_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
LinearMap.BilinMap
LinearMap.addCommMonoid
LinearMap.module
QuadraticMap
instAddCommMonoid
instModuleOfSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
associatedHom
Module.End
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
Module.End.instMonoid
Module.End.instSemiring
Module.End.applyModule
Invertible.invOf
Module.End.instMul
Module.End.instOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Module.End.instRing
Nat.instAtLeastTwoHAddOfNat
SubNegMonoid.toSub
instFunLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”Nat.instAtLeastTwoHAddOfNat
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
associated_comp πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.BilinMap
instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
instModuleOfSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
associatedHom
comp
LinearMap.compl₁₂
β€”Nat.instAtLeastTwoHAddOfNat
LinearMap.ext
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
associated_eq_self_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
LinearMap.BilinMap
LinearMap.addCommMonoid
LinearMap.module
QuadraticMap
instAddCommMonoid
instModuleOfSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
associatedHom
instFunLike
β€”Nat.instAtLeastTwoHAddOfNat
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
associated_apply
map_add_self
three_add_one_eq_four
two_add_one_eq_three
add_smul
one_smul
add_sub_cancel_right
two_smul
invOf_smul_eq_iff
associated_flip πŸ“–mathematicalβ€”LinearMap.flip
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
LinearMap
QuadraticMap
LinearMap.BilinMap
instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
instModuleOfSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
associatedHom
β€”Nat.instAtLeastTwoHAddOfNat
LinearMap.ext
SMulCommClass.symm
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
add_comm
sub_eq_add_neg
add_left_comm
add_assoc
associated_isOrtho πŸ“–mathematicalβ€”LinearMap.IsOrtho
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
LinearMap
QuadraticMap
LinearMap.BilinMap
instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
instModuleOfSMulCommClass
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.instFunLike
associated
instInvertibleEndOfNat
IsOrtho
β€”Nat.instAtLeastTwoHAddOfNat
smulCommClass_self
LinearMap.instSMulCommClass
smul_zero
sub_sub
associated_isSymm πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
LinearMap.BilinMap
LinearMap.addCommMonoid
LinearMap.module
QuadraticMap
instAddCommMonoid
instModuleOfSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
associatedHom
β€”Nat.instAtLeastTwoHAddOfNat
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
sub_eq_add_neg
add_assoc
add_comm
add_left_comm
associated_left_inverse πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
LinearMap.BilinMap
LinearMap.addCommMonoid
LinearMap.module
QuadraticMap
instAddCommMonoid
instModuleOfSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
associatedHom
LinearMap.BilinMap.toQuadraticMap
β€”Nat.instAtLeastTwoHAddOfNat
LinearMap.extβ‚‚
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
associated_toQuadraticMap
two_smul
invOf_smul_eq_iff
associated_left_inverse' πŸ“–mathematicalLinearMap.flip
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
LinearMap
QuadraticMap
LinearMap.BilinMap
instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
instModuleOfSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
associatedHom
LinearMap.BilinMap.toQuadraticMap
β€”Nat.instAtLeastTwoHAddOfNat
SMulCommClass.symm
LinearMap.ext
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
associated_toQuadraticMap
LinearMap.flip_apply
invOf_smul_eq_iff
two_smul
associated_linMulLin πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
QuadraticMap
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
LinearMap.BilinMap
instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
instModuleOfSMulCommClass
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.instFunLike
associated
instInvertibleEndOfNat
linMulLin
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.to_smulCommClass
Algebra.id
IsScalarTower.right
NonUnitalNonAssocSemiring.toAddCommMonoid
CommSemiring.toCommMonoid
LinearMap.instSMul
LinearMap.instDistribMulAction
Invertible.invOf
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
LinearMap.instAdd
LinearMap.compl₁₂
LinearMap.mul
β€”Nat.instAtLeastTwoHAddOfNat
LinearMap.ext
smulCommClass_self
LinearMap.instSMulCommClass
Algebra.to_smulCommClass
IsScalarTower.right
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
smul_add
nsmul_eq_mul
mul_invOf_cancel_left'
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
associated_rightInverse πŸ“–mathematicalβ€”LinearMap.BilinMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
QuadraticMap
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
instModuleOfSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
associatedHom
LinearMap.BilinMap.toQuadraticMap
β€”Nat.instAtLeastTwoHAddOfNat
toQuadraticMap_associated
associated_sq πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
QuadraticMap
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
LinearMap.BilinMap
instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
instModuleOfSMulCommClass
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.instFunLike
associated
instInvertibleEndOfNat
sq
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.to_smulCommClass
Algebra.id
IsScalarTower.right
LinearMap.mul
β€”Nat.instAtLeastTwoHAddOfNat
smulCommClass_self
LinearMap.instSMulCommClass
Algebra.to_smulCommClass
IsScalarTower.right
associated_linMulLin
smul_add
invOf_two_smul_add_invOf_two_smul
associated_toQuadraticMap πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
LinearMap.BilinMap
LinearMap.addCommMonoid
LinearMap.module
QuadraticMap
instAddCommMonoid
instModuleOfSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
associatedHom
LinearMap.BilinMap.toQuadraticMap
Module.End
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
Module.End.instMonoid
Module.End.instSemiring
Module.End.applyModule
Invertible.invOf
Module.End.instMul
Module.End.instOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Module.End.instRing
Nat.instAtLeastTwoHAddOfNat
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”Nat.instAtLeastTwoHAddOfNat
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isInt_neg
add_zero
Mathlib.Tactic.Abel.zero_termg
Mathlib.Tactic.Abel.termg_eq
one_zsmul
Mathlib.Tactic.Abel.const_add_termg
basisRepr_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Pi.Function.module
Semiring.toModule
instFunLike
basisRepr
Finite.of_fintype
Finset.sum
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Module.Basis
Module.Basis.instFunLike
β€”Finite.of_fintype
RingHomInvPair.ids
Module.Basis.equivFun_symm_apply
basisRepr_eq_of_iIsOrtho πŸ“–mathematicalLinearMap.IsOrthoα΅’
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
LinearMap
QuadraticMap
LinearMap.BilinMap
instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
instModuleOfSMulCommClass
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.instFunLike
associated
instInvertibleEndOfNat
Module.Basis
Module.Basis.instFunLike
basisRepr
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finite.of_fintype
weightedSumSquares
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.to_smulCommClass
Algebra.id
QuadraticForm
instFunLike
β€”Nat.instAtLeastTwoHAddOfNat
smulCommClass_self
LinearMap.instSMulCommClass
ext
Finite.of_fintype
Algebra.to_smulCommClass
basisRepr_apply
IsScalarTower.to_smulCommClass
IsScalarTower.right
IsScalarTower.to_smulCommClass'
associated_eq_self_apply
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
weightedSumSquares_apply
Finset.sum_congr
LinearMap.map_sumβ‚‚
Finset.sum_eq_single_of_mem
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.map_smulβ‚‚
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.zero_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
smul_eq_mul
associated_apply
Module.End.smul_def
half_moduleEnd_apply_eq_half_smul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
add_zero
Mathlib.Tactic.RingNF.add_neg
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
canLift πŸ“–mathematicalβ€”CanLift
LinearMap.BilinMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
CommSemiring.toSemiring
QuadraticForm
DFunLike.coe
LinearMap
Nat.instCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
QuadraticMap
Ring.toAddCommGroup
CommRing.toRing
instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
instModuleOfSMulCommClass
AddCommMonoid.toNatModule
IsScalarTower.to_smulCommClass
Semiring.toNatAlgebra
IsScalarTower.right
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
associatedHom
instInvertibleEndOfNat
LinearMap.IsSymm
β€”Nat.instAtLeastTwoHAddOfNat
IsScalarTower.to_smulCommClass
IsScalarTower.right
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
Algebra.to_smulCommClass
associated_left_inverse
canLift' πŸ“–mathematicalβ€”CanLift
LinearMap.BilinMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
QuadraticMap
DFunLike.coe
LinearMap
CommSemiring.toSemiring
Nat.instCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
instModuleOfSMulCommClass
AddCommMonoid.toNatModule
IsScalarTower.to_smulCommClass
Semiring.toNatAlgebra
AddCommMonoid.nat_isScalarTower
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
associatedHom
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
LinearMap.flip
β€”Nat.instAtLeastTwoHAddOfNat
IsScalarTower.to_smulCommClass
AddCommMonoid.nat_isScalarTower
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
SMulCommClass.symm
associated_left_inverse'
choose_exists_companion πŸ“–mathematicalβ€”LinearMap.BilinMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
exists_companion
polarBilin
β€”LinearMap.extβ‚‚
exists_companion
polarBilin_apply_apply
polar.eq_1
sub_sub
add_sub_cancel_left
coeFnAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
QuadraticMap
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
Pi.addZeroClass
AddMonoidHom.instFunLike
coeFnAddMonoidHom
instFunLike
β€”β€”
coeFn_add πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
instAdd
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”
coeFn_neg πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
instNeg
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
coeFn_smul πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
instSMul
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
β€”β€”
coeFn_sub πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
instSub
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
coeFn_sum πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
Finset.sum
instAddCommMonoid
Pi.addCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
coeFn_zero πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
instZero
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
coe_associatedHom πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.BilinMap
instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
instModuleOfSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
associatedHom
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
associated
β€”Nat.instAtLeastTwoHAddOfNat
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
coe_copy πŸ“–mathematicalDFunLike.coe
QuadraticMap
instFunLike
copyβ€”β€”
coe_mk πŸ“–mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
DFunLike.coe
LinearMap
RingHom.id
LinearMap.instFunLike
LinearMap.BilinMap
LinearMap.addCommMonoid
LinearMap.module
QuadraticMap
instFunLike
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
comp
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
β€”β€”
congr_fun πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
β€”DFunLike.congr_fun
copy_eq πŸ“–mathematicalDFunLike.coe
QuadraticMap
instFunLike
copyβ€”DFunLike.ext'
discr_comp πŸ“–mathematicalβ€”discr
comp
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
CommSemiring.toSemiring
Semiring.toModule
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Matrix.det
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
NonAssocSemiring.toNonUnitalNonAssocSemiring
Matrix
LinearMap.addCommMonoid
Matrix.addCommMonoid
LinearMap.module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
Matrix.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toMatrix'
β€”Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.ids
Function.smulCommClass
Algebra.to_smulCommClass
Matrix.det.congr_simp
toMatrix'_comp
Matrix.det_mul
Matrix.det_transpose
mul_comm
mul_left_comm
discr_smul πŸ“–mathematicalβ€”discr
QuadraticMap
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
CommSemiring.toSemiring
Semiring.toModule
instSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
Fintype.card
β€”Nat.instAtLeastTwoHAddOfNat
Algebra.to_smulCommClass
Matrix.det.congr_simp
toMatrix'_smul
Matrix.det_smul
evalAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
QuadraticMap
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
AddMonoidHom.instFunLike
evalAddMonoidHom
instFunLike
β€”β€”
exists_companion πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.BilinMap
LinearMap.addCommMonoid
LinearMap.module
β€”exists_companion'
exists_companion' πŸ“–mathematicalβ€”toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.BilinMap
LinearMap.addCommMonoid
LinearMap.module
β€”β€”
exists_quadraticMap_ne_zero πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
ext
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
ext πŸ“–β€”DFunLike.coe
QuadraticMap
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
β€”ext
half_moduleEnd_apply_eq_half_smul πŸ“–mathematicalβ€”DFunLike.coe
Module.End
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
Invertible.invOf
Module.End.instMul
Module.End.instOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Module.End.instSemiring
Nat.instAtLeastTwoHAddOfNat
instInvertibleEndOfNat
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMonoidWithOne.toOne
β€”Nat.instAtLeastTwoHAddOfNat
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
QuadraticMap
instSMul
β€”ext
smul_assoc
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
QuadraticMap
instSMul
β€”ext
SMulCommClass.smul_comm
isOrtho_comm πŸ“–mathematicalβ€”IsOrthoβ€”add_comm
isOrtho_def πŸ“–mathematicalβ€”IsOrtho
DFunLike.coe
QuadraticMap
instFunLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”
isOrtho_polarBilin πŸ“–mathematicalβ€”LinearMap.IsOrtho
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
polarBilin
IsOrtho
β€”smulCommClass_self
sub_sub
isSymm_toMatrix' πŸ“–mathematicalβ€”Matrix.IsSymm
toMatrix'
β€”Nat.instAtLeastTwoHAddOfNat
Matrix.ext
toMatrix'.eq_1
Matrix.transpose_apply
RingHomInvPair.ids
LinearMap.instSMulCommClass
LinearMap.toMatrixβ‚‚'_apply
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
associated_isSymm
linMulLinSelfPosDef πŸ“–mathematicalLinearMap.ker
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
RingHom.id
Bot.bot
Submodule
Submodule.instBot
PosDef
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linMulLin
β€”mul_self_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
contravariant_lt_of_covariant_le
LinearMap.ker_eq_bot'
linMulLin_add πŸ“–mathematicalβ€”linMulLin
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
LinearMap.instAdd
QuadraticMap
instAdd
β€”ext
mul_add
Distrib.leftDistribClass
linMulLin_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
linMulLin
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
β€”β€”
linMulLin_comp πŸ“–mathematicalβ€”comp
NonUnitalNonAssocSemiring.toAddCommMonoid
linMulLin
LinearMap.comp
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
β€”β€”
map_add πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
polar
β€”polar.eq_1
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.const_add_termg
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Abel.zero_termg
map_add_add_add_map πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
DFunLike.coe
QuadraticMap
instFunLike
β€”exists_companion
add_comm
LinearMap.map_addβ‚‚
Mathlib.Tactic.Abel.subst_into_add
Mathlib.Tactic.Abel.term_atom
Mathlib.Tactic.Abel.term_add_const
zero_add
Mathlib.Tactic.Abel.term_add_term
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
add_zero
Mathlib.Tactic.Abel.const_add_term
map_add_self πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”Nat.instAtLeastTwoHAddOfNat
two_smul
map_smul
Nat.cast_smul_eq_nsmul
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isNat_natCast
map_neg πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”neg_one_smul
map_smul
neg_one_mul
neg_neg
one_smul
map_smul πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”toFun_smul
map_smul_of_tower πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”IsScalarTower.algebraMap_smul
map_smul
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
algebraMap_smul
map_sub πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”neg_sub
map_neg
map_sum πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
Finset.sum
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Sym2
Finset.filter
Sym2.IsDiag
Sym2.IsDiag.decidablePred
Finset.sym2
polarSym2
Sym2.map
β€”Finset.cons_induction
map_zero
zeroHomClass
Finset.sum_congr
Finset.filter_empty
add_zero
Finset.sum_cons
map_add
add_assoc
Finset.filter.congr_simp
Finset.sym2_cons
Finset.sum_filter
Finset.sum_disjUnion
Finset.sum_map
zero_add
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
add_comm
map_sum' πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
Finset.sum
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Sym2
Finset.sym2
polarSym2
Sym2.map
β€”Finset.cons_induction
map_zero
zeroHomClass
sub_self
Finset.sum_cons
map_add
add_assoc
Finset.sum_congr
Finset.sym2_cons
Finset.sum_disjUnion
Finset.sum_map
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
polar_self
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.termg_eq
one_zsmul
add_zero
Mathlib.Tactic.Abel.subst_into_smul_upcast
Mathlib.Tactic.Abel.term_smulg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.zero_smulg
Mathlib.Tactic.Abel.const_add_termg
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isInt_neg
map_zero πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”zero_smul
map_smul
MulZeroClass.zero_mul
ne_zero_of_not_isOrtho_self πŸ“–β€”IsOrthoβ€”β€”IsOrtho.zero_left
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
not_anisotropic_iff_exists πŸ“–mathematicalβ€”Anisotropic
DFunLike.coe
QuadraticMap
instFunLike
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
ofPolar_apply πŸ“–mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
polar
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
DFunLike.coe
QuadraticMap
instFunLike
ofPolar
β€”β€”
polarBilin_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
polarBilin
polar
QuadraticMap
instFunLike
β€”β€”
polarBilin_comp πŸ“–mathematicalβ€”polarBilin
comp
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.compl₁₂
CommSemiring.toSemiring
β€”LinearMap.extβ‚‚
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
polarBilin_injective πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
QuadraticMap
AddCommGroup.toAddCommMonoid
LinearMap.BilinMap
polarBilin
β€”Nat.instAtLeastTwoHAddOfNat
smulCommClass_self
IsUnit.smul_left_cancel
Nat.cast_smul_eq_nsmul
polarSym2_map_smul πŸ“–mathematicalβ€”polarSym2
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
Sym2.map
Pi.smul'
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
Sym2.mul
NonUnitalNonAssocCommSemiring.toCommMagma
NonUnitalNonAssocCommRing.toNonUnitalNonAssocCommSemiring
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Sym2.map_congr
polar_smul_right
polar_smul_left
IsScalarTower.left
mul_comm
polarSym2_sym2Mk πŸ“–mathematicalβ€”polarSym2
polar
β€”β€”
polar_add πŸ“–mathematicalβ€”polar
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.const_add_termg
polar_add_left πŸ“–mathematicalβ€”polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”polar_add_left_iff
map_add_add_add_map
polar_add_left_iff πŸ“–mathematicalβ€”polar
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”add_sub
sub_add_eq_add_sub
add_right_comm
add_comm
AddRightCancelSemigroup.toIsRightCancelAdd
polar_add_right πŸ“–mathematicalβ€”polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”polar_comm
polar_add_left
polar_comm πŸ“–mathematicalβ€”polarβ€”polar.eq_1
add_comm
sub_sub
polar_comp πŸ“–mathematicalβ€”polar
DFunLike.coe
β€”map_sub
polar_neg πŸ“–mathematicalβ€”polar
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”sub_eq_add_neg
neg_add
polar_neg_left πŸ“–mathematicalβ€”polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”neg_one_smul
polar_smul_left
polar_neg_right πŸ“–mathematicalβ€”polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”neg_one_smul
polar_smul_right
polar_self πŸ“–mathematicalβ€”polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”polar.eq_1
map_add_self
sub_sub
sub_eq_iff_eq_add
Nat.instAtLeastTwoHAddOfNat
two_smul
SemigroupAction.mul_smul
polar_smul πŸ“–mathematicalβ€”polar
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
β€”smul_sub
polar_smul_left πŸ“–mathematicalβ€”polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
β€”exists_companion
map_smul
LinearMap.map_smulβ‚‚
sub_sub
add_sub_cancel_left
polar_smul_left_of_tower πŸ“–mathematicalβ€”polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
β€”IsScalarTower.algebraMap_smul
polar_smul_left
algebraMap_smul
polar_smul_right πŸ“–mathematicalβ€”polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
β€”polar_comm
polar_smul_left
polar_smul_right_of_tower πŸ“–mathematicalβ€”polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
β€”IsScalarTower.algebraMap_smul
polar_smul_right
algebraMap_smul
polar_sub_left πŸ“–mathematicalβ€”polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”sub_eq_add_neg
polar_add_left
polar_neg_left
polar_sub_right πŸ“–mathematicalβ€”polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”sub_eq_add_neg
polar_add_right
polar_neg_right
polar_zero_left πŸ“–mathematicalβ€”polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”zero_add
map_zero
sub_zero
sub_self
polar_zero_right πŸ“–mathematicalβ€”polar
DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”add_zero
sub_self
map_zero
posDef_iff_nonneg πŸ“–mathematicalβ€”PosDef
Preorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
QuadraticMap
instFunLike
Anisotropic
β€”PosDef.nonneg
PosDef.anisotropic
posDef_of_nonneg
posDef_of_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
QuadraticMap
instFunLike
Anisotropic
PosDefβ€”lt_of_le_of_ne
proj_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Pi.Function.module
CommSemiring.toSemiring
instFunLike
proj
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
restrictScalars_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
restrictScalars
β€”β€”
separatingLeft_of_anisotropic πŸ“–mathematicalAnisotropic
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
CommSemiring.toSemiring
LinearMap.SeparatingLeft
Ring.toAddCommGroup
CommRing.toRing
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
LinearMap
Int.instSemiring
QuadraticMap
LinearMap.BilinMap
instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
AddCommGroup.toIntModule
instAddCommGroup
LinearMap.addCommGroup
LinearMap.instFunLike
associated'
instInvertibleEndOfNat
β€”Nat.instAtLeastTwoHAddOfNat
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
associated_eq_self_apply
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
β€”β€”
sq_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
sq
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
sub_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instFunLike
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
sum_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
Finset.sum
instAddCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
toFun_eq_coe πŸ“–mathematicalβ€”toFun
DFunLike.coe
QuadraticMap
instFunLike
β€”β€”
toFun_smul πŸ“–mathematicalβ€”toFun
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
toMatrix'_comp πŸ“–mathematicalβ€”toMatrix'
comp
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
CommSemiring.toSemiring
Semiring.toModule
Matrix
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Matrix.transpose
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearMap.addCommMonoid
Matrix.addCommMonoid
LinearMap.module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
Matrix.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toMatrix'
β€”Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.ids
Function.smulCommClass
Algebra.to_smulCommClass
LinearMap.instSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
associated_comp
LinearMap.toMatrixβ‚‚'_compl₁₂
toMatrix'_smul πŸ“–mathematicalβ€”toMatrix'
QuadraticMap
CommRing.toCommSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Pi.Function.module
CommSemiring.toSemiring
Semiring.toModule
instSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
Matrix
Matrix.smul
Algebra.toSMul
β€”Nat.instAtLeastTwoHAddOfNat
Algebra.to_smulCommClass
LinearMap.instSMulCommClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
toQuadraticMap_associated πŸ“–mathematicalβ€”LinearMap.BilinMap.toQuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
QuadraticMap
LinearMap.BilinMap
instAddCommMonoid
LinearMap.addCommMonoid
LinearMap.module
instModuleOfSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
associatedHom
β€”Nat.instAtLeastTwoHAddOfNat
ext
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
associated_eq_self_apply
toQuadraticMap_polarBilin πŸ“–mathematicalβ€”LinearMap.BilinMap.toQuadraticMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
polarBilin
QuadraticMap
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instAddCommGroup
β€”ext
polar_self
two_nsmul_associated πŸ“–mathematicalβ€”LinearMap.BilinMap
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LinearMap.addCommGroup
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.module
DFunLike.coe
QuadraticMap
instAddCommMonoid
LinearMap.addCommMonoid
instModuleOfSMulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
associatedHom
polarBilin
β€”Nat.instAtLeastTwoHAddOfNat
LinearMap.ext
IsScalarTower.to_smulCommClass
IsScalarTower.to_smulCommClass'
LinearMap.instSMulCommClass
AddMonoid.nat_smulCommClass'
LinearMap.smul_apply
nsmul_eq_mul
Nat.cast_ofNat
mul_invOf_self'
Module.End.one_apply
polar.eq_1
weightedSumSquares_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Pi.Function.module
Semiring.toModule
instFunLike
weightedSumSquares
Finset.sum
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”sum_apply
zeroHomClass πŸ“–mathematicalβ€”ZeroHomClass
QuadraticMap
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
β€”map_zero
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
QuadraticMap
instFunLike
instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”

QuadraticMap.Anisotropic

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_iff πŸ“–mathematicalQuadraticMap.AnisotropicDFunLike.coe
QuadraticMap
QuadraticMap.instFunLike
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”map_zero
QuadraticMap.zeroHomClass

QuadraticMap.IsOrtho

Theorems

NameKindAssumesProvesValidatesDepends On
all πŸ“–mathematicalβ€”QuadraticMap.IsOrtho
QuadraticMap
QuadraticMap.instZero
β€”zero_add
polar_eq_zero πŸ“–mathematicalQuadraticMap.IsOrtho
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
QuadraticMap.polar
DFunLike.coe
QuadraticMap
QuadraticMap.instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”QuadraticMap.isOrtho_polarBilin
zero_left πŸ“–mathematicalβ€”QuadraticMap.IsOrtho
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”zero_add
map_zero
QuadraticMap.zeroHomClass
zero_right πŸ“–mathematicalβ€”QuadraticMap.IsOrtho
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”add_zero
map_zero
QuadraticMap.zeroHomClass

QuadraticMap.PosDef

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalQuadraticMap.PosDefQuadraticMap
QuadraticMap.instAdd
β€”add_pos
anisotropic πŸ“–mathematicalQuadraticMap.PosDefQuadraticMap.Anisotropicβ€”by_contradiction
lt_irrefl
le_zero_iff πŸ“–mathematicalQuadraticMap.PosDefPreorder.toLE
PartialOrder.toPreorder
DFunLike.coe
QuadraticMap
QuadraticMap.instFunLike
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”le_antisymm
nonneg
anisotropic
map_zero
QuadraticMap.zeroHomClass
nonneg πŸ“–mathematicalQuadraticMap.PosDefPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
QuadraticMap
QuadraticMap.instFunLike
β€”eq_or_ne
Eq.le
map_zero
QuadraticMap.zeroHomClass
LT.lt.le
smul πŸ“–mathematicalQuadraticMap.PosDef
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
QuadraticMap
QuadraticMap.instSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
β€”smul_pos

---

← Back to Index