| Name | Category | Theorems |
category 📖 | CompOp | 28 mathmath: toIsometry_comp, forget₂_map_associator_inv, ofIso_hom, forget₂_map, CategoryTheory.Iso.toIsometryEquiv_toFun, forget₂_map_associator_hom, toIsometry_whiskerRight, toIsometry_tensorHom, toIsometry_hom_leftUnitor, toIsometry_hom_rightUnitor, forget₂_obj, CategoryTheory.Iso.toIsometryEquiv_refl, toIsometry_inv_rightUnitor, toModuleCat_tensor, cliffordAlgebra_map, toIsometry_whiskerLeft, ofIso_trans, toIsometry_id, CategoryTheory.Iso.toIsometryEquiv_invFun, cliffordAlgebra_obj_carrier, toIsometry_inv_leftUnitor, ofIso_refl, ofIso_inv, ofIso_symm, CategoryTheory.Iso.toIsometryEquiv_symm, CategoryTheory.Iso.toIsometryEquiv_trans, hom_hom_associator, hom_inv_associator
|
concreteCategory 📖 | CompOp | 4 mathmath: forget₂_map_associator_inv, forget₂_map, forget₂_map_associator_hom, forget₂_obj
|
form 📖 | CompOp | 24 mathmath: toIsometry_comp, forget₂_map_associator_inv, forget₂_map, CategoryTheory.Iso.toIsometryEquiv_toFun, instMonoidalCategory.tensorObj_form, forget₂_map_associator_hom, toIsometry_whiskerRight, toIsometry_tensorHom, toIsometry_hom_leftUnitor, toIsometry_hom_rightUnitor, Hom.toIsometry_injective, forget₂_obj, CategoryTheory.Iso.toIsometryEquiv_refl, toIsometry_inv_rightUnitor, cliffordAlgebra_map, toIsometry_whiskerLeft, toIsometry_id, CategoryTheory.Iso.toIsometryEquiv_invFun, cliffordAlgebra_obj_carrier, toIsometry_inv_leftUnitor, CategoryTheory.Iso.toIsometryEquiv_symm, CategoryTheory.Iso.toIsometryEquiv_trans, hom_hom_associator, hom_inv_associator
|
hasForgetToModule 📖 | CompOp | 4 mathmath: forget₂_map_associator_inv, forget₂_map, forget₂_map_associator_hom, forget₂_obj
|
instCoeSortType 📖 | CompOp | — |
of 📖 | CompOp | 5 mathmath: ofIso_hom, ofIso_trans, ofIso_refl, ofIso_inv, ofIso_symm
|
ofHom 📖 | CompOp | 2 mathmath: ofIso_hom, ofIso_inv
|
ofIso 📖 | CompOp | 5 mathmath: ofIso_hom, ofIso_trans, ofIso_refl, ofIso_inv, ofIso_symm
|
toModuleCat 📖 | CompOp | 26 mathmath: toIsometry_comp, forget₂_map_associator_inv, forget₂_map, CategoryTheory.Iso.toIsometryEquiv_toFun, instMonoidalCategory.tensorObj_form, forget₂_map_associator_hom, toIsometry_whiskerRight, toIsometry_tensorHom, toIsometry_hom_leftUnitor, toIsometry_hom_rightUnitor, Hom.toIsometry_injective, forget₂_obj, CategoryTheory.Iso.toIsometryEquiv_refl, toIsometry_inv_rightUnitor, toModuleCat_tensor, cliffordAlgebra_map, toIsometry_whiskerLeft, toIsometry_id, CategoryTheory.Iso.toIsometryEquiv_invFun, cliffordAlgebra_obj_carrier, toIsometry_inv_leftUnitor, moduleCat_of_toModuleCat, CategoryTheory.Iso.toIsometryEquiv_symm, CategoryTheory.Iso.toIsometryEquiv_trans, hom_hom_associator, hom_inv_associator
|