Documentation Verification Report

Basic

πŸ“ Source: Mathlib/LinearAlgebra/Quotient/Basic.lean

Statistics

MetricCount
Definitionsequiv, fintype, restrictScalarsEquiv, fintype, unique, comapMkQOrderEmbedding, comapMkQRelIso, factor, liftQ, liftQSpanSingleton, mapQ, mapQLinear, quotEquivOfEqBot
13
Theoremsker_le_range_iff, range_eq_top_of_cancel, range_mkQ_comp, equiv_apply, equiv_refl, equiv_symm, equiv_symm_apply, equiv_trans, instSubsingletonQuotient, nontrivial_iff, nontrivial_of_lt_top, nontrivial_of_ne_top, restrictScalarsEquiv_mk, restrictScalarsEquiv_symm_mk, subsingleton_iff, infinite, coe_quotEquivOfEqBot_symm, comapMkQOrderEmbedding_eq, comap_liftQ, comap_map_mkQ, factor_comp, factor_comp_apply, factor_comp_mk, factor_mk, factor_surjective, ker_liftQ, ker_liftQ_eq_bot, ker_liftQ_eq_bot', ker_mkQ, le_comap_mkQ, liftQSpanSingleton_apply, liftQ_apply, liftQ_mkQ, mapQ_apply, mapQ_comp, mapQ_id, mapQ_mkQ, mapQ_pow, mapQ_zero, map_liftQ, map_mkQ_eq_top, mkQ_map_self, pi_liftQ_eq_liftQ_pi, quotEquivOfEqBot_apply_mk, quotEquivOfEqBot_symm_apply, range_liftQ, range_mkQ, span_preimage_eq, strictMono_comap_prod_map, subsingleton_quotient_iff_eq_top, unique_quotient_iff_eq_top
51
Total64

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
ker_le_range_iff πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
ker
range
comp
SetLike.instMembership
Submodule.setLike
HasQuotient.Quotient
Submodule.hasQuotient
Submodule.addCommMonoid
Submodule.Quotient.addCommGroup
Submodule.module
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.mkQ
Submodule.subtype
LinearMap
instZero
β€”RingHomCompTriple.ids
RingHomSurjective.ids
range_le_ker_iff
Submodule.ker_mkQ
Submodule.range_subtype
range_eq_top_of_cancel πŸ“–mathematicalβ€”range
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Top.top
Submodule
Submodule.instTop
β€”RingHomCompTriple.right_ids
zero_comp
Submodule.ker_mkQ
range_mkQ_comp
ker_zero
range_mkQ_comp πŸ“–mathematicalβ€”comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
range
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.right_ids
Submodule.mkQ
LinearMap
instZero
β€”ext
RingHomCompTriple.right_ids

Submodule

Definitions

NameCategoryTheorems
comapMkQOrderEmbedding πŸ“–CompOp
1 mathmath: comapMkQOrderEmbedding_eq
comapMkQRelIso πŸ“–CompOpβ€”
factor πŸ“–CompOp
9 mathmath: factor_mk, AdicCompletion.factor_eval_eq_evalₐ, factor_eq_factor, factor_comp, mapQ_eq_factor, AdicCompletion.factor_eval_liftRingHom, factor_comp_apply, factor_comp_mk, factor_surjective
liftQ πŸ“–CompOp
14 mathmath: LinearMap.surjective_range_liftQ, ker_liftQ_eq_bot', LinearMap.injective_range_liftQ_of_exact, pi_liftQ_eq_liftQ_pi, ker_liftQ_eq_bot, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_descH_hom, liftQ_apply, map_liftQ, Function.Exact.linearEquivOfSurjective_apply, liftQ_mkQ, ker_liftQ, LinearMap.ker_eq_bot_range_liftQ_iff, comap_liftQ, range_liftQ
liftQSpanSingleton πŸ“–CompOp
1 mathmath: liftQSpanSingleton_apply
mapQ πŸ“–CompOp
17 mathmath: Module.End.IsNilpotent.mapQ, mapQ_apply, quotientQuotientEquivQuotientAux_mk, mapQ_pow, Function.Exact.exact_mapQ_iff, mapQ_zero, mapQ_eq_factor, quotOfListConsSMulTopEquivQuotSMulTopInner_naturality, Quotient.equiv_symm_apply, piQuotientLift_single, mapQ_mkQ, Representation.quotient_apply, LinearMap.det_eq_det_mul_det, RingTheory.Sequence.map_first_exact_on_four_term_right_exact_of_isSMulRegular_last, mapQ_comp, mapQ_id, Quotient.equiv_apply
mapQLinear πŸ“–CompOpβ€”
quotEquivOfEqBot πŸ“–CompOp
3 mathmath: quotEquivOfEqBot_symm_apply, coe_quotEquivOfEqBot_symm, quotEquivOfEqBot_apply_mk

Theorems

NameKindAssumesProvesValidatesDepends On
coe_quotEquivOfEqBot_symm πŸ“–mathematicalBot.bot
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instBot
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
LinearEquiv.symm
quotEquivOfEqBot
mkQ
β€”RingHomInvPair.ids
comapMkQOrderEmbedding_eq πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Submodule
HasQuotient.Quotient
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
Quotient.addCommGroup
Quotient.module
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instFunLikeOrderEmbedding
comapMkQOrderEmbedding
comap
RingHom.id
Semiring.toNonAssocSemiring
mkQ
β€”β€”
comap_liftQ πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.ker
comap
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
liftQ
map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
mkQ
β€”le_antisymm
RingHomSurjective.ids
map_le_iff_le_comap
RingHomCompTriple.ids
comap_comp
liftQ_mkQ
le_refl
comap_map_mkQ πŸ“–mathematicalβ€”comap
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
Quotient.addCommGroup
Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
mkQ
map
RingHomSurjective.ids
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”RingHomSurjective.ids
comap_map_eq
ker_mkQ
sup_comm
factor_comp πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.comp
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
factor
LE.le.trans
β€”linearMap_qext
RingHomCompTriple.ids
LE.le.trans
LinearMap.ext
factor_comp_apply πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
LinearMap.instFunLike
factor
LE.le.trans
β€”LE.le.trans
RingHomCompTriple.ids
LinearMap.comp_apply
factor_comp
factor_comp_mk πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.comp
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
factor
mkQ
β€”LinearMap.ext
RingHomCompTriple.ids
LinearMap.comp_apply
factor_mk πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
LinearMap.instFunLike
factor
mkQ
β€”β€”
factor_surjective πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
HasQuotient.Quotient
hasQuotient
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Quotient.addCommGroup
Quotient.module
LinearMap.instFunLike
factor
β€”Quotient.out_eq
ker_liftQ πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.ker
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
liftQ
map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
mkQ
β€”comap_liftQ
ker_liftQ_eq_bot πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.ker
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
liftQ
Bot.bot
instBot
β€”RingHomSurjective.ids
ker_liftQ
le_antisymm
mkQ_map_self
ker_liftQ_eq_bot' πŸ“–mathematicalLinearMap.ker
Ring.toSemiring
AddCommGroup.toAddCommMonoid
HasQuotient.Quotient
Submodule
hasQuotient
Quotient.addCommGroup
Quotient.module
liftQ
le_of_eq
PartialOrder.toPreorder
instPartialOrder
Bot.bot
instBot
β€”ker_liftQ_eq_bot
Eq.le
Eq.ge
ker_mkQ πŸ“–mathematicalβ€”LinearMap.ker
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
Quotient.addCommGroup
Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
mkQ
β€”ext
le_comap_mkQ πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
mkQ
β€”ker_mkQ
comap_mono
bot_le
liftQSpanSingleton_apply πŸ“–mathematicalDFunLike.coe
LinearMap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HasQuotient.Quotient
Submodule
hasQuotient
span
Set
Set.instSingletonSet
Quotient.addCommGroup
Quotient.module
liftQSpanSingleton
β€”β€”
liftQ_apply πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.ker
DFunLike.coe
LinearMap
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
LinearMap.instFunLike
liftQ
β€”β€”
liftQ_mkQ πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.ker
LinearMap.comp
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
liftQ
mkQ
β€”LinearMap.ext
RingHomCompTriple.ids
mapQ_apply πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
DFunLike.coe
LinearMap
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
LinearMap.instFunLike
mapQ
β€”β€”
mapQ_comp πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
LE.le.trans
comap_mono
mapQ
LinearMap.comp
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
β€”linearMap_qext
LinearMap.ext
RingHomCompTriple.ids
mapQ_id πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.id
mapQ
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
β€”linearMap_qext
LinearMap.ext
RingHomCompTriple.ids
mapQ_mkQ πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
LinearMap.comp
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
mapQ
mkQ
RingHomCompTriple.right_ids
β€”LinearMap.ext
RingHomCompTriple.ids
RingHomCompTriple.right_ids
mapQ_pow πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap
Monoid.toNatPow
Module.End.instMonoid
le_comap_pow_of_le_comap
mapQ
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
β€”pow_zero
mapQ.congr_simp
mapQ_id
RingHomCompTriple.ids
Module.End.iterate_succ
le_comap_pow_of_le_comap
LE.le.trans
comap_mono
mapQ_comp
mapQ_zero πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
LinearMap
LinearMap.instZero
mapQ
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
β€”linearMap_qext
LinearMap.ext
RingHomCompTriple.ids
map_liftQ πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.ker
map
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
liftQ
comap
RingHom.id
Semiring.toNonAssocSemiring
mkQ
β€”le_antisymm
map_mkQ_eq_top πŸ“–mathematicalβ€”map
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
Quotient.addCommGroup
Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
mkQ
Top.top
instTop
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”RingHomSurjective.ids
LinearMap.map_eq_top_iff
range_mkQ
ker_mkQ
sup_comm
mkQ_map_self πŸ“–mathematicalβ€”map
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
Quotient.addCommGroup
Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
mkQ
Bot.bot
instBot
β€”RingHomSurjective.ids
eq_bot_iff
map_le_iff_le_comap
comap_bot
ker_mkQ
le_refl
pi_liftQ_eq_liftQ_pi πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.pi
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
liftQ
Pi.addCommGroup
Pi.module
iInf
instInfSet
le_iInf
completeLattice
Pi.addCommMonoid
LinearMap.ker_pi
β€”linearMap_qext
le_iInf
LinearMap.ker_pi
LinearMap.ext
RingHomCompTriple.ids
liftQ_mkQ
quotEquivOfEqBot_apply_mk πŸ“–mathematicalBot.bot
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instBot
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
quotEquivOfEqBot
β€”RingHomInvPair.ids
quotEquivOfEqBot_symm_apply πŸ“–mathematicalBot.bot
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instBot
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
quotEquivOfEqBot
β€”RingHomInvPair.ids
range_liftQ πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.ker
LinearMap.range
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
liftQ
β€”LinearMap.range_eq_map
map_liftQ
range_mkQ πŸ“–mathematicalβ€”LinearMap.range
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
Quotient.addCommGroup
Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
mkQ
Top.top
instTop
β€”RingHomSurjective.ids
eq_top_iff'
span_preimage_eq πŸ“–mathematicalSet.Nonempty
Set
Set.instHasSubset
SetLike.coe
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
setLike
LinearMap.range
span
Set.preimage
DFunLike.coe
LinearMap
LinearMap.instFunLike
comap
β€”LinearMap.ker_le_iff
Set.Subset.trans
subset_span
span_mono
Set.preimage_mono
Set.singleton_subset_iff
left_eq_sup
LinearMap.map_le_map_iff
map_span
map_comap_eq
Set.image_preimage_eq_of_subset
LinearMap.coe_range
inf_le_right
le_antisymm
span_preimage_le
strictMono_comap_prod_map πŸ“–mathematicalβ€”StrictMono
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
addCommMonoid
module
HasQuotient.Quotient
hasQuotient
Quotient.addCommGroup
Quotient.module
PartialOrder.toPreorder
instPartialOrder
Prod.instPreorder
comap
RingHom.id
Semiring.toNonAssocSemiring
subtype
map
RingHomSurjective.ids
mkQ
β€”QuotientAddGroup.strictMono_comap_prod_map
AddSubgroup.normal_of_comm
subsingleton_quotient_iff_eq_top πŸ“–mathematicalβ€”HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
Top.top
instTop
β€”Quotient.subsingleton_iff
unique_quotient_iff_eq_top πŸ“–mathematicalβ€”Unique
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
Top.top
instTop
β€”Quotient.subsingleton_iff
Unique.instSubsingleton

Submodule.Quotient

Definitions

NameCategoryTheorems
equiv πŸ“–CompOp
5 mathmath: equiv_symm, equiv_symm_apply, equiv_refl, equiv_trans, equiv_apply
fintype πŸ“–CompOpβ€”
restrictScalarsEquiv πŸ“–CompOp
2 mathmath: restrictScalarsEquiv_symm_mk, restrictScalarsEquiv_mk

Theorems

NameKindAssumesProvesValidatesDepends On
equiv_apply πŸ“–mathematicalSubmodule.map
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
DFunLike.coe
LinearEquiv
HasQuotient.Quotient
Submodule
Submodule.hasQuotient
addCommGroup
module
EquivLike.toFunLike
LinearEquiv.instEquivLike
equiv
LinearMap
LinearMap.instFunLike
Submodule.mapQ
β€”RingHomInvPair.ids
RingHomSurjective.ids
equiv_refl πŸ“–mathematicalSubmodule.map
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
LinearEquiv.refl
equiv
Submodule.quotEquivOfEq
β€”RingHomSurjective.ids
RingHomInvPair.ids
equiv_symm πŸ“–mathematicalSubmodule.map
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
LinearEquiv.symm
HasQuotient.Quotient
Submodule
Submodule.hasQuotient
addCommGroup
module
equiv
RingHomSurjective.invPair
Submodule.map_symm_eq_iff
β€”RingHomInvPair.ids
RingHomSurjective.ids
equiv_symm_apply πŸ“–mathematicalSubmodule.map
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
DFunLike.coe
LinearEquiv
HasQuotient.Quotient
Submodule
Submodule.hasQuotient
addCommGroup
module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
equiv
LinearMap
LinearMap.instFunLike
Submodule.mapQ
β€”RingHomInvPair.ids
RingHomSurjective.ids
equiv_trans πŸ“–mathematicalSubmodule.map
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
LinearEquiv.trans
RingHomCompTriple.ids
equiv
HasQuotient.Quotient
Submodule
Submodule.hasQuotient
addCommGroup
module
β€”RingHomInvPair.ids
RingHomSurjective.ids
RingHomCompTriple.ids
LinearEquiv.ext
LE.le.trans
Submodule.comap_mono
Submodule.mapQ_comp
LinearMap.comp_apply
instSubsingletonQuotient πŸ“–mathematicalβ€”HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
β€”Unique.instSubsingleton
nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
β€”QuotientAddGroup.nontrivial_iff
nontrivial_of_lt_top πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
Top.top
Submodule.instTop
Nontrivial
HasQuotient.Quotient
Submodule.hasQuotient
β€”nontrivial_iff
LT.lt.ne
nontrivial_of_ne_top πŸ“–mathematicalβ€”Nontrivial
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
β€”nontrivial_iff
restrictScalarsEquiv_mk πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Submodule.restrictScalars
addCommGroup
module
module'
EquivLike.toFunLike
LinearEquiv.instEquivLike
restrictScalarsEquiv
β€”RingHomInvPair.ids
restrictScalarsEquiv_symm_mk πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Submodule.restrictScalars
addCommGroup
module'
module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
restrictScalarsEquiv
β€”RingHomInvPair.ids
subsingleton_iff πŸ“–mathematicalβ€”HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Top.top
Submodule.instTop
β€”QuotientAddGroup.subsingleton_iff

Submodule.QuotientBot

Theorems

NameKindAssumesProvesValidatesDepends On
infinite πŸ“–mathematicalβ€”Infinite
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Bot.bot
Submodule.instBot
β€”Infinite.of_injective
sub_eq_zero
Submodule.Quotient.eq

Submodule.QuotientTop

Definitions

NameCategoryTheorems
fintype πŸ“–CompOpβ€”
unique πŸ“–CompOpβ€”

---

← Back to Index