Documentation Verification Report

Defs

πŸ“ Source: Mathlib/LinearAlgebra/Quotient/Defs.lean

Statistics

MetricCount
DefinitionsaddCommGroup, distribMulAction, distribMulAction', distribSMul, distribSMul', instInhabitedQuotient, instSMul, instSMul', instZeroQuotient, mk, module', mulAction, mulAction', smulZeroClass, smulZeroClass', hasQuotient, mkQ, quotEquivOfEq, quotientRel
19
Theoremseq, eq', forall, induction_on, instSmallQuotient, isCentralScalar, isScalarTower, mk''_eq_mk, mk'_eq_mk', mk_add, mk_eq_zero, mk_neg, mk_out, mk_smul, mk_sub, mk_surjective, mk_zero, quot_mk_eq_mk, quotientAddGroupMk_eq_mk, smulCommClass, linearMap_qext, linearMap_qext_iff, mkQ_apply, mkQ_surjective, quotEquivOfEq_mk, quot_hom_ext, quotientRel_def
27
Total46

Submodule

Definitions

NameCategoryTheorems
hasQuotient πŸ“–CompOp
339 mathmath: Ideal.toCotangent_to_quotient_square, TopModuleCat.hom_cokerΟ€, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, LinearMap.quotientInfEquivSupQuotient_symm_apply_eq_zero_iff, lTensor.inverse_comp_lTensor, AdicCompletion.val_sub_apply, QuotientBot.infinite, IsSemisimpleModule.exists_submodule_linearEquiv_quotient, Module.support_quotient, Module.Presentation.cokernelSolution_var, Module.End.IsNilpotent.mapQ, annihilator_quotient, AdicCompletion.map_val_apply, covBy_iff_quot_is_simple, ModuleCat.epi_as_hom''_mkQ, Module.isTorsionBySet_quotient_set_smul, ModuleCat.cokernel_Ο€_cokernelIsoRangeQuotient_hom_apply, mapQ_apply, dualQuotEquivDualAnnihilator_apply, Quotient.mk_add, factor_mk, Module.isTorsionBySet_quotient_ideal_smul, t3_quotient_of_isClosed, Quotient.instIsBoundedSMul, quotDualCoannihilatorToDual_apply, dualPairing_apply, unique_quotient_iff_eq_top, lTensor.inverse_of_rightInverse_comp_lTensor, AdicCompletion.val_smul, AdicCompletion.incl_apply, AdicCompletion.val_smul_eq_evalₐ_smul, quotientPi_aux.map_smul, Quotient.instDiscreteMeasurableSpaceQuotient, Module.supportDim_add_length_eq_supportDim_of_isRegular, finrank_quotient_add_finrank, Module.exists_smul_eq_zero_and_mk_eq, TensorProduct.quotTensorEquivQuotSMul_comp_mkQ_rTensor, TensorProduct.quotientTensorQuotientEquiv_symm_apply_mk_tmul, Quotient.instSubsingletonQuotient, isArtinian_iff_submodule_quotient, Module.Grassmannian.rankAtStalk_eq, dualCopairing_eq, KaehlerDifferential.quotKerTotalEquiv_symm_comp_D, IsLocalRing.map_mkQ_eq, quotDualCoannihilatorToDual_nondegenerate, quotEquivOfEqBot_symm_apply, Module.Presentation.cokernel_relation, LieHom.quotKerEquivRange_toFun, QuotSMulTop.map_comp_mkQ, TensorProduct.tensorQuotEquivQuotSMul_comp_mkQ_lTensor, LinearMap.range_mkQ_comp, rTensor.inverse_of_rightInverse_apply, AdicCompletion.pi_apply_coe, LinearMap.exact_subtype_mkQ, Module.Presentation.cokernel_R, RingTheory.Sequence.isWeaklyRegular_iff_Fin, AdicCompletion.val_add_apply, AdicCompletion.smul_eval, rank_quotient_add_rank, Subspace.finiteDimensional_quot_dualCoannihilator_iff, ZSpan.quotientEquiv_apply_mk, Module.Presentation.cokernelSolution.isPresentation, AdicCompletion.factor_eval_eq_evalₐ, goursat, quotientQuotientEquivQuotientAux_mk, FiniteDimensional.finiteDimensional_quotient, lTensor.inverse_of_rightInverse_apply, mapQ_pow, range_mkQ, isOpenQuotientMap_mkQ, factor_eq_factor, Subspace.dualPairing_nondegenerate, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, Quotient.completeSpace, linearMap_qext_iff, TensorProduct.quotientTensorEquiv_symm_apply_mk_tmul, strictMono_comap_prod_map, Quotient.equiv_symm, ModuleCat.cokernel_Ο€_cokernelIsoRangeQuotient_hom, LinearMap.surjective_range_liftQ, AdicCompletion.val_sum, Ideal.pi_mkQ_surjective, KaehlerDifferential.kerTotal_mkQ_single_algebraMap_one, isNoetherian_iff_submodule_quotient, Quotient.mk_sub, lTensor.inverse_apply, LinearMap.comap_leq_ker_subToSupQuotient, map_mkQ_eq_top, isArtinian_of_quotient_of_artinian, LinearMap.quotientInfEquivSupQuotient_apply_mk, KaehlerDifferential.kerTotal_mkQ_single_add, AdicCompletion.range_eval, Ideal.Quotient.smul_top, finiteQuotient_iff, AdicCompletion.val_neg_apply, Function.Exact.exact_mapQ_iff, Module.Quotient.mk_smul_mk, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ο€_assoc_apply, mapQ_zero, Module.Finite.quotient, AdicCompletion.transitionMap_comp_eval, CharacterModule.intSpanEquivQuotAddOrderOf_symm_apply_coe, Ideal.quotientToQuotientRangePowQuotSucc_mk, subsingleton_quotient_iff_eq_top, coe_quotEquivOfEqBot_symm, CharacterModule.intSpanEquivQuotAddOrderOf_apply, annihilator_map_mkQ_eq_colon, AdicCompletion.coe_eval, ker_liftQ_eq_bot', TensorProduct.tensorQuotEquivQuotSMul_tmul_mk, AdicCompletion.val_mul, Quotient.mk_smul, mkQ_apply, AdicCompletion.mk_smul_mk, card_quotient_mul_card_quotient, factor_comp, Subspace.flip_quotDualCoannihilatorToDual_bijective, rank_quotient_add_rank_of_isDomain, quotEquivOfEqBot_apply_mk, IsSemisimpleModule.exists_quotient_linearEquiv_submodule, LinearMap.quotientInfEquivSupQuotient_injective, RingTheory.Sequence.IsWeaklyRegular.regular_mod_prev, ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv, KaehlerDifferential.derivationQuotKerTotal_apply, AdicCompletion.transitionMap_comp_reduceModIdeal, AdicCompletion.instIsScalarTowerQuotientIdealHSMulTopSubmodule, dualCopairing_apply, le_comap_mkQ, LinearMap.exact_smul_id_smul_top_mkQ, Quotient.restrictScalarsEquiv_symm_mk, finite_quotient_smul, natAbs_det_equiv, AdicCompletion.smul_mk, mapQ_eq_factor, LinearMap.injective_range_liftQ_of_exact, Module.Grassmannian.finite_quotient, Module.Presentation.cokernel_var, IsLocalizedModule.toLocalizedQuotient', Ideal.quotientToQuotientRangePowQuotSucc_surjective, quotOfListConsSMulTopEquivQuotSMulTopInner_naturality, quotientPi_apply, rTensor.inverse_of_rightInverse_comp_rTensor, Subspace.quotAnnihilatorEquiv_apply, RingTheory.Sequence.isWeaklyRegular_append_iff', isNoetherian_quotient, instIsLocalizedModuleQuotientSubmoduleLocalizedModuleLocalizationLocalizedToLocalizedQuotient, TensorProduct.quotientTensorQuotientEquiv_apply_tmul_mk_tmul_mk, TensorProduct.tensorQuotientEquiv_apply_mk_tmul, isSMulRegular_quotient_iff_mem_of_smul_mem, rTensor.inverse_comp_rTensor, LinearMap.liftQβ‚‚_mk, quotientEquivOfIsCompl_apply_mk_coe, comapMkQOrderEmbedding_eq, groupHomology.Ο€_comp_H1Iso_hom_apply, LinearMap.quotKerEquivRange_symm_apply_image, rTensor_mkQ, TensorProduct.tensorQuotEquivQuotSMul_symm_mk, LinearMap.reduceModIdeal_apply, RingTheory.Sequence.isWeaklyRegular_append_iff, Quotient.equiv_symm_apply, pi_liftQ_eq_liftQ_pi, HasRankNullity.rank_quotient_add_rank, CategoryTheory.ShortComplex.Ο€_moduleCatCyclesIso_hom_assoc_apply, IsModuleTopology.instQuot, comap_map_mkQ, ker_liftQ_eq_bot, Module.IsTorsionBySet.quotient, Quotient.instSmallQuotient, Quotient.nontrivial_of_ne_top, LinearMap.quotKerEquivRange_apply_mk, isSimpleModule_iff_quot_maximal, Ideal.annihilator_quotient, LieHom.quotKerEquivRange_invFun, isOpenMap_mkQ, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, quotientEquivOfIsCompl_symm_apply, Ideal.quotientToQuotientRangePowQuotSucc_injective, finiteQuotientOfFreeOfRankEq, TensorProduct.quotTensorEquivQuotSMul_symm_mk, quotDualCoannihilatorToDual_injective, quotientPi_symm_apply, Module.jacobson_quotient_of_le, liftQ_apply, KaehlerDifferential.kerTotal_mkQ_single_mul, Quotient.isCentralScalar, AdicCompletion.val_add, isQuotientEquivQuotientPrime_iff, quotientPi_aux.map_add, Module.Presentation.cokernel_G, Module.exists_isPrincipal_quotient_of_finite, LinearMap.exact_map_mkQ_range, AdicCompletion.mk_smul_top_ofAlgEquiv_symm, AdicCompletion.val_one, mkQ_map_self, AdicCompletion.factor_eval_liftRingHom, rank_quotient_add_rank_le, ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv_apply, KaehlerDifferential.derivationQuotKerTotal_lift_comp_linearCombination, toLocalizedQuotient'_mk, Quotient.mk_surjective, KaehlerDifferential.kerTotal_mkQ_single_smul, topologicalAddGroup_quotient, CategoryTheory.ShortComplex.Ο€_moduleCatCyclesIso_hom_apply, TensorProduct.quotientTensorEquiv_apply_tmul_mk, QuotientTorsion.instIsTorsionFree, Quotient.isScalarTower, Module.isTorsionBySet_quotient_iff, ZSpan.quotientEquiv.symm_apply, AdicCompletion.transitionMap_map_pow, rank_quotient_le, mk_quotientEquivOfIsCompl_apply, Subspace.dualCopairing_nondegenerate, map_liftQ, piQuotientLift_single, liftQSpanSingleton_apply, Quotient.mk_neg, Ideal.pi_mkQ_rTensor, KaehlerDifferential.quotKerTotalEquiv_symm_apply, LinearMap.quotKerEquivOfSurjective_symm_apply, mapQ_mkQ, rTensor.inverse_apply, AdicCompletion.val_sub, Module.Basis.sumQuot_inr, quotientPi_aux.left_inv, RingTheory.Sequence.IsRegular.quot_ofList_smul_nontrivial, AdicCompletion.val_neg, Module.isTorsionBy_quotient_iff, factor_comp_apply, quotEquivOfEq_mk, AdicCompletion.transitionMap_ideal_mk, AdicCompletion.transitionMap_map_mul, Function.Exact.linearEquivOfSurjective_apply, LinearMap.coe_quotientInfToSupQuotient, range_dualMap_mkQ_eq, groupCohomology.Ο€_comp_H2Iso_hom_apply, finite_dualAnnihilator_iff, Representation.quotient_apply, groupCohomology.Ο€_comp_H1Iso_hom_apply, linearIndepOn_union_iff_quotient, ker_mkQ, groupHomology.Ο€_comp_H2Iso_hom_apply, quotientPiLift_mk, continuousSMul_quotient, mkQ_surjective, finrank_quotient_eq_sum, IsSMulRegular.isSMulRegular_on_quot_iff_smul_top_inf_eq_smul, AdicCompletion.factor_evalₐ_eq_eval, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_Ο€_hom, Function.Exact.linearEquivOfSurjective_symm_apply, Module.length_quotient, Ideal.cotangentEquivIdeal_symm_apply, isSimpleModule_iff_isCoatom, AdicCompletion.eval_of, rank_quotient_add_rank_of_divisionRing, quotientPi_aux.right_inv, LinearMap.det_eq_det_mul_det, isSMulRegular_on_quot_iff_lsmul_comap_eq, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ο€_apply, Quotient.subsingleton_iff, CharacterModule.intSpanEquivQuotAddOrderOf_apply_self, Quotient.smulCommClass, TensorProduct.tensorQuotEquivQuotSMul_comp_mk, Module.Grassmannian.projective_quotient, AdicCompletion.val_zero, groupHomology.Ο€_comp_H1Iso_inv_apply, LinearMap.quotientInfEquivSupQuotient_symm_apply_left, AdicCompletion.mk_apply_coe, Quotient.norm_mk_le, IsLocalRing.map_mkQ_eq_top, RingTheory.Sequence.map_first_exact_on_four_term_right_exact_of_isSMulRegular_last, RingTheory.Sequence.isWeaklyRegular_iff, mapQ_comp, goursat_surjective, AdicCompletion.transitionMap_comp_eval_apply, TensorProduct.quotTensorEquivQuotSMul_comp_mk, finrank_quotient_le, AdicCompletion.val_zero_apply, rank_quotient_eq_of_le_torsion, Module.Finite.exists_fin_quot_equiv, finrank_quotient, liftQ_mkQ, dualAnnihilator_eq_bot_iff', LinearMap.ker_le_range_iff, isSMulRegular_on_quot_iff_lsmul_comap_le, Quotient.norm_mk_lt, dualQuotEquivDualAnnihilator_symm_apply_mk, ker_liftQ, QuotientTorsion.torsion_eq_bot, TensorProduct.tensorQuotientEquiv_symm_apply_tmul_mk, LinearMap.ker_eq_bot_range_liftQ_iff, AdicCompletion.eval_surjective, Rep.mkQ_hom, Quotient.nontrivial_iff, AdicCompletion.transitionMap_map_one, Module.jacobson_quotient_jacobson, Subspace.quotDualCoannihilatorToDual_bijective, lTensor_mkQ, LinearMap.quotientInfEquivSupQuotient_symm_apply_right, AdicCompletion.eval_apply, IsSemisimpleModule.quotient, Quotient.equiv_trans, KaehlerDifferential.quotKerTotalEquiv_apply, TensorProduct.quotTensorEquivQuotSMul_symm_comp_mkQ, quotient_prod_linearEquiv, Quotient.restrictScalarsEquiv_mk, LinearMap.quotientInfEquivSupQuotient_surjective, Module.finrank_quotient_add_finrank_le, AdicCompletion.val_sum_apply, Quotient.mk_eq_zero, LinearMap.quotKerEquivOfSurjective_apply_mk, Quotient.nontrivial_of_lt_top, comap_liftQ, groupHomology.Ο€_comp_H2Iso_inv_apply, Quotient.mk_zero, isPrimary_iff_zero_divisor_quotient_imp_nilpotent_smul, AdicCompletion.of_apply, Module.isTorsionBy_quotient_element_smul, Module.IsTorsionBy.quotient, piQuotientLift_mk, flip_quotDualCoannihilatorToDual_injective, Subspace.dualPairing_eq, mapQ_id, AdicCompletion.eval_comp_of, Ideal.to_quotient_square_comp_toCotangent, factor_comp_mk, Module.Basis.sumQuot_repr_inr, AdicCompletion.val_smul_apply, TensorProduct.quotTensorEquivQuotSMul_mk_tmul, TensorProduct.tensorQuotEquivQuotSMul_symm_comp_mkQ, card_eq_card_quotient_mul_card, quotientQuotientEquivQuotientAux_mk_mk, LinearIndepOn.quotient_iff_union, factor_surjective, Quotient.equiv_apply, natAbs_det_basis_change, cardQuot_apply, range_liftQ, KaehlerDifferential.kerTotal_mkQ_single_algebraMap
mkQ πŸ“–CompOp
88 mathmath: Ideal.toCotangent_to_quotient_square, TopModuleCat.hom_cokerΟ€, lTensor.inverse_comp_lTensor, Module.Presentation.cokernelSolution_var, ModuleCat.epi_as_hom''_mkQ, factor_mk, lTensor.inverse_of_rightInverse_comp_lTensor, IsAdicComplete.mkQ_comp_lift, TensorProduct.quotTensorEquivQuotSMul_comp_mkQ_rTensor, IsLocalRing.map_mkQ_eq, QuotSMulTop.map_comp_mkQ, TensorProduct.tensorQuotEquivQuotSMul_comp_mkQ_lTensor, LinearMap.range_mkQ_comp, LinearMap.exact_subtype_mkQ, goursat, quotientQuotientEquivQuotientAux_mk, range_mkQ, isOpenQuotientMap_mkQ, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, linearMap_qext_iff, strictMono_comap_prod_map, ModuleCat.cokernel_Ο€_cokernelIsoRangeQuotient_hom, Ideal.pi_mkQ_surjective, KaehlerDifferential.kerTotal_mkQ_single_algebraMap_one, map_mkQ_eq_top, KaehlerDifferential.kerTotal_mkQ_single_add, ModuleCat.smulShortComplex_g, coe_quotEquivOfEqBot_symm, annihilator_map_mkQ_eq_colon, mkQ_apply, card_quotient_mul_card_quotient, ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv, KaehlerDifferential.derivationQuotKerTotal_apply, le_comap_mkQ, LinearMap.exact_smul_id_smul_top_mkQ, quotientPi_apply, rTensor.inverse_of_rightInverse_comp_rTensor, rTensor.inverse_comp_rTensor, comapMkQOrderEmbedding_eq, groupHomology.Ο€_comp_H1Iso_hom_apply, LinearMap.quotKerEquivRange_symm_apply_image, rTensor_mkQ, comap_map_mkQ, isOpenMap_mkQ, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, Module.jacobson_quotient_of_le, KaehlerDifferential.kerTotal_mkQ_single_mul, isQuotientEquivQuotientPrime_iff, LinearMap.exact_map_mkQ_range, mkQ_map_self, KaehlerDifferential.derivationQuotKerTotal_lift_comp_linearCombination, KaehlerDifferential.kerTotal_mkQ_single_smul, map_liftQ, Ideal.pi_mkQ_rTensor, mapQ_mkQ, range_dualMap_mkQ_eq, groupCohomology.Ο€_comp_H2Iso_hom_apply, groupCohomology.Ο€_comp_H1Iso_hom_apply, linearIndepOn_union_iff_quotient, ker_mkQ, groupHomology.Ο€_comp_H2Iso_hom_apply, mkQ_surjective, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_Ο€_hom, Ideal.cotangentEquivIdeal_symm_apply, AdicCompletion.eval_of, TensorProduct.tensorQuotEquivQuotSMul_comp_mk, AdicCompletion.mk_apply_coe, IsLocalRing.map_mkQ_eq_top, goursat_surjective, TensorProduct.quotTensorEquivQuotSMul_comp_mk, liftQ_mkQ, LinearMap.ker_le_range_iff, ker_liftQ, Rep.mkQ_hom, lTensor_mkQ, TensorProduct.quotTensorEquivQuotSMul_symm_comp_mkQ, IsAdicComplete.StrictMono.mkQ_comp_lift, comap_liftQ, AdicCompletion.of_apply, AdicCompletion.eval_comp_of, Ideal.to_quotient_square_comp_toCotangent, factor_comp_mk, Module.Basis.sumQuot_repr_inr, TensorProduct.tensorQuotEquivQuotSMul_symm_comp_mkQ, quotientQuotientEquivQuotientAux_mk_mk, LinearIndepOn.quotient_iff_union, Module.Relations.Solution.ofQuotient_Ο€, KaehlerDifferential.kerTotal_mkQ_single_algebraMap
quotEquivOfEq πŸ“–CompOp
4 mathmath: CharacterModule.intSpanEquivQuotAddOrderOf_symm_apply_coe, CharacterModule.intSpanEquivQuotAddOrderOf_apply, Quotient.equiv_refl, quotEquivOfEq_mk
quotientRel πŸ“–CompOp
11 mathmath: quotientRel_def, Quotient.mk'_eq_mk', Ideal.Quotient.mk_out, WittVector.quotientPEquiv_mk, Quotient.mk_out, Ideal.univ_eq_iUnion_image_add, Quotient.quot_mk_eq_mk, Algebra.PreSubmersivePresentation.ofHasCoeffs_algebra_smul, Quotient.mk''_eq_mk, UniformSpace.inseparableSetoid_ring, LieSubmodule.Quotient.is_quotient_mk

Theorems

NameKindAssumesProvesValidatesDepends On
linearMap_qext πŸ“–β€”LinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
Quotient.addCommGroup
Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
mkQ
β€”β€”RingHomCompTriple.ids
LinearMap.ext
Quotient.induction_on
LinearMap.congr_fun
linearMap_qext_iff πŸ“–mathematicalβ€”LinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
Quotient.addCommGroup
Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
mkQ
β€”RingHomCompTriple.ids
linearMap_qext
mkQ_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
hasQuotient
Quotient.addCommGroup
Quotient.module
LinearMap.instFunLike
mkQ
β€”β€”
mkQ_surjective πŸ“–mathematicalβ€”HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Quotient.addCommGroup
Quotient.module
LinearMap.instFunLike
mkQ
β€”β€”
quotEquivOfEq_mk πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
hasQuotient
Quotient.addCommGroup
Quotient.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
quotEquivOfEq
β€”RingHomInvPair.ids
quot_hom_ext πŸ“–β€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
hasQuotient
Quotient.addCommGroup
Quotient.module
LinearMap.instFunLike
β€”β€”LinearMap.ext
Quotient.induction_on
quotientRel_def πŸ“–mathematicalβ€”quotientRel
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”QuotientAddGroup.leftRel_apply
sub_eq_add_neg
neg_add
neg_neg
neg_mem_iff
AddSubgroupClass.toNegMemClass
addSubgroupClass

Submodule.Quotient

Definitions

NameCategoryTheorems
addCommGroup πŸ“–CompOp
323 mathmath: Ideal.toCotangent_to_quotient_square, TopModuleCat.hom_cokerΟ€, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, LinearMap.quotientInfEquivSupQuotient_symm_apply_eq_zero_iff, lTensor.inverse_comp_lTensor, AdicCompletion.val_sub_apply, IsSemisimpleModule.exists_submodule_linearEquiv_quotient, Module.support_quotient, Module.Presentation.cokernelSolution_var, IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, RingTheory.Sequence.isWeaklyRegular_cons_iff', Module.End.IsNilpotent.mapQ, Submodule.annihilator_quotient, AdicCompletion.map_val_apply, covBy_iff_quot_is_simple, ModuleCat.epi_as_hom''_mkQ, RingTheory.Sequence.isWeaklyRegular_cons_iff, Module.isTorsionBySet_quotient_set_smul, Ring.coe_jacobson_quotient, ModuleCat.cokernel_Ο€_cokernelIsoRangeQuotient_hom_apply, Submodule.mapQ_apply, Submodule.dualQuotEquivDualAnnihilator_apply, mk_add, Submodule.factor_mk, Module.isTorsionBySet_quotient_ideal_smul, QuotSMulTop.equivTensorQuot_naturality, Submodule.top_eq_ofList_cons_smul_iff, Submodule.quotDualCoannihilatorToDual_apply, Submodule.dualPairing_apply, lTensor.inverse_of_rightInverse_comp_lTensor, AdicCompletion.incl_apply, AdicCompletion.val_smul_eq_evalₐ_smul, Module.supportDim_add_length_eq_supportDim_of_isRegular, Submodule.finrank_quotient_add_finrank, Module.exists_smul_eq_zero_and_mk_eq, TensorProduct.quotTensorEquivQuotSMul_comp_mkQ_rTensor, TensorProduct.quotientTensorQuotientEquiv_symm_apply_mk_tmul, isArtinian_iff_submodule_quotient, Module.Grassmannian.rankAtStalk_eq, Submodule.dualCopairing_eq, RingTheory.Sequence.isRegular_cons_iff, KaehlerDifferential.quotKerTotalEquiv_symm_comp_D, QuotSMulTop.equivTensorQuot_naturality_mk, IsLocalRing.map_mkQ_eq, Submodule.quotDualCoannihilatorToDual_nondegenerate, Submodule.quotEquivOfEqBot_symm_apply, Module.Presentation.cokernel_relation, LieHom.quotKerEquivRange_toFun, QuotSMulTop.map_comp_mkQ, TensorProduct.tensorQuotEquivQuotSMul_comp_mkQ_lTensor, ModN.basis_apply_eq_mkQ, LinearMap.range_mkQ_comp, rTensor.inverse_of_rightInverse_apply, AdicCompletion.pi_apply_coe, LinearMap.exact_subtype_mkQ, Module.Presentation.cokernel_R, AdicCompletion.val_add_apply, ModuleCat.smulShortComplex_X₃_isAddCommGroup, Submodule.rank_quotient_add_rank, Subspace.finiteDimensional_quot_dualCoannihilator_iff, Module.Presentation.cokernelSolution.isPresentation, AdicCompletion.factor_eval_eq_evalₐ, Submodule.goursat, Submodule.quotientQuotientEquivQuotientAux_mk, FiniteDimensional.finiteDimensional_quotient, lTensor.inverse_of_rightInverse_apply, Submodule.mapQ_pow, Submodule.range_mkQ, QuotSMulTop.map_surjective, Submodule.isOpenQuotientMap_mkQ, Submodule.factor_eq_factor, Subspace.dualPairing_nondegenerate, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, Hausdorffification.instIsHausdorff, Submodule.linearMap_qext_iff, TensorProduct.quotientTensorEquiv_symm_apply_mk_tmul, Submodule.strictMono_comap_prod_map, equiv_symm, ModuleCat.cokernel_Ο€_cokernelIsoRangeQuotient_hom, LinearMap.surjective_range_liftQ, AdicCompletion.val_sum, KaehlerDifferential.kerTotal_mkQ_single_algebraMap_one, isNoetherian_iff_submodule_quotient, mk_sub, lTensor.inverse_apply, LinearMap.comap_leq_ker_subToSupQuotient, Submodule.map_mkQ_eq_top, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_maximalIdeal, AlgebraicClosure.instIsAlgClosureOfIsAlgebraic, isArtinian_of_quotient_of_artinian, LinearMap.quotientInfEquivSupQuotient_apply_mk, KaehlerDifferential.kerTotal_mkQ_single_add, AdicCompletion.range_eval, AdicCompletion.val_neg_apply, Function.Exact.exact_mapQ_iff, Module.Quotient.mk_smul_mk, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ο€_assoc_apply, Submodule.mapQ_zero, Module.Finite.quotient, AdicCompletion.transitionMap_comp_eval, CharacterModule.intSpanEquivQuotAddOrderOf_symm_apply_coe, Ideal.quotientToQuotientRangePowQuotSucc_mk, ModuleCat.smulShortComplex_g, Submodule.coe_quotEquivOfEqBot_symm, CharacterModule.intSpanEquivQuotAddOrderOf_apply, Submodule.annihilator_map_mkQ_eq_colon, AdicCompletion.coe_eval, Submodule.ker_liftQ_eq_bot', TensorProduct.tensorQuotEquivQuotSMul_tmul_mk, isFiniteLength_quotient_span_singleton, Submodule.mkQ_apply, Submodule.card_quotient_mul_card_quotient, Submodule.factor_comp, Subspace.flip_quotDualCoannihilatorToDual_bijective, rank_quotient_add_rank_of_isDomain, Submodule.quotEquivOfEqBot_apply_mk, IsSemisimpleModule.exists_quotient_linearEquiv_submodule, LinearMap.quotientInfEquivSupQuotient_injective, ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv, QuotSMulTop.equivQuotTensor_naturality, KaehlerDifferential.derivationQuotKerTotal_apply, AdicCompletion.transitionMap_comp_reduceModIdeal, Submodule.dualCopairing_apply, Submodule.le_comap_mkQ, AlgebraicClosure.instIsAlgClosure, LinearMap.exact_smul_id_smul_top_mkQ, restrictScalarsEquiv_symm_mk, Submodule.mapQ_eq_factor, LinearMap.injective_range_liftQ_of_exact, Module.Grassmannian.finite_quotient, Module.Presentation.cokernel_var, IsLocalizedModule.toLocalizedQuotient', Ideal.quotientToQuotientRangePowQuotSucc_surjective, Submodule.quotOfListConsSMulTopEquivQuotSMulTopInner_naturality, Submodule.quotientPi_apply, rTensor.inverse_of_rightInverse_comp_rTensor, Subspace.quotAnnihilatorEquiv_apply, RingTheory.Sequence.isWeaklyRegular_append_iff', isNoetherian_quotient, instIsLocalizedModuleQuotientSubmoduleLocalizedModuleLocalizationLocalizedToLocalizedQuotient, TensorProduct.quotientTensorQuotientEquiv_apply_tmul_mk_tmul_mk, TensorProduct.tensorQuotientEquiv_apply_mk_tmul, rTensor.inverse_comp_rTensor, LinearMap.liftQβ‚‚_mk, Submodule.quotientEquivOfIsCompl_apply_mk_coe, Submodule.comapMkQOrderEmbedding_eq, QuotSMulTop.map_exact, groupHomology.Ο€_comp_H1Iso_hom_apply, LinearMap.quotKerEquivRange_symm_apply_image, rTensor_mkQ, TensorProduct.tensorQuotEquivQuotSMul_symm_mk, LinearMap.reduceModIdeal_apply, RingTheory.Sequence.isWeaklyRegular_append_iff, equiv_symm_apply, Submodule.pi_liftQ_eq_liftQ_pi, HasRankNullity.rank_quotient_add_rank, Module.supportDim_quotSMulTop_succ_eq_supportDim, CategoryTheory.ShortComplex.Ο€_moduleCatCyclesIso_hom_assoc_apply, IsModuleTopology.instQuot, Submodule.comap_map_mkQ, Submodule.ker_liftQ_eq_bot, Module.IsTorsionBySet.quotient, LinearMap.quotKerEquivRange_apply_mk, isSimpleModule_iff_quot_maximal, Ideal.annihilator_quotient, LieHom.quotKerEquivRange_invFun, Submodule.isOpenMap_mkQ, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, Submodule.quotientEquivOfIsCompl_symm_apply, Ideal.quotientToQuotientRangePowQuotSucc_injective, TensorProduct.quotTensorEquivQuotSMul_symm_mk, Submodule.quotDualCoannihilatorToDual_injective, Submodule.quotientPi_symm_apply, Module.jacobson_quotient_of_le, Submodule.liftQ_apply, KaehlerDifferential.kerTotal_mkQ_single_mul, AdicCompletion.val_add, Submodule.isQuotientEquivQuotientPrime_iff, Submodule.quotientPi_aux.map_add, Module.Presentation.cokernel_G, Module.supportDim_le_supportDim_quotSMulTop_succ, QuotSMulTop.equivQuotTensor_naturality_mk, Module.exists_isPrincipal_quotient_of_finite, LinearMap.exact_map_mkQ_range, AdicCompletion.mk_smul_top_ofAlgEquiv_symm, Module.supportDim_quotSMulTop_succ_eq_supportDim_mem_jacobson, Submodule.mkQ_map_self, Module.support_quotSMulTop, AdicCompletion.factor_eval_liftRingHom, rank_quotient_add_rank_le, ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv_apply, KaehlerDifferential.derivationQuotKerTotal_lift_comp_linearCombination, Submodule.toLocalizedQuotient'_mk, KaehlerDifferential.kerTotal_mkQ_single_smul, Submodule.topologicalAddGroup_quotient, Hausdorffification.lift_comp_of, CategoryTheory.ShortComplex.Ο€_moduleCatCyclesIso_hom_apply, TensorProduct.quotientTensorEquiv_apply_tmul_mk, Submodule.QuotientTorsion.instIsTorsionFree, Module.isTorsionBySet_quotient_iff, AdicCompletion.transitionMap_map_pow, rank_quotient_le, Submodule.mk_quotientEquivOfIsCompl_apply, Subspace.dualCopairing_nondegenerate, Submodule.map_liftQ, Submodule.piQuotientLift_single, Submodule.liftQSpanSingleton_apply, mk_neg, KaehlerDifferential.quotKerTotalEquiv_symm_apply, LinearMap.quotKerEquivOfSurjective_symm_apply, Submodule.mapQ_mkQ, rTensor.inverse_apply, AdicCompletion.val_sub, Module.Basis.sumQuot_inr, QuotSMulTop.map_first_exact_on_four_term_exact_of_isSMulRegular_last, AdicCompletion.val_neg, Module.isTorsionBy_quotient_iff, Submodule.factor_comp_apply, Submodule.quotEquivOfEq_mk, AdicCompletion.transitionMap_ideal_mk, AdicCompletion.transitionMap_map_mul, Function.Exact.linearEquivOfSurjective_apply, Module.supportDim_le_supportDim_quotSMulTop_succ_of_mem_jacobson, LinearMap.coe_quotientInfToSupQuotient, Submodule.range_dualMap_mkQ_eq, groupCohomology.Ο€_comp_H2Iso_hom_apply, Hausdorffification.lift_of, QuotSMulTop.map_comp, Submodule.finite_dualAnnihilator_iff, Representation.quotient_apply, groupCohomology.Ο€_comp_H1Iso_hom_apply, linearIndepOn_union_iff_quotient, Submodule.ker_mkQ, groupHomology.Ο€_comp_H2Iso_hom_apply, Submodule.quotientPiLift_mk, Submodule.mkQ_surjective, Submodule.finrank_quotient_eq_sum, AdicCompletion.factor_evalₐ_eq_eval, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_Ο€_hom, Function.Exact.linearEquivOfSurjective_symm_apply, Ideal.Factors.finiteDimensional_quotient_pow, Module.length_quotient, Ideal.cotangentEquivIdeal_symm_apply, isSimpleModule_iff_isCoatom, QuotSMulTop.map_apply_mk, Module.supportDim_quotient_eq_ringKrullDim, AdicCompletion.eval_of, rank_quotient_add_rank_of_divisionRing, LinearMap.det_eq_det_mul_det, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ο€_apply, CharacterModule.intSpanEquivQuotAddOrderOf_apply_self, TensorProduct.tensorQuotEquivQuotSMul_comp_mk, Module.Grassmannian.projective_quotient, groupHomology.Ο€_comp_H1Iso_inv_apply, LinearMap.quotientInfEquivSupQuotient_symm_apply_left, AdicCompletion.mk_apply_coe, IsLocalRing.map_mkQ_eq_top, RingTheory.Sequence.map_first_exact_on_four_term_right_exact_of_isSMulRegular_last, Submodule.mapQ_comp, Submodule.goursat_surjective, AdicCompletion.transitionMap_comp_eval_apply, TensorProduct.quotTensorEquivQuotSMul_comp_mk, Submodule.finrank_quotient_le, ModN.instModuleFinite, Module.supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_jacobson, rank_quotient_eq_of_le_torsion, Module.Finite.exists_fin_quot_equiv, Submodule.finrank_quotient, Submodule.liftQ_mkQ, Submodule.dualAnnihilator_eq_bot_iff', QuotSMulTop.map_id, LinearMap.ker_le_range_iff, instFiniteDimensionalQuotientPolynomialIdealSpanSingletonSetSmithCoeffs, Submodule.dualQuotEquivDualAnnihilator_symm_apply_mk, Ideal.quotTorsionOfEquivSpanSingleton_apply_mk, Ideal.quotientToQuotientRangePowQuotSuccAux_mk, Submodule.ker_liftQ, Submodule.QuotientTorsion.torsion_eq_bot, TensorProduct.tensorQuotientEquiv_symm_apply_tmul_mk, LinearMap.ker_eq_bot_range_liftQ_iff, AdicCompletion.eval_surjective, Rep.mkQ_hom, AdicCompletion.transitionMap_map_one, Module.jacobson_quotient_jacobson, Subspace.quotDualCoannihilatorToDual_bijective, Module.supportDim_quotSMulTop_succ_le_of_notMem_minimalPrimes, lTensor_mkQ, LinearMap.quotientInfEquivSupQuotient_symm_apply_right, AdicCompletion.eval_apply, IsSemisimpleModule.quotient, equiv_trans, KaehlerDifferential.quotKerTotalEquiv_apply, TensorProduct.quotTensorEquivQuotSMul_symm_comp_mkQ, quotient_prod_linearEquiv, RingTheory.Sequence.isRegular_cons_iff', restrictScalarsEquiv_mk, LinearMap.quotientInfEquivSupQuotient_surjective, Module.finrank_quotient_add_finrank_le, AdicCompletion.val_sum_apply, LinearMap.quotKerEquivOfSurjective_apply_mk, Submodule.comap_liftQ, groupHomology.Ο€_comp_H2Iso_inv_apply, Submodule.isPrimary_iff_zero_divisor_quotient_imp_nilpotent_smul, AdicCompletion.of_apply, Module.isTorsionBy_quotient_element_smul, Module.IsTorsionBy.quotient, Submodule.piQuotientLift_mk, Submodule.flip_quotDualCoannihilatorToDual_injective, Subspace.dualPairing_eq, Submodule.mapQ_id, AdicCompletion.eval_comp_of, Ideal.to_quotient_square_comp_toCotangent, Submodule.factor_comp_mk, Module.Basis.sumQuot_repr_inr, TensorProduct.quotTensorEquivQuotSMul_mk_tmul, TensorProduct.tensorQuotEquivQuotSMul_symm_comp_mkQ, Submodule.quotientQuotientEquivQuotientAux_mk_mk, LinearIndepOn.quotient_iff_union, Submodule.factor_surjective, equiv_apply, Submodule.range_liftQ, KaehlerDifferential.kerTotal_mkQ_single_algebraMap
distribMulAction πŸ“–CompOp
2 mathmath: Ideal.Quotient.smul_top, Submodule.isPrimary_iff_zero_divisor_quotient_imp_nilpotent_smul
distribMulAction' πŸ“–CompOpβ€”
distribSMul πŸ“–CompOpβ€”
distribSMul' πŸ“–CompOpβ€”
instInhabitedQuotient πŸ“–CompOpβ€”
instSMul πŸ“–CompOp
19 mathmath: Submodule.quotientPi_aux.map_smul, Ideal.range_cotangentToQuotientSquare, Ideal.Quotient.tower_quotient_map_quotient, RingTheory.Sequence.isWeaklyRegular_iff_Fin, Ideal.Factors.isScalarTower, AdicCompletion.mk_smul_mk, RingTheory.Sequence.IsWeaklyRegular.regular_mod_prev, AdicCompletion.transitionMap_comp_reduceModIdeal, AdicCompletion.instIsScalarTowerQuotientIdealHSMulTopSubmodule, AdicCompletion.smul_mk, isSMulRegular_quotient_iff_mem_of_smul_mem, IsModuleTopology.instQuot, Ideal.cotangentEquivIdeal_apply, Submodule.continuousSMul_quotient, IsSMulRegular.isSMulRegular_on_quot_iff_smul_top_inf_eq_smul, Ideal.cotangentEquivIdeal_symm_apply, isSMulRegular_on_quot_iff_lsmul_comap_eq, RingTheory.Sequence.isWeaklyRegular_iff, isSMulRegular_on_quot_iff_lsmul_comap_le
instSMul' πŸ“–CompOp
21 mathmath: Submodule.instIsScalarTowerQuotientIdealSubtypeMemTorsionBySetCoe, Ideal.Quotient.isScalarTower, instIsBoundedSMul, AdicCompletion.val_smul, Ideal.Quotient.tower_quotient_map_quotient, Ideal.instIsScalarTowerQuotientHPowKerRingHomAlgebraMapOfNat, Ideal.Factors.isScalarTower, mk_smul, Submodule.instIsScalarTowerQuotientSpanSingletonSetSubtypeMemTorsionBy, Ideal.Quotient.isScalarTower_of_liesOver, isCentralScalar, KaehlerDifferential.kerTotal_mkQ_single_smul, isScalarTower, Module.IsTorsionBySet.isScalarTower, Ideal.Quotient.smulCommClass', instIsScalarTowerQuotientIdealResidueField, Ideal.Quotient.smulCommClass, Ideal.KerLift.map_smul, smulCommClass, Ideal.Quotient.isScalarTower_right, AdicCompletion.val_smul_apply
instZeroQuotient πŸ“–CompOp
33 mathmath: LinearMap.quotientInfEquivSupQuotient_symm_apply_eq_zero_iff, instIsBoundedSMul, Ideal.quotient_map_C_eq_zero, LinearMap.exact_subtype_mkQ, Polynomial.modByMonic_eq_zero_iff_quotient_eq_zero, KaehlerDifferential.kerTotal_mkQ_single_algebraMap_one, MvPolynomial.quotient_map_C_eq_zero, Ideal.Quotient.eq_zero_iff_dvd, Function.Exact.exact_mapQ_iff, Ideal.Quotient.index_eq_zero, Ideal.Quotient.mk_singleton_self, Ideal.Quotient.mk_span_range, Ideal.exact_mulQuot_quotOfMul, LinearMap.exact_smul_id_smul_top_mkQ, Ideal.Quotient.eq_zero_iff_mem, QuotSMulTop.map_exact, LinearMap.exact_map_mkQ_range, ModP.preVal_zero, Submodule.piQuotientLift_single, QuotSMulTop.map_first_exact_on_four_term_exact_of_isSMulRegular_last, Algebra.Generators.compLocalizationAwayAlgHom_relation_eq_zero, AdicCompletion.val_zero, RingTheory.Sequence.map_first_exact_on_four_term_right_exact_of_isSMulRegular_last, ModP.preVal_eq_zero, AdicCompletion.val_zero_apply, LinearMap.quotientInfEquivSupQuotient_symm_apply_right, Ideal.Quotient.zero_eq_one_iff, mk_eq_zero, mk_zero, Ideal.isRadical_iff_quotient_reduced, Ideal.Quotient.noZeroDivisors, Ideal.eq_zero_of_polynomial_mem_map_range, KaehlerDifferential.kerTotal_mkQ_single_algebraMap
mk πŸ“–CompOpβ€”
module' πŸ“–CompOp
27 mathmath: PowerSeries.IsWeierstrassFactorizationAt.algEquivQuotient_symm_apply, Polynomial.Monic.free_quotient, finrank_quotient_span_eq_natDegree_norm, finrank_quotient_span_eq_natDegree', KaehlerDifferential.quotKerTotalEquiv_symm_comp_D, finrank_quotient_span_eq_natDegree, Module.Finite.quotient, PowerSeries.IsWeierstrassDivisorAt.mod'_mk_eq_mod, KaehlerDifferential.derivationQuotKerTotal_apply, restrictScalarsEquiv_symm_mk, IsLocalizedModule.toLocalizedQuotient', isNoetherian_quotient, instIsLocalizedModuleQuotientSubmoduleLocalizedModuleLocalizationLocalizedToLocalizedQuotient, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_tmul, Polynomial.Monic.finite_quotient, Algebra.Presentation.tensorModelOfHasCoeffsHom_tmul, Polynomial.IsDistinguishedAt.algEquivQuotient_symm_apply, KaehlerDifferential.derivationQuotKerTotal_lift_comp_linearCombination, Submodule.toLocalizedQuotient'_mk, KaehlerDifferential.quotKerTotalEquiv_symm_apply, Algebra.Presentation.tensorModelOfHasCoeffsEquiv_symm_tmul, PowerSeries.IsWeierstrassDivisorAt.mk_mod'_eq_self, PrimeSpectrum.mem_image_comap_zeroLocus_sdiff, Submodule.finrank_quotient, instFiniteDimensionalQuotientPolynomialIdealSpanSingletonSetSmithCoeffs, restrictScalarsEquiv_mk, Algebra.Presentation.tensorModelOfHasCoeffsInv_aeval_val
mulAction πŸ“–CompOpβ€”
mulAction' πŸ“–CompOpβ€”
smulZeroClass πŸ“–CompOpβ€”
smulZeroClass' πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
eq πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”eq'
QuotientAddGroup.leftRel_apply
Submodule.quotientRel_def
eq' πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”QuotientAddGroup.eq
forall πŸ“–β€”β€”β€”β€”Quotient.forall
induction_on πŸ“–β€”β€”β€”β€”Quotient.inductionOn'
instSmallQuotient πŸ“–mathematicalβ€”Small
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
β€”small_of_surjective
mk_surjective
isCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
instSMul'
MulOpposite
β€”Quotient.ind'
IsCentralScalar.op_smul_eq_smul
isScalarTower πŸ“–mathematicalβ€”IsScalarTower
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
instSMul'
β€”Quotient.ind'
smul_assoc
mk''_eq_mk πŸ“–mathematicalβ€”Quotient.mk''
Submodule.quotientRel
β€”β€”
mk'_eq_mk' πŸ“–mathematicalβ€”Submodule.quotientRelβ€”β€”
mk_add πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
HasQuotient.Quotient
Submodule
Ring.toSemiring
Submodule.hasQuotient
addCommGroup
β€”β€”
mk_eq_zero πŸ“–mathematicalβ€”HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
instZeroQuotient
SetLike.instMembership
Submodule.setLike
β€”add_zero
AddSubgroupClass.toNegMemClass
Submodule.addSubgroupClass
eq'
mk_neg πŸ“–mathematicalβ€”NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
addCommGroup
β€”β€”
mk_out πŸ“–mathematicalβ€”Quotient.out
Submodule.quotientRel
β€”Quotient.out_eq
mk_smul πŸ“–mathematicalβ€”HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
instSMul'
β€”β€”
mk_sub πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
addCommGroup
β€”β€”
mk_surjective πŸ“–mathematicalβ€”HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
β€”β€”
mk_zero πŸ“–mathematicalβ€”NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
instZeroQuotient
β€”β€”
quot_mk_eq_mk πŸ“–mathematicalβ€”Submodule.quotientRelβ€”β€”
quotientAddGroupMk_eq_mk πŸ“–mathematicalβ€”AddCommGroup.toAddGroup
Submodule.toAddSubgroup
β€”β€”
smulCommClass πŸ“–mathematicalβ€”SMulCommClass
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
instSMul'
β€”Quotient.ind'
SMulCommClass.smul_comm

---

← Back to Index