Documentation Verification Report

Base

πŸ“ Source: Mathlib/LinearAlgebra/RootSystem/Base.lean

Statistics

MetricCount
DefinitionsBase, Base, IsPos, flip, height, support, toCoweightBasis, toWeightBasis, Base
9
Theoremsadd, add_zsmul, exists_mem_support_pos_pairingIn, induction_on_add, induction_on_reflect, neg_iff_not, or_neg, reflectionPerm, sub, chainBotCoeff_eq_zero, chainTopCoeff_eq_of_ne, coroot_mem_or_neg_mem, coroot_mem_span_int, eq_one_or_neg_one_of_mem_support_of_smul_mem, eq_one_or_neg_one_of_mem_support_of_smul_mem_aux, exists_eq_sum_and_forall_sum_mem_of_isPos, exists_mem_support_pos_pairingIn_ne_zero, exists_root_eq_sum_int, exists_root_eq_sum_nat_or_neg, flip_support, forall_mem_support_invtSubmodule_iff, height_add, height_add_zsmul, height_eq_sum, height_ne_zero, height_one_of_mem_support, height_reflectionPerm_self, height_sub, induction_add, induction_reflect, isPos_iff, isPos_iff', isPos_of_mem_support, linearIndepOn_coroot, linearIndepOn_root, linearIndependent_pair_of_ne, not_nonneg_iff_neg_of_sum_mem_range_root, not_nonpos_iff_pos_of_sum_mem_range_root, pairingIn_le_zero_of_ne, pos_or_neg_of_sum_smul_root_mem, root_mem_or_neg_mem, root_mem_span_int, root_ne_neg_of_ne, span_coroot_support, span_int_coroot_support, span_int_root_support, span_root_support, sub_notMem_range_coroot, sub_notMem_range_root, support_nonempty, toCoweightBasis_apply, toCoweightBasis_repr_coroot, toWeightBasis_apply, toWeightBasis_repr_root
54
Total63

FiberBundleCore

Definitions

NameCategoryTheorems
Base πŸ“–CompOpβ€”

RootPairing

Definitions

NameCategoryTheorems
Base πŸ“–CompData
1 mathmath: nonempty_base

RootPairing.Base

Definitions

NameCategoryTheorems
IsPos πŸ“–MathDef
5 mathmath: IsPos.or_neg, isPos_of_mem_support, IsPos.neg_iff_not, isPos_iff, isPos_iff'
flip πŸ“–CompOp
1 mathmath: flip_support
height πŸ“–CompOp
8 mathmath: height_reflectionPerm_self, height_eq_sum, height_add_zsmul, height_one_of_mem_support, height_sub, height_add, isPos_iff, isPos_iff'
support πŸ“–CompOp
76 mathmath: exists_mem_support_pos_pairingIn_ne_zero, RootPairing.GeckConstruction.h_def, RootPairing.GeckConstruction.isSl2Triple, span_coroot_support, cartanMatrixIn_def, algebraMap_cartanMatrixIn_apply, RootPairing.GeckConstruction.instHasTrivialRadical, injective_pairingIn, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraCartanSubalgebra, RootPairing.GeckConstruction.h_mem_cartanSubalgebra, cartanMatrix_map_abs, root_mem_span_int, RootPairing.GeckConstruction.trace_h_eq_zero, cartanMatrixIn_nondegenerate, cartanMatrix_apply_eq_zero_iff, linearIndependent_pair_of_ne, linearIndepOn_coroot, cartanMatrix_nondegenerate, RootPairing.GeckConstruction.mem_Ο‰ConjLieSubmodule_iff, RootPairing.GeckConstruction.cartanSubalgebra_eq_lieSpan, exists_root_eq_sum_nat_or_neg, exists_mem_span_pairingIn_ne_zero_and_pairwise_ne, coroot_mem_span_int, RootPairing.GeckConstruction.lie_h_e, RootPairing.GeckConstruction.trace_toEnd_eq_zero, cartanMatrix_apply_eq_zero_iff_pairing, chainBotCoeff_eq_zero, RootPairing.GeckConstruction.span_range_h'_eq_top, RootPairing.GeckConstruction.instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra', RootPairing.GeckConstruction.span_range_h_le_range_diagonal, RootPairing.GeckConstruction.Ο‰_mul_h, RootPairing.GeckConstruction.instIsIrreducible, linearIndepOn_root, toCoweightBasis_apply, span_int_root_support, RootPairing.GeckConstruction.Ο‰ConjLieSubmodule_eq_top_iff, toCoweightBasis_repr_coroot, RootPairing.IsG2.card_base_support_eq_two, RootPairing.GeckConstruction.cartanSubalgebra_le_lieAlgebra, RootPairing.GeckConstruction.instIsTriangularizableSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra'Forall, RootPairing.GeckConstruction.diagonal_elim_mem_span_h_iff, RootPairing.GeckConstruction.Ο‰Conj_invFun, RootPairing.GeckConstruction.isNilpotent_f, RootPairing.GeckConstruction.lie_e_f_same, RootPairing.GeckConstruction.Ο‰_mul_Ο‰, RootPairing.GeckConstruction.Ο‰Conj_toFun, RootPairing.GeckConstruction.Ο‰_mul_e, RootPairing.GeckConstruction.isNilpotent_e, exists_root_eq_sum_int, support_nonempty, RootPairing.GeckConstruction.h_mem_lieAlgebra, root_mem_or_neg_mem, toWeightBasis_apply, cartanMatrix_eq_neg_chainTopCoeff, RootPairing.GeckConstruction.lie_h_f, RootPairing.GeckConstruction.Ο‰_mul_f, toWeightBasis_repr_root, coroot_mem_or_neg_mem, RootPairing.GeckConstruction.lie_e_lie_f_apply, IsPos.exists_mem_support_pos_pairingIn, RootPairing.GeckConstruction.f_lie_v_same, span_root_support, cartanMatrixIn_mul_diagonal_eq, RootPairing.GeckConstruction.f_mem_lieAlgebra, exists_eq_sum_and_forall_sum_mem_of_isPos, RootPairing.GeckConstruction.e_mem_lieAlgebra, RootPairing.GeckConstruction.lie_h_h, abs_cartanMatrix_apply, RootPairing.GeckConstruction.h_eq_diagonal, span_int_coroot_support, flip_support, RootPairing.GeckConstruction.coe_genWeightSpace_zero_eq_span_range_u, RootPairing.GeckConstruction.lie_e_f_mul_Ο‰, RootPairing.GeckConstruction.e_lie_u, RootPairing.GeckConstruction.lie_e_f_ne, chainTopCoeff_eq_of_ne
toCoweightBasis πŸ“–CompOp
2 mathmath: toCoweightBasis_apply, toCoweightBasis_repr_coroot
toWeightBasis πŸ“–CompOp
3 mathmath: toWeightBasis_apply, toWeightBasis_repr_root, cartanMatrixIn_mul_diagonal_eq

Theorems

NameKindAssumesProvesValidatesDepends On
chainBotCoeff_eq_zero πŸ“–mathematicalβ€”RootPairing.chainBotCoeff
Finset
SetLike.instMembership
Finset.instSetLike
support
β€”RootPairing.chainBotCoeff_eq_zero_iff
sub_notMem_range_root
chainTopCoeff_eq_of_ne πŸ“–mathematicalβ€”RootPairing.chainTopCoeff
Finset
SetLike.instMembership
Finset.instSetLike
support
RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”RootPairing.chainTopCoeff_sub_chainBotCoeff
linearIndependent_pair_of_ne
chainBotCoeff_eq_zero
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
sub_zero
coroot_mem_or_neg_mem πŸ“–mathematicalβ€”AddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.closure
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.coroot
SetLike.coe
Finset
Finset.instSetLike
support
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
coroot_mem_span_int πŸ“–mathematicalβ€”Submodule
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.coroot
SetLike.coe
Finset
Finset.instSetLike
support
β€”root_mem_span_int
eq_one_or_neg_one_of_mem_support_of_smul_mem πŸ“–mathematicalFinset
Finset.instMembership
support
Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”eq_one_or_neg_one_of_mem_support_of_smul_mem_aux
RootPairing.coroot_eq_smul_coroot_iff
smul_smul
one_smul
Set.mem_range_self
mul_comm
one_mul
mul_one
Int.mul_eq_one_iff_eq_one_or_neg_one
Nat.cast_one
Int.cast_one
Int.cast_neg
neg_mul
eq_one_or_neg_one_of_mem_support_of_smul_mem_aux πŸ“–mathematicalFinset
Finset.instMembership
support
Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”coroot_mem_span_int
Finset.sum_congr
SemigroupAction.mul_smul
Int.cast_smul_eq_zsmul
RootPairing.coroot_eq_smul_coroot_iff
Submodule.mem_span_range_iff_exists_fun
Set.image_eq_range
RingHomInvPair.ids
Subtype.finite
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
Finite.of_fintype
Finsupp.linearCombination_eq_fintype_linearCombination_apply
Fintype.linearCombination_apply
Finsupp.linearCombination_single
one_smul
linearIndepOn_coroot
mul_comm
Finsupp.single_eq_same
DFunLike.congr_fun
exists_eq_sum_and_forall_sum_mem_of_isPos πŸ“–mathematicalIsPosSet
Set.instHasSubset
Set.range
SetLike.coe
Finset
Finset.instSetLike
support
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Finset.sum
AddCommGroup.toAddCommMonoid
Finset.univ
Fin.fintype
Set.instMembership
Finset.Iic
PartialOrder.toPreorder
Fin.instPartialOrder
Fin.instLocallyFiniteOrderBot
β€”IsPos.induction_on_add
Matrix.range_cons
Matrix.range_empty
Set.union_empty
Finset.sum_congr
Finset.univ_unique
Matrix.cons_val_fin_one
Finset.sum_const
Finset.card_singleton
one_smul
Fin.card_Iic
zero_add
Function.instEmbeddingLikeEmbedding
Fin.range_snoc
Set.insert_subset
Fin.sum_univ_castSucc
Fin.snoc_castSucc
Fin.snoc_last
Fin.sum_Iic_castSucc
Finset.ext
exists_mem_support_pos_pairingIn_ne_zero πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
β€”IsPos.or_neg
IsPos.exists_mem_support_pos_pairingIn
LT.lt.ne'
RootPairing.pairingIn_reflectionPerm_self_right
instFaithfulSMulIntOfCharZero
exists_root_eq_sum_int πŸ“–mathematicalβ€”Set
Set.instHasSubset
Function.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
SetLike.coe
Finset
Finset.instSetLike
support
Preorder.toLT
Pi.preorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
Pi.instZero
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Finset.sum
AddCommGroup.toAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”exists_root_eq_sum_nat_or_neg
Pi.lt_def
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
RootPairing.ne_zero
CharZero.NeZero.two
Finset.sum_congr
zero_nsmul
Finset.sum_const_zero
natCast_zsmul
Function.support_neg
Int.instAddLeftMono
neg_zero
neg_smul
Finset.sum_neg_distrib
exists_root_eq_sum_nat_or_neg πŸ“–mathematicalβ€”Set
Set.instHasSubset
Function.support
MulZeroClass.toZero
Nat.instMulZeroClass
SetLike.coe
Finset
Finset.instSetLike
support
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Finset.sum
AddCommGroup.toAddCommMonoid
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”AddSubmonoid.closure_induction
Pi.support_single_of_ne
Finset.sum_congr
Pi.single_apply
ite_smul
one_smul
zero_nsmul
Finset.sum_ite_eq'
Function.support_zero
Finset.sum_const_zero
HasSubset.Subset.trans
Set.instIsTransSubset
Function.support_add
Set.union_subset_iff
add_smul
Finset.sum_add_distrib
root_mem_or_neg_mem
flip_support πŸ“–mathematicalβ€”support
RootPairing.flip
flip
β€”β€”
forall_mem_support_invtSubmodule_iff πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
RootPairing.reflection
β€”RingHomInvPair.ids
LinearEquiv.ext
RootPairing.coroot_reflectionPerm
RootPairing.coreflection_apply_self
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
RootPairing.root_reflectionPerm
Nat.instAtLeastTwoHAddOfNat
RootPairing.pairing_same
two_smul
sub_add_cancel_right
smul_neg
neg_smul
neg_neg
induction_reflect
RootPairing.reflection_reflectionPerm
Module.End.invtSubmodule.comp
height_add πŸ“–mathematicalDFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
heightβ€”exists_root_eq_sum_int
Finset.sum_congr
add_smul
Finset.sum_add_distrib
height_eq_sum
height_add_zsmul πŸ“–mathematicalDFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
height
Int.instAddGroup
β€”exists_root_eq_sum_int
Finset.sum_congr
add_smul
smul_assoc
AddCommGroup.intIsScalarTower
Finset.sum_add_distrib
height_eq_sum
Finset.smul_sum
height_eq_sum πŸ“–mathematicalDFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Finset.sum
AddCommGroup.toAddCommMonoid
support
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
height
Int.instAddCommMonoid
β€”exists_root_eq_sum_int
Fintype.linearIndependent_iffβ‚›
LinearIndependent.restrict_scalars'
AddCommGroup.intIsScalarTower
instFaithfulSMulIntOfCharZero
IsScalarTower.right
linearIndepOn_root
Finset.sum_congr
Finset.sum_subtype
height_ne_zero πŸ“–β€”β€”β€”β€”exists_root_eq_sum_int
height_eq_sum
LT.lt.ne'
Finset.sum_pos'
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
LT.lt.le
le_antisymm
Mathlib.Tactic.Push.not_and_eq
RootPairing.ne_zero
CharZero.NeZero.two
Finset.sum_congr
zero_smul
Finset.sum_const_zero
LT.lt.ne
Finset.sum_neg'
height_one_of_mem_support πŸ“–mathematicalFinset
Finset.instMembership
support
heightβ€”Finset.sum_eq_single_of_mem
Pi.single_eq_of_ne
zero_smul
Pi.single_eq_same
one_smul
height_eq_sum
Finset.sum_pi_single'
height_reflectionPerm_self πŸ“–mathematicalβ€”height
InvolutiveNeg.toNeg
RootPairing.indexNeg
β€”exists_root_eq_sum_int
RingHomInvPair.ids
RootPairing.root_reflectionPerm
RootPairing.reflection_apply_self
Finset.sum_congr
neg_smul
Finset.sum_neg_distrib
height_eq_sum
height_sub πŸ“–mathematicalDFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
heightβ€”RingHomInvPair.ids
RootPairing.root_reflectionPerm
RootPairing.reflection_apply_self
sub_eq_add_neg
height_reflectionPerm_self
height_add
induction_add πŸ“–β€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
RootPairing.reflectionPerm
β€”β€”IsPos.or_neg
IsPos.induction_on_add
neg_neg
induction_reflect πŸ“–β€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
RootPairing.reflectionPerm
β€”β€”IsPos.or_neg
IsPos.induction_on_reflect
neg_neg
isPos_iff πŸ“–mathematicalβ€”IsPos
height
β€”β€”
isPos_iff' πŸ“–mathematicalβ€”IsPos
height
β€”isPos_iff
height_ne_zero
isPos_of_mem_support πŸ“–mathematicalFinset
Finset.instMembership
support
IsPosβ€”isPos_iff
height_one_of_mem_support
linearIndepOn_coroot πŸ“–mathematicalβ€”LinearIndepOn
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.coroot
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.coe
Finset
Finset.instSetLike
support
β€”β€”
linearIndepOn_root πŸ“–mathematicalβ€”LinearIndepOn
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.coe
Finset
Finset.instSetLike
support
β€”β€”
linearIndependent_pair_of_ne πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Finset
SetLike.instMembership
Finset.instSetLike
support
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”linearIndepOn_id_range_iff
Function.instEmbeddingLikeEmbedding
Matrix.range_cons
Matrix.range_empty
Set.union_empty
Set.union_singleton
Set.image_pair
LinearIndepOn.id_image
LinearIndepOn.mono
linearIndepOn_root
not_nonneg_iff_neg_of_sum_mem_range_root πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Finset.sum
AddCommGroup.toAddCommMonoid
support
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Set.instHasSubset
Function.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
SetLike.coe
Finset
Finset.instSetLike
Pi.hasLe
Pi.instZero
Preorder.toLT
Pi.preorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
β€”RootPairing.neg_mem_range_root_iff
Finset.sum_congr
neg_smul
Finset.sum_neg_distrib
neg_neg
not_nonpos_iff_pos_of_sum_mem_range_root
Function.support_neg
IsOrderedAddMonoid.toAddLeftMono
Pi.isOrderedAddMonoid
Int.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
Pi.instIsLeftCancelAdd
AddLeftCancelSemigroup.toIsLeftCancelAdd
not_nonpos_iff_pos_of_sum_mem_range_root πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Finset.sum
AddCommGroup.toAddCommMonoid
support
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Set.instHasSubset
Function.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
SetLike.coe
Finset
Finset.instSetLike
Pi.hasLe
Pi.instZero
Preorder.toLT
Pi.preorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
β€”Pi.lt_def
pos_or_neg_of_sum_smul_root_mem
le_of_lt
Mathlib.Tactic.Contrapose.contraposeβ‚‚
le_antisymm
pairingIn_le_zero_of_ne πŸ“–mathematicalFinset
Finset.instMembership
support
RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”sub_notMem_range_root
RootPairing.root_sub_root_mem_of_pairingIn_pos
pos_or_neg_of_sum_smul_root_mem πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Finset.sum
AddCommGroup.toAddCommMonoid
support
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Set.instHasSubset
Function.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
SetLike.coe
Finset
Finset.instSetLike
Preorder.toLT
Pi.preorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
Pi.instZero
β€”Finset.sum_finset_coe
Fintype.mem_span_image_iff_exists_fun
Submodule.mem_toAddSubmonoid
Submodule.span_nat_eq_addSubmonoidClosure
Fintype.linearIndependent_iffβ‚›
LinearIndependent.restrict_scalars'
AddCommGroup.intIsScalarTower
instFaithfulSMulIntOfCharZero
IsScalarTower.right
linearIndepOn_root
Finset.sum_congr
natCast_zsmul
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Mathlib.Tactic.Contrapose.contraposeβ‚„
Pi.lt_def
le_antisymm
RootPairing.ne_zero
CharZero.NeZero.two
zero_smul
Finset.sum_const_zero
root_mem_or_neg_mem
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
Pi.instIsLeftCancelAdd
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Pi.isOrderedAddMonoid
Int.instIsOrderedAddMonoid
neg_smul
Finset.sum_neg_distrib
Function.support_neg
root_mem_or_neg_mem πŸ“–mathematicalβ€”AddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.closure
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SetLike.coe
Finset
Finset.instSetLike
support
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
root_mem_span_int πŸ“–mathematicalβ€”Submodule
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SetLike.coe
Finset
Finset.instSetLike
support
β€”root_mem_or_neg_mem
Submodule.span_span_of_tower
AddCommMonoid.nat_isScalarTower
Submodule.subset_span
neg_mem_iff
AddSubgroupClass.toNegMemClass
Submodule.addSubgroupClass
root_ne_neg_of_ne πŸ“–β€”Finset
Finset.instMembership
support
β€”β€”linearIndepOn_iff'
linearIndepOn_root
Finset.coe_insert
Finset.coe_singleton
Finset.sum_congr
one_smul
Finset.sum_pair
neg_add_cancel
NeZero.one
span_coroot_support πŸ“–mathematicalβ€”Submodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.coroot
SetLike.coe
Finset
Finset.instSetLike
support
RootPairing.corootSpan
β€”span_root_support
span_int_coroot_support πŸ“–mathematicalβ€”Submodule.span
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.coroot
SetLike.coe
Finset
Finset.instSetLike
support
Set.range
β€”span_int_root_support
span_int_root_support πŸ“–mathematicalβ€”Submodule.span
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SetLike.coe
Finset
Finset.instSetLike
support
Set.range
β€”le_antisymm
Submodule.span_mono
Set.image_subset_range
Submodule.span_le
root_mem_span_int
span_root_support πŸ“–mathematicalβ€”Submodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SetLike.coe
Finset
Finset.instSetLike
support
RootPairing.rootSpan
β€”Submodule.span_span_of_tower
AddCommGroup.intIsScalarTower
span_int_root_support
sub_notMem_range_coroot πŸ“–mathematicalFinset
Finset.instMembership
support
Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.coroot
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”sub_notMem_range_root
sub_notMem_range_root πŸ“–mathematicalFinset
Finset.instMembership
support
Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”eq_or_ne
sub_self
RootPairing.ne_zero
CharZero.NeZero.two
Finset.sum_subset
zero_smul
Finset.sum_insert
Finset.sum_singleton
one_smul
neg_smul
sub_eq_add_neg
pos_or_neg_of_sum_smul_root_mem
Finset.sum_congr
ite_smul
le_of_lt
support_nonempty πŸ“–mathematicalβ€”Finset.Nonempty
support
β€”Nat.instAtLeastTwoHAddOfNat
Finset.coe_empty
Set.image_empty
AddSubmonoid.closure_empty
RootPairing.ne_zero
root_mem_or_neg_mem
toCoweightBasis_apply πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
Finset
SetLike.instMembership
Finset.instSetLike
support
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Module.Basis.instFunLike
toCoweightBasis
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.coroot
β€”toWeightBasis_apply
RootPairing.instIsRootSystemFlip
toCoweightBasis_repr_coroot πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Finsupp
Finset
SetLike.instMembership
Finset.instSetLike
support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
toCoweightBasis
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.coroot
Finsupp.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”RingHomInvPair.ids
Module.Basis.repr_symm_apply
Finsupp.linearCombination_single
toCoweightBasis_apply
one_smul
toWeightBasis_apply πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
Finset
SetLike.instMembership
Finset.instSetLike
support
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Module.Basis.instFunLike
toWeightBasis
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
β€”linearIndepOn_root
toWeightBasis_repr_root πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Finsupp
Finset
SetLike.instMembership
Finset.instSetLike
support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
toWeightBasis
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Finsupp.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”RingHomInvPair.ids
Module.Basis.repr_symm_apply
Finsupp.linearCombination_single
toWeightBasis_apply
one_smul

RootPairing.Base.IsPos

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–β€”RootPairing.Base.IsPos
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”β€”RootPairing.Base.isPos_iff
RootPairing.Base.height_add
add_zsmul πŸ“–β€”RootPairing.Base.IsPos
Finset
Finset.instMembership
RootPairing.Base.support
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”RootPairing.IsReduced.linearIndependent
neg_eq_iff_eq_neg
RootPairing.Base.height_one_of_mem_support
RootPairing.Base.height_reflectionPerm_self
RootPairing.Base.isPos_iff
Int.induction_on
congr_simp
zero_smul
add_zero
Function.instEmbeddingLikeEmbedding
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_eval₁
zero_add
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_mul
Nat.cast_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
natCast_zsmul
RootPairing.root_add_nsmul_mem_range_iff_le_chainTopCoeff
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
add
RootPairing.Base.isPos_of_mem_support
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.mul_one
neg_smul
sub_eq_add_neg
RootPairing.root_sub_nsmul_mem_range_iff_le_chainBotCoeff
Mathlib.Tactic.Module.NF.sub_eq_evalβ‚‚
sub
exists_mem_support_pos_pairingIn πŸ“–mathematicalRootPairing.Base.IsPosFinset
Finset.instMembership
RootPairing.Base.support
RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”RootPairing.Base.exists_root_eq_sum_int
Mathlib.Tactic.Contrapose.contrapose₃
Finset.sum_nonpos
Int.instAddLeftMono
LT.lt.le
RootPairing.Base.height_eq_sum
RootPairing.Base.isPos_iff
FaithfulSMul.algebraMap_injective
instFaithfulSMulIntOfCharZero
RootPairing.algebraMap_pairingIn
map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Algebra.to_smulCommClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_congr
map_zsmul
LinearMap.coe_sum
Finset.sum_apply
zsmul_eq_mul
smul_nonpos_of_nonneg_of_nonpos
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Int.instIsStrictOrderedRing
Mathlib.Tactic.Push.not_and_eq
MulZeroClass.zero_mul
Nat.instAtLeastTwoHAddOfNat
RootPairing.pairingIn_same
induction_on_add πŸ“–β€”RootPairing.Base.IsPosβ€”β€”Int.induction_on
RootPairing.Base.height_ne_zero
exists_mem_support_pos_pairingIn
eq_or_ne
RootPairing.zero_lt_pairingIn_iff'
Int.instIsStrictOrderedRing
instFaithfulSMulIntOfCharZero
AddCommGroup.intIsScalarTower
RootPairing.root_sub_root_mem_of_pairingIn_pos
RootPairing.Base.height_sub
RootPairing.Base.height_one_of_mem_support
RootPairing.Base.isPos_iff'
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval₁
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
zero_add
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Module.NF.eq_const_cons
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
RootPairing.Base.isPos_iff
induction_on_reflect πŸ“–β€”RootPairing.Base.IsPos
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
RootPairing.reflectionPerm
β€”β€”exists_mem_support_pos_pairingIn
eq_or_ne
RootPairing.zero_lt_pairingIn_iff'
Int.instIsStrictOrderedRing
instFaithfulSMulIntOfCharZero
AddCommGroup.intIsScalarTower
reflectionPerm
RingHomInvPair.ids
RootPairing.reflection_apply_root'
RootPairing.Base.height_add_zsmul
neg_smul
sub_eq_add_neg
RootPairing.root_reflectionPerm
RootPairing.Base.isPos_iff
RootPairing.Base.isPos_of_mem_support
neg_mul
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
contravariant_lt_of_covariant_le
IsStrictOrderedRing.toPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
RootPairing.Base.isPos_iff'
RootPairing.reflectionPerm_self
neg_iff_not πŸ“–mathematicalβ€”RootPairing.Base.IsPos
InvolutiveNeg.toNeg
RootPairing.indexNeg
β€”RootPairing.Base.isPos_iff
RootPairing.Base.height_reflectionPerm_self
RootPairing.Base.height_ne_zero
or_neg πŸ“–mathematicalβ€”RootPairing.Base.IsPos
InvolutiveNeg.toNeg
RootPairing.indexNeg
β€”RootPairing.Base.isPos_iff
RootPairing.Base.height_reflectionPerm_self
RootPairing.Base.height_ne_zero
reflectionPerm πŸ“–mathematicalRootPairing.Base.IsPos
Finset
Finset.instMembership
RootPairing.Base.support
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
RootPairing.reflectionPerm
β€”RingHomInvPair.ids
RootPairing.root_reflectionPerm
neg_smul
RootPairing.reflection_apply_root'
AddCommGroup.intIsScalarTower
sub_eq_add_neg
add_zsmul
sub πŸ“–β€”RootPairing.Base.IsPos
Finset
Finset.instMembership
RootPairing.Base.support
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”RootPairing.Base.isPos_iff'
RootPairing.Base.height_sub
RootPairing.Base.height_one_of_mem_support
RootPairing.Base.isPos_iff

VectorBundleCore

Definitions

NameCategoryTheorems
Base πŸ“–CompOpβ€”

---

← Back to Index