Documentation Verification Report

BaseExists

πŸ“ Source: Mathlib/LinearAlgebra/RootSystem/BaseExists.lean

Statistics

MetricCount
Definitionsmk'
1
TheoremsbaseOf_pairwise_pairing_le_zero, baseOf_root_eq_baseOf_coroot, coroot_mem_or_neg_mem_closure_of_root, eq_baseOf_iff, eq_baseOf_of_linearIndepOn_of_mem_or_neg_mem_closure, linearIndepOn_root_baseOf, linearIndepOn_root_baseOf', ncard_eq_finrank_of_linearIndepOn_of, nonempty_base
9
Total10

RootPairing

Theorems

NameKindAssumesProvesValidatesDepends On
baseOf_pairwise_pairing_le_zero πŸ“–mathematicalβ€”Set.Pairwise
IsAddIndecomposable.baseOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”IsAddIndecomposable.pairwise_baseOf_sub_notMem
RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
Mathlib.Tactic.Contrapose.contraposeβ‚‚
root_sub_root_mem_of_pairingIn_pos
baseOf_root_eq_baseOf_coroot πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Rat.addMonoid
AddMonoidHom.instFunLike
Function.Embedding
Function.instFunLikeEmbedding
root
EuclideanDomain.toCommRing
Field.toEuclideanDomain
coroot
IsAddIndecomposable.baseOf
Rat.linearOrder
β€”subset_antisymm
Set.instAntisymmSubset
instIsRootSystemFlip
instIsValuedInFlip
instFlipIsReduced
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
coroot_mem_or_neg_mem_closure_of_root πŸ“–mathematicalLinearIndepOn
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
AddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.closure
Set.image
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
corootβ€”Module.exists_dual_forall_apply_eq_one
LinearIndependent.restrict_scalars'
IsScalarTower.rat
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsScalarTower.right
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
eq_baseOf_of_linearIndepOn_of_mem_or_neg_mem_closure
AddSubmonoid.apply_ne_zero_of_mem_or_neg_mem_closure
Rat.instIsOrderedAddMonoid
Rat.instZeroLEOneClass
NeZero.charZero_one
Rat.instCharZero
ne_zero
CharZero.NeZero.two
RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
Nat.instAtLeastTwoHAddOfNat
instIsValuedInRatOfIsCrystallographic
Rat.instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toIsOrderedRing
Rat.nontrivial
RootPositiveForm.zero_lt_posForm_apply_root
Rat.cast_div
Rat.cast_ofNat
algebraMap_rootFormIn
eq_ratCast
RingHom.instRingHomClass
RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
instIsAnisotropicOfIsCrystallographic
coroot_eq_polarizationEquiv_apply_root
Rat.cast_smul_eq_qsmul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearEquiv.symm_apply_apply
IsStrictOrderedRing.noZeroDivisors
AddGroup.existsAddOfLE
LT.lt.ne'
baseOf_root_eq_baseOf_coroot
IsAddIndecomposable.mem_or_neg_mem_closure_baseOf
coroot_reflectionPerm
coreflection_apply_self
eq_baseOf_iff πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Rat.addMonoid
AddMonoidHom.instFunLike
Function.Embedding
Function.instFunLikeEmbedding
root
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsAddIndecomposable.baseOf
Rat.linearOrder
LinearIndepOn
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
AddSubmonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.closure
Set.image
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”linearIndepOn_root_baseOf
IsAddIndecomposable.mem_or_neg_mem_closure_baseOf
Rat.instIsOrderedAddMonoid
RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
eq_baseOf_of_linearIndepOn_of_mem_or_neg_mem_closure
eq_baseOf_of_linearIndepOn_of_mem_or_neg_mem_closure πŸ“–mathematicalLinearIndepOn
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
AddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.closure
Set.image
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddMonoidHom
AddZeroClass.toAddZero
Rat.addMonoid
AddMonoidHom.instFunLike
IsAddIndecomposable.baseOf
Rat.linearOrder
β€”AddSubmonoid.apply_ne_zero_of_mem_or_neg_mem_closure
Rat.instIsOrderedAddMonoid
Rat.instZeroLEOneClass
NeZero.charZero_one
Rat.instCharZero
ne_zero
CharZero.NeZero.two
RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
IsAddIndecomposable.mem_or_neg_mem_closure_baseOf
ncard_eq_finrank_of_linearIndepOn_of
IsLocalRing.toNontrivial
Field.instIsLocalRing
linearIndepOn_root_baseOf
AddSubmonoid.closure_induction
Int.cast_one
map_zero
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
Int.cast_zero
map_add
AddMonoidHomClass.toAddHomClass
Int.cast_add
Int.cast_neg
map_neg
neg_neg
Rat.instAddLeftMono
Set.eq_of_subset_of_ncard_le
le_refl
Set.toFinite
Subtype.finite
linearIndepOn_root_baseOf πŸ“–mathematicalβ€”LinearIndepOn
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
IsAddIndecomposable.baseOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Rat.linearOrder
Rat.addMonoid
β€”Subtype.finite
le_antisymm
Submodule.span_mono
Function.instEmbeddingLikeEmbedding
Submodule.span_le
Submodule.span_span_of_tower
AddCommGroup.intIsScalarTower
Submodule.coe_toAddSubgroup
Submodule.span_int_eq_addSubgroupClosure
AddSubgroup.closure_image_isAddIndecomposable_baseOf
Rat.instIsOrderedAddMonoid
RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
Submodule.subset_span
AddSubgroup.subset_closure
Function.Injective.mem_set_image
Submodule.injective_subtype
RingHomSurjective.ids
Submodule.map_coe
SetLike.mem_coe
Submodule.map_span
Set.image_univ
Set.image_comp
Set.image_congr
Set.ext
eq_top_iff
LinearMap.map_le_map_iff'
Submodule.ker_subtype
Submodule.map_top
Submodule.range_subtype
LinearIndependent.of_comp
linearIndepOn_root_baseOf'
instIsDomain
Rat.instIsStrictOrderedRing
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsScalarTower.rat
instIsValuedInRatOfIsCrystallographic
le_refl
finrank_rootSpanIn
Module.finrank_eq_nat_card_basis
commRing_strongRankCondition
Rat.nontrivial
Set.range_comp
Submodule.span_image
IsRootSystem.span_root_eq_top
linearIndependent_iff_card_eq_finrank_span
CommRing.orzechProperty
Set.finrank.eq_1
finrank_top
Fintype.card_eq_nat_card
linearIndepOn_root_baseOf' πŸ“–mathematicalβ€”LinearIndepOn
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
IsAddIndecomposable.baseOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
AddMonoidHomClass.toAddMonoidHom
Module.Dual
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
LinearMap.instFunLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
DistribMulActionSemiHomClass.toAddMonoidHomClass
RingHom
RingHom.instFunLike
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
β€”Algebra.charZero_of_charZero
IsStrictOrderedRing.toCharZero
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
RingHomCompTriple.ids
posRootForm_eq
posRootForm_rootFormIn_posDef
Submodule.subset_span
Set.mem_range_self
RootPositiveForm.posForm_apply_root_root_le_zero_iff
algebraMap_pairingIn'
AddCommGroup.intIsScalarTower
eq_intCast
RingHom.instRingHomClass
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
baseOf_pairwise_pairing_le_zero
LinearMap.BilinForm.linearIndependent_of_pairwise_le_zero
LinearMap.linearIndependent_iff_of_disjoint
Submodule.ker_subtype
ncard_eq_finrank_of_linearIndepOn_of πŸ“–mathematicalLinearIndepOn
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddSubmonoid
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.closure
Set.image
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set.ncard
Module.finrank
β€”IsRootSystem.span_root_eq_top
Submodule.span_le
Submodule.span_span_of_tower
AddCommGroup.intIsScalarTower
Submodule.subset_span
Submodule.span_int_eq_addSubgroupClosure
AddSubgroup.le_closure_toAddSubmonoid
AddSubgroupClass.toNegMemClass
AddSubgroup.instAddSubgroupClass
Subtype.finite
Set.toFinite
Set.ncard_eq_toFinset_card
Set.toFinite_toFinset
Set.toFinset_card
Module.finrank_eq_card_basis
commRing_strongRankCondition
nonempty_base πŸ“–mathematicalβ€”Base
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Module.exists_dual_forall_apply_ne_zero
NoMinOrder.infinite
instNoMinOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Rat.nontrivial
Nat.instAtLeastTwoHAddOfNat
ne_zero
CharZero.NeZero.two
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
linearIndepOn_root_baseOf
IsAddIndecomposable.mem_or_neg_mem_closure_baseOf
Rat.instIsOrderedAddMonoid
RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self

RootPairing.Base

Definitions

NameCategoryTheorems
mk' πŸ“–CompOpβ€”

---

← Back to Index