Documentation Verification Report

Chain

πŸ“ Source: Mathlib/LinearAlgebra/RootSystem/Chain.lean

Statistics

MetricCount
DefinitionschainBotCoeff, chainBotIdx, chainTopCoeff, chainTopIdx
4
TheoremsIic_chainBotCoeff_eq, Iic_chainTopCoeff_eq, chainBotCoeff_add_chainTopCoeff_eq_pairingIn_chainTopIdx, chainBotCoeff_add_chainTopCoeff_le_three, chainBotCoeff_chainTopIdx, chainBotCoeff_eq_sSup, chainBotCoeff_eq_zero_iff, chainBotCoeff_of_add, chainBotCoeff_of_not_linearIndependent, chainBotCoeff_reflectionPerm_left, chainBotCoeff_reflectionPerm_right, chainBotCoeff_sub_chainTopCoeff, chainCoeff_chainTopIdx_aux, chainTopCoeff_chainTopIdx, chainTopCoeff_eq_sSup, chainTopCoeff_eq_zero_iff, chainTopCoeff_of_add, chainTopCoeff_of_not_linearIndependent, chainTopCoeff_of_sub, chainTopCoeff_reflectionPerm_left, chainTopCoeff_reflectionPerm_right, chainTopCoeff_sub_chainBotCoeff, coe_chainBotCoeff_eq_sSup, coe_chainTopCoeff_eq_sSup, one_le_chainBotCoeff_of_root_add_mem, one_le_chainTopCoeff_of_root_add_mem, root_add_nsmul_mem_range_iff_le_chainTopCoeff, root_add_zsmul_mem_range_iff, root_chainBotIdx, root_chainTopIdx, root_sub_nsmul_mem_range_iff_le_chainBotCoeff, root_sub_zsmul_mem_range_iff, setOf_root_add_zsmul_eq_Icc_of_linearIndependent, setOf_root_add_zsmul_mem_eq_Icc, setOf_root_sub_zsmul_mem_eq_Icc
35
Total39

RootPairing

Definitions

NameCategoryTheorems
chainBotCoeff πŸ“–CompOp
28 mathmath: chainTopCoeff_reflectionPerm_right, coe_chainBotCoeff_eq_sSup, setOf_root_add_zsmul_mem_eq_Icc, setOf_root_sub_zsmul_mem_eq_Icc, chainBotCoeff_add_chainTopCoeff_le_three, chainBotCoeff_reflectionPerm_right, Base.chainBotCoeff_eq_zero, chainBotCoeff_mul_chainTopCoeff, chainCoeff_chainTopIdx_aux, chainBotCoeff_add_chainTopCoeff_eq_pairingIn_chainTopIdx, root_sub_nsmul_mem_range_iff_le_chainBotCoeff, chainBotCoeff_of_not_linearIndependent, one_le_chainBotCoeff_of_root_add_mem, chainTopCoeff_reflectionPerm_left, chainBotCoeff_of_add, chainBotCoeff_eq_sSup, GeckConstruction.e_lie_v_ne, root_add_zsmul_mem_range_iff, chainBotCoeff_chainTopIdx, chainBotCoeff_add_chainTopCoeff_le_two, Iic_chainBotCoeff_eq, chainBotCoeff_if_one_zero, chainTopCoeff_sub_chainBotCoeff, root_sub_zsmul_mem_range_iff, chainBotCoeff_eq_zero_iff, chainBotCoeff_reflectionPerm_left, root_chainBotIdx, chainBotCoeff_sub_chainTopCoeff
chainBotIdx πŸ“–CompOp
1 mathmath: root_chainBotIdx
chainTopCoeff πŸ“–CompOp
31 mathmath: chainTopCoeff_reflectionPerm_right, Iic_chainTopCoeff_eq, setOf_root_add_zsmul_mem_eq_Icc, chainTopCoeff_of_not_linearIndependent, setOf_root_sub_zsmul_mem_eq_Icc, chainBotCoeff_add_chainTopCoeff_le_three, chainBotCoeff_reflectionPerm_right, one_le_chainTopCoeff_of_root_add_mem, coe_chainTopCoeff_eq_sSup, chainTopCoeff_of_sub, chainBotCoeff_mul_chainTopCoeff, chainTopCoeff_eq_zero_iff, chainCoeff_chainTopIdx_aux, chainBotCoeff_add_chainTopCoeff_eq_pairingIn_chainTopIdx, chainTopCoeff_reflectionPerm_left, GeckConstruction.f_lie_v_ne, root_add_zsmul_mem_range_iff, chainBotCoeff_chainTopIdx, chainTopCoeff_chainTopIdx, chainBotCoeff_add_chainTopCoeff_le_two, Base.cartanMatrix_eq_neg_chainTopCoeff, chainTopCoeff_eq_sSup, chainTopCoeff_if_one_zero, chainTopCoeff_of_add, chainTopCoeff_sub_chainBotCoeff, root_sub_zsmul_mem_range_iff, chainBotCoeff_reflectionPerm_left, root_chainTopIdx, chainBotCoeff_sub_chainTopCoeff, root_add_nsmul_mem_range_iff_le_chainTopCoeff, Base.chainTopCoeff_eq_of_ne
chainTopIdx πŸ“–CompOp
5 mathmath: chainCoeff_chainTopIdx_aux, chainBotCoeff_add_chainTopCoeff_eq_pairingIn_chainTopIdx, chainBotCoeff_chainTopIdx, chainTopCoeff_chainTopIdx, root_chainTopIdx

Theorems

NameKindAssumesProvesValidatesDepends On
Iic_chainBotCoeff_eq πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set.Iic
Nat.instPreorder
chainBotCoeff
setOf
Set
Set.instMembership
Set.range
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
β€”Set.ext
root_sub_nsmul_mem_range_iff_le_chainBotCoeff
Iic_chainTopCoeff_eq πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set.Iic
Nat.instPreorder
chainTopCoeff
setOf
Set
Set.instMembership
Set.range
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”Set.ext
root_add_nsmul_mem_range_iff_le_chainTopCoeff
chainBotCoeff_add_chainTopCoeff_eq_pairingIn_chainTopIdx πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
chainBotCoeff
chainTopCoeff
pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
chainTopIdx
β€”root_chainTopIdx
add_comm
natCast_zsmul
LinearIndependent.pair_add_smul_right_iff
Int.instIsDomain
AddGroup.int_smulCommClass
AddCommGroup.intIsScalarTower
instIsTorsionFreeIntOfIsAddTorsionFree
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
chainBotCoeff_chainTopIdx
Nat.cast_add
chainTopCoeff_chainTopIdx
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
sub_zero
chainBotCoeff_sub_chainTopCoeff
chainBotCoeff_add_chainTopCoeff_le_three πŸ“–mathematicalβ€”chainBotCoeff
chainTopCoeff
β€”Nat.cast_add
Nat.instAtLeastTwoHAddOfNat
Nat.cast_ofNat
chainBotCoeff_add_chainTopCoeff_eq_pairingIn_chainTopIdx
pairingIn_pairingIn_mem_set_of_isCrystal_of_isRed
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
Int.instIsOrderedAddMonoid
chainBotCoeff_of_not_linearIndependent
chainTopCoeff_of_not_linearIndependent
add_zero
Nat.instCanonicallyOrderedAdd
chainBotCoeff_chainTopIdx πŸ“–mathematicalβ€”chainBotCoeff
chainTopIdx
chainTopCoeff
β€”chainCoeff_chainTopIdx_aux
chainBotCoeff_eq_sSup πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
chainBotCoeff
SupSet.sSup
Nat.instSupSet
setOf
Set
Set.instMembership
Set.range
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
β€”Iic_chainBotCoeff_eq
csSup_Iic
chainBotCoeff_eq_zero_iff πŸ“–mathematicalβ€”chainBotCoeff
LinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
Set.range
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”Nat.instCanonicallyOrderedAdd
le_refl
Iic_chainBotCoeff_eq
one_smul
root_sub_nsmul_mem_range_iff_le_chainBotCoeff
not_le
Set.mem_Iic
zero_nsmul
sub_zero
Function.instEmbeddingLikeEmbedding
chainBotCoeff_of_not_linearIndependent
chainBotCoeff_of_add πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
chainBotCoeffβ€”add_comm
Nat.cast_injective
Int.instCharZero
Nat.cast_add
Nat.cast_one
coe_chainBotCoeff_eq_sSup
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval₁
zero_add
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Module.NF.sub_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
sub_eq_add_neg
Set.image_congr
Set.image_add_right
setOf_root_sub_zsmul_mem_eq_Icc
bddAbove_Icc
OrderIso.map_csSup'
zero_smul
sub_zero
Function.instEmbeddingLikeEmbedding
OrderIso.addRight_apply
chainBotCoeff_of_not_linearIndependent πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
chainBotCoeffβ€”setOf_root_add_zsmul_eq_Icc_of_linearIndependent
chainBotCoeff_reflectionPerm_left πŸ“–mathematicalβ€”chainBotCoeff
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
chainTopCoeff
β€”le_antisymm
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
Int.instZeroLEOneClass
Int.instCharZero
chainTopCoeff_reflectionPerm_left
chainBotCoeff_reflectionPerm_right πŸ“–mathematicalβ€”chainBotCoeff
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
chainTopCoeff
β€”le_antisymm
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
Int.instZeroLEOneClass
Int.instCharZero
chainTopCoeff_reflectionPerm_right
chainBotCoeff_sub_chainTopCoeff πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
chainBotCoeff
chainTopCoeff
pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”RingHomInvPair.ids
root_chainBotIdx
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
algebraMap_pairingIn
eq_intCast
RingHom.instRingHomClass
map_nsmul
reflection_apply_self
smul_neg
sub_neg_eq_add
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
AddCommGroup.intIsScalarTower
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval₁
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
zero_add
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
Nat.cast_one
Int.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_mul
Int.cast_mul
Int.cast_sub
Int.cast_natCast
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_one
root_reflectionPerm
Set.mem_range_self
Set.mem_Icc
root_add_zsmul_mem_range_iff
le_antisymm
chainBotCoeff_reflectionPerm_left
chainTopCoeff_reflectionPerm_left
pairingIn_reflectionPerm_self_right
instFaithfulSMulIntOfCharZero
chainCoeff_chainTopIdx_aux πŸ“–mathematicalβ€”chainBotCoeff
chainTopIdx
chainTopCoeff
β€”root_chainTopIdx
add_comm
natCast_zsmul
LinearIndependent.pair_add_smul_right_iff
Int.instIsDomain
AddGroup.int_smulCommClass
AddCommGroup.intIsScalarTower
instIsTorsionFreeIntOfIsAddTorsionFree
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
Set.ext
add_assoc
Set.image_add_left
neg_neg
add_smul
Set.mem_setOf_eq
root_add_zsmul_mem_range_iff
Nat.cast_zero
Int.instCharZero
neg_add_rev
neg_eq_iff_eq_neg
Set.Icc_eq_Icc_iff
neg_add_cancel
Set.image_const_add_Icc
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
chainBotCoeff_of_not_linearIndependent
chainTopCoeff_of_not_linearIndependent
zero_nsmul
add_zero
chainTopCoeff_chainTopIdx πŸ“–mathematicalβ€”chainTopCoeff
chainTopIdx
β€”chainCoeff_chainTopIdx_aux
chainTopCoeff_eq_sSup πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
chainTopCoeff
SupSet.sSup
Nat.instSupSet
setOf
Set
Set.instMembership
Set.range
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”Iic_chainTopCoeff_eq
csSup_Iic
chainTopCoeff_eq_zero_iff πŸ“–mathematicalβ€”chainTopCoeff
LinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
Set.range
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”chainBotCoeff_reflectionPerm_left
RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
sub_neg_eq_add
chainTopCoeff_of_add πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
chainTopCoeffβ€”add_comm
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Abel.zero_termg
chainTopCoeff_of_sub
chainTopCoeff_of_not_linearIndependent πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
chainTopCoeffβ€”setOf_root_add_zsmul_eq_Icc_of_linearIndependent
chainTopCoeff_of_sub πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
chainTopCoeffβ€”RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
sub_eq_add_neg
chainBotCoeff_reflectionPerm_left
chainBotCoeff_of_add
chainTopCoeff_reflectionPerm_left πŸ“–mathematicalβ€”chainTopCoeff
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
chainBotCoeff
β€”le_antisymm
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
chainTopCoeff_reflectionPerm_right πŸ“–mathematicalβ€”chainTopCoeff
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
chainBotCoeff
β€”le_antisymm
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
chainTopCoeff_sub_chainBotCoeff πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
chainTopCoeff
chainBotCoeff
pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”chainBotCoeff_sub_chainTopCoeff
neg_sub
coe_chainBotCoeff_eq_sSup πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
chainBotCoeff
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
setOf
Set
Set.instMembership
Set.range
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SubNegMonoid.toZSMul
β€”setOf_root_sub_zsmul_mem_eq_Icc
csSup_Icc
coe_chainTopCoeff_eq_sSup πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
chainTopCoeff
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
setOf
Set
Set.instMembership
Set.range
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”setOf_root_add_zsmul_mem_eq_Icc
csSup_Icc
one_le_chainBotCoeff_of_root_add_mem πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
chainBotCoeffβ€”linearIndependent_of_sub_mem_range_root'
root_sub_nsmul_mem_range_iff_le_chainBotCoeff
one_smul
neg_mem_range_root_iff
neg_sub
one_le_chainTopCoeff_of_root_add_mem πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
chainTopCoeffβ€”linearIndependent_of_add_mem_range_root'
root_add_nsmul_mem_range_iff_le_chainTopCoeff
one_smul
add_comm
root_add_nsmul_mem_range_iff_le_chainTopCoeff πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
Set.range
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
chainTopCoeff
β€”setOf_root_add_zsmul_eq_Icc_of_linearIndependent
Set.mem_Icc
natCast_zsmul
root_add_zsmul_mem_range_iff πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
Set.range
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
chainBotCoeff
chainTopCoeff
β€”natCast_zsmul
root_add_nsmul_mem_range_iff_le_chainTopCoeff
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
neg_smul
root_sub_nsmul_mem_range_iff_le_chainBotCoeff
covariant_swap_add_of_covariant_add
root_chainBotIdx πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
chainBotIdx
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
chainBotCoeff
β€”root_sub_nsmul_mem_range_iff_le_chainBotCoeff
le_refl
setOf_root_add_zsmul_eq_Icc_of_linearIndependent
zero_smul
sub_zero
root_chainTopIdx πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
chainTopIdx
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
chainTopCoeff
β€”root_add_nsmul_mem_range_iff_le_chainTopCoeff
le_refl
setOf_root_add_zsmul_eq_Icc_of_linearIndependent
zero_smul
add_zero
root_sub_nsmul_mem_range_iff_le_chainBotCoeff πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
Set.range
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
chainBotCoeff
β€”setOf_root_add_zsmul_eq_Icc_of_linearIndependent
Set.mem_Icc
neg_smul
natCast_zsmul
root_sub_zsmul_mem_range_iff πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
Set.range
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SubNegMonoid.toZSMul
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
chainTopCoeff
chainBotCoeff
β€”sub_eq_add_neg
neg_smul
root_add_zsmul_mem_range_iff
Set.mem_Icc
setOf_root_add_zsmul_eq_Icc_of_linearIndependent πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
setOf
Set
Set.instMembership
Set.range
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
β€”LinearIndependent.pair_iff
LinearIndependent.restrict_scalars'
AddCommGroup.intIsScalarTower
instFaithfulSMulIntOfCharZero
IsScalarTower.right
zero_smul
add_zero
Function.instEmbeddingLikeEmbedding
Module.IsReflexive.of_isPerfPair
isPerfPair_toLinearMap
IsAddTorsionFree.of_isTorsionFree
Module.IsReflexive.to_isTorsionFree
IsDomain.toIsCancelMulZero
AddLeftCancelSemigroup.toIsLeftCancelAdd
Function.Embedding.injective
smul_left_injective
Int.instIsCancelMulZero
instIsTorsionFreeIntOfIsAddTorsionFree
ne_zero
CharZero.NeZero.two
Finite.of_injective
csInf_le
Set.Finite.bddBelow
instIsCodirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
instArchimedeanInt
le_csSup
Set.Finite.bddAbove
instIsDirectedOrder
Set.Nonempty.eq_Icc_iff_int
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_eval₁
zero_add
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Disjoint.notMem_of_mem_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
Int.instAddLeftMono
contravariant_lt_of_covariant_le
Int.instZeroLEOneClass
Mathlib.Tactic.Contrapose.contrapose₃
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
sub_eq_of_eq_add
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.neg_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
add_smul
one_smul
sub_add_cancel
neg_add_cancel
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Ring.mul_one
lt_sub_right_of_add_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
sub_smul
sub_sub_cancel_left
root_add_root_mem_of_pairingIn_neg
Mathlib.Tactic.Contrapose.contrapose₁
FaithfulSMul.algebraMap_injective
algebraMap_pairingIn
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
root_coroot'_eq_pairing
Nat.instAtLeastTwoHAddOfNat
Algebra.to_smulCommClass
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
LinearMap.map_smul_of_tower
LinearMap.CompatibleSMul.intModule
pairing_same
zsmul_eq_mul
eq_intCast
Int.cast_ofNat
root_sub_root_mem_of_pairingIn_pos
setOf_root_add_zsmul_mem_eq_Icc πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
setOf
Set
Set.instMembership
Set.range
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
chainBotCoeff
chainTopCoeff
β€”Set.ext
root_add_zsmul_mem_range_iff
setOf_root_sub_zsmul_mem_eq_Icc πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
setOf
Set
Set.instMembership
Set.range
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SubNegMonoid.toZSMul
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
chainTopCoeff
chainBotCoeff
β€”Set.ext
root_sub_zsmul_mem_range_iff
Set.mem_setOf_eq

---

← Back to Index