π Source: Mathlib/LinearAlgebra/RootSystem/Chain.lean
chainBotCoeff
chainBotIdx
chainTopCoeff
chainTopIdx
Iic_chainBotCoeff_eq
Iic_chainTopCoeff_eq
chainBotCoeff_add_chainTopCoeff_eq_pairingIn_chainTopIdx
chainBotCoeff_add_chainTopCoeff_le_three
chainBotCoeff_chainTopIdx
chainBotCoeff_eq_sSup
chainBotCoeff_eq_zero_iff
chainBotCoeff_of_add
chainBotCoeff_of_not_linearIndependent
chainBotCoeff_reflectionPerm_left
chainBotCoeff_reflectionPerm_right
chainBotCoeff_sub_chainTopCoeff
chainCoeff_chainTopIdx_aux
chainTopCoeff_chainTopIdx
chainTopCoeff_eq_sSup
chainTopCoeff_eq_zero_iff
chainTopCoeff_of_add
chainTopCoeff_of_not_linearIndependent
chainTopCoeff_of_sub
chainTopCoeff_reflectionPerm_left
chainTopCoeff_reflectionPerm_right
chainTopCoeff_sub_chainBotCoeff
coe_chainBotCoeff_eq_sSup
coe_chainTopCoeff_eq_sSup
one_le_chainBotCoeff_of_root_add_mem
one_le_chainTopCoeff_of_root_add_mem
root_add_nsmul_mem_range_iff_le_chainTopCoeff
root_add_zsmul_mem_range_iff
root_chainBotIdx
root_chainTopIdx
root_sub_nsmul_mem_range_iff_le_chainBotCoeff
root_sub_zsmul_mem_range_iff
setOf_root_add_zsmul_eq_Icc_of_linearIndependent
setOf_root_add_zsmul_mem_eq_Icc
setOf_root_sub_zsmul_mem_eq_Icc
Base.chainBotCoeff_eq_zero
chainBotCoeff_mul_chainTopCoeff
GeckConstruction.e_lie_v_ne
chainBotCoeff_add_chainTopCoeff_le_two
chainBotCoeff_if_one_zero
GeckConstruction.f_lie_v_ne
Base.cartanMatrix_eq_neg_chainTopCoeff
chainTopCoeff_if_one_zero
Base.chainTopCoeff_eq_of_ne
LinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set.Iic
Nat.instPreorder
setOf
Set
Set.instMembership
Set.range
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
Set.ext
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
add_comm
natCast_zsmul
LinearIndependent.pair_add_smul_right_iff
Int.instIsDomain
AddGroup.int_smulCommClass
AddCommGroup.intIsScalarTower
instIsTorsionFreeIntOfIsAddTorsionFree
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
Nat.cast_add
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
sub_zero
Nat.instAtLeastTwoHAddOfNat
Nat.cast_ofNat
pairingIn_pairingIn_mem_set_of_isCrystal_of_isRed
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instIsOrderedAddMonoid
add_zero
Nat.instCanonicallyOrderedAdd
SupSet.sSup
Nat.instSupSet
csSup_Iic
le_refl
one_smul
not_le
Set.mem_Iic
zero_nsmul
Function.instEmbeddingLikeEmbedding
Nat.cast_injective
Nat.cast_one
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.add_eq_evalβ
zero_add
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.sub_eq_evalβ
Mathlib.Tactic.Module.NF.sub_eq_evalβ
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
covariant_swap_add_of_covariant_add
sub_eq_add_neg
Set.image_congr
Set.image_add_right
bddAbove_Icc
OrderIso.map_csSup'
zero_smul
OrderIso.addRight_apply
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
le_antisymm
RingHomInvPair.ids
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
algebraMap_pairingIn
eq_intCast
map_nsmul
reflection_apply_self
smul_neg
sub_neg_eq_add
Mathlib.Tactic.Module.NF.add_eq_evalβ
Int.cast_one
Nat.cast_mul
Int.cast_mul
Int.cast_sub
Int.cast_natCast
Mathlib.Tactic.Ring.add_congr
root_reflectionPerm
Set.mem_range_self
Set.mem_Icc
pairingIn_reflectionPerm_self_right
instFaithfulSMulIntOfCharZero
add_assoc
Set.image_add_left
neg_neg
add_smul
Set.mem_setOf_eq
Nat.cast_zero
neg_add_rev
neg_eq_iff_eq_neg
Set.Icc_eq_Icc_iff
neg_add_cancel
Set.image_const_add_Icc
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
AddGroup.existsAddOfLE
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_add_constg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Abel.zero_termg
neg_sub
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
SubNegMonoid.toZSMul
csSup_Icc
linearIndependent_of_sub_mem_range_root'
neg_mem_range_root_iff
linearIndependent_of_add_mem_range_root'
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
neg_smul
LinearIndependent.pair_iff
LinearIndependent.restrict_scalars'
IsScalarTower.right
Module.IsReflexive.of_isPerfPair
isPerfPair_toLinearMap
IsAddTorsionFree.of_isTorsionFree
Module.IsReflexive.to_isTorsionFree
AddLeftCancelSemigroup.toIsLeftCancelAdd
Function.Embedding.injective
smul_left_injective
Int.instIsCancelMulZero
ne_zero
CharZero.NeZero.two
Finite.of_injective
csInf_le
Set.Finite.bddBelow
instIsCodirectedOrder
instArchimedeanInt
le_csSup
Set.Finite.bddAbove
instIsDirectedOrder
Set.Nonempty.eq_Icc_iff_int
Disjoint.notMem_of_mem_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
contravariant_lt_of_covariant_le
Mathlib.Tactic.Contrapose.contraposeβ
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
sub_eq_of_eq_add
Mathlib.Tactic.Module.NF.neg_eq_eval
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
sub_add_cancel
lt_sub_right_of_add_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
sub_smul
sub_sub_cancel_left
root_add_root_mem_of_pairingIn_neg
Mathlib.Tactic.Contrapose.contraposeβ
FaithfulSMul.algebraMap_injective
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
root_coroot'_eq_pairing
Algebra.to_smulCommClass
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
LinearMap.map_smul_of_tower
LinearMap.CompatibleSMul.intModule
pairing_same
zsmul_eq_mul
Int.cast_ofNat
root_sub_root_mem_of_pairingIn_pos
---
β Back to Index