Documentation Verification Report

Defs

πŸ“ Source: Mathlib/LinearAlgebra/RootSystem/Defs.lean

Statistics

MetricCount
DefinitionsRootDatum, RootPairing, IsOrthogonal, IsRootSystem, coreflection, coroot, coroot', coxeterWeight, flip, flipEquiv, indexNeg, map, pairing, reflection, reflectionPerm, root, root', toLinearMap
18
Theoremscoreflection_apply_left, coreflection_apply_right, flip, reflection_apply_left, reflection_apply_right, span_coroot_eq_top, span_root_eq_top, bijOn_coreflection_coroot, bijOn_reflection_root, coreflection_apply, coreflection_apply_coroot, coreflection_apply_self, coreflection_eq_flip_reflection, coreflection_image_eq, coreflection_inv, coreflection_same, coreflection_sq, coroot'_reflection, coroot'_reflectionPerm, coroot_eq_coreflection_of_root_eq, coroot_eq_neg_iff, coroot_eq_smul_coroot_iff, coroot_reflectionPerm, coroot_root_eq_pairing, coroot_root_two, coxeterWeight_flip, coxeterWeight_swap, coxeterWeight_zero_iff_isOrthogonal, exists_ne_zero, exists_ne_zero', flipEquiv_apply, flipEquiv_symm_apply, flip_coroot, flip_flip, flip_reflectionPerm, flip_root, flip_toFun_apply, flip_toLinearMap, indexNeg_neg, instIsRootSystemFlip, instIsRootSystemMap, isFixedPt_reflectionPerm_iff, isFixedPt_reflection_of_isOrthogonal, isOrthogonal_comm, isOrthogonal_iff_pairing_eq_zero, isOrthogonal_symm, isPerfPair_toLinearMap, mapsTo_coreflection_coroot, mapsTo_reflection_root, mem_range_coroot_of_mem_range_coreflection_of_mem_range_coroot, mem_range_root_of_mem_range_reflection_of_mem_range_root, ne_neg, ne_zero, ne_zero', neg_coroot_mem, neg_mem_range_coroot_iff, neg_mem_range_root_iff, neg_root_mem, nontrivial, nontrivial', pairing_eq_add_of_root_eq_add, pairing_eq_add_of_root_eq_smul_add_smul, pairing_eq_zero_iff, pairing_eq_zero_iff', pairing_flip, pairing_reflectionPerm, pairing_reflectionPerm_self_left, pairing_reflectionPerm_self_right, pairing_same, pairing_smul_coroot_eq, pairing_smul_root_eq, reflectionPerm_coroot, reflectionPerm_eq_iff_smul_coroot, reflectionPerm_eq_iff_smul_root, reflectionPerm_eq_of_pairing_eq_zero, reflectionPerm_eq_of_pairing_eq_zero', reflectionPerm_eq_reflectionPerm_iff, reflectionPerm_eq_reflectionPerm_iff_of_isSMulRegular, reflectionPerm_eq_reflectionPerm_iff_of_span, reflectionPerm_inv, reflectionPerm_involutive, reflectionPerm_root, reflectionPerm_self, reflectionPerm_sq, reflectionPerm_symm, reflection_apply, reflection_apply_root, reflection_apply_self, reflection_dualMap_eq_coreflection, reflection_image_eq, reflection_inv, reflection_reflectionPerm, reflection_same, reflection_sq, root'_coroot_eq_pairing, root_coroot'_eq_pairing, root_coroot_eq_pairing, root_coroot_two, root_eq_neg_iff, root_reflectionPerm, smul_coroot_eq_of_root_eq_smul, toPerfPair_comp_root, toPerfPair_conj_reflection, toPerfPair_flip_comp_coroot, toPerfPair_flip_conj_coreflection, two_nsmul_reflection_eq_of_perm_eq, zero_notMem_range_coroot, zero_notMem_range_root, reflectionPerm_eq_reflectionPerm_iff
109
Total127

RootPairing

Definitions

NameCategoryTheorems
IsOrthogonal πŸ“–MathDef
4 mathmath: EmbeddedG2.isOrthogonal_short_and_long, coxeterWeight_zero_iff_isOrthogonal, isOrthogonal_symm, isOrthogonal_iff_pairing_eq_zero
IsRootSystem πŸ“–CompData
6 mathmath: instIsRootSystemSubtypeMemSubmoduleSpanRangeCoeEmbeddingRootCorootRestrictScalars', instIsRootSystemMap, LieAlgebra.IsKilling.instIsRootSystemSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, instIsRootSystemOfNonemptyOfNeZeroOfNatOfIsIrreducible, instIsRootSystemFlip, isRootSystem_mk''
coreflection πŸ“–CompOp
20 mathmath: coreflection_eq_flip_reflection, coreflection_image_eq, range_weylGroup_coweightHom, IsOrthogonal.coreflection_apply_right, coreflection_inv, corootSpan_mem_invtSubmodule_coreflection, coreflection_apply_self, bijOn_coreflection_coroot, reflection_dualMap_eq_coreflection, coreflection_sq, coreflection_apply, coroot_eq_coreflection_of_root_eq, toPerfPair_conj_reflection, toPerfPair_flip_conj_coreflection, coreflection_same, IsOrthogonal.coreflection_apply_left, coroot_reflectionPerm, coreflection_apply_coroot, mapsTo_coreflection_coroot, Equiv.reflection_coweightEquiv
coroot πŸ“–CompOp
60 mathmath: rootForm_self_smul_coroot, four_nsmul_coPolarization_compl_polarization_apply_root, Polarization_apply, coroot_eq_polarizationEquiv_apply_root, instIsRootSystemSubtypeMemSubmoduleSpanRangeCoeEmbeddingRootCorootRestrictScalars', Base.span_coroot_support, root_coroot_two, restrictScalars_coe_coroot, Base.sub_notMem_range_coroot, coreflection_image_eq, LieAlgebra.IsKilling.rootSystem_coroot_apply, root_coroot_eq_pairing, Base.linearIndepOn_coroot, coroot_eq_smul_coroot_iff, root'_coroot_eq_pairing, injOn_dualMap_subtype_span_root_coroot, restrictScalars_pairing, zero_notMem_range_coroot, Base.coroot_mem_span_int, IsOrthogonal.coreflection_apply_right, neg_mem_range_coroot_iff, coroot_mem_or_neg_mem_closure_of_root, reflectionPerm_coroot, smul_coroot_eq_of_root_add_root_eq, prod_rootForm_smul_coroot_mem_range_domRestrict, Hom.coroot_coweightMap, toPerfPair_flip_comp_coroot, reflectionPerm_root, flip_root, coreflection_apply_self, bijOn_coreflection_coroot, coroot_eq_neg_iff, Base.toCoweightBasis_apply, PolarizationIn_apply, Base.toCoweightBasis_repr_coroot, coroot_root_two, prod_rootFormIn_smul_coroot_mem_range_PolarizationIn, restrictScalars_coe_root, coroot_root_eq_pairing, polarizationEquiv_symm_apply_coroot, linearIndepOn_coroot_iff, coreflection_apply, coroot_eq_coreflection_of_root_eq, ext_iff, rootFormIn_self_smul_coroot, corootForm_self_smul_root, neg_coroot_mem, Base.coroot_mem_or_neg_mem, pairing_smul_coroot_eq, restrictScalars_toLinearMap_apply_apply, Hom.coroot_coweightMap_apply, IsOrthogonal.coreflection_apply_left, smul_coroot_eq_of_root_eq_smul, IsRootSystem.span_coroot_eq_top, Base.span_int_coroot_support, coroot_reflectionPerm, coreflection_apply_coroot, mapsTo_coreflection_coroot, flip_coroot, reflectionPerm_eq_iff_smul_coroot
coroot' πŸ“–CompOp
15 mathmath: Polarization_apply, span_coroot'_eq_top, exist_set_root_not_disjoint_and_le_ker_coroot'_of_invtSubmodule, corootSpan_map_flip_toPerfPair, coroot'_apply_apply_mem_of_mem_span, corootSpan_dualAnnihilator_map_eq, toPerfPair_flip_comp_coroot, rootForm_apply_apply, iInf_ker_coroot'_eq, algebraMap_coroot'In_apply, coroot'_reflection, reflection_apply, corootSpan_dualAnnihilator_map_eq_iInf_ker_coroot', root_coroot'_eq_pairing, coroot'_reflectionPerm
coxeterWeight πŸ“–CompOp
6 mathmath: coxeterWeight_flip, algebraMap_coxeterWeightIn, coxeterWeight_zero_iff_isOrthogonal, coxeterWeight_swap, coxeterWeight_eq_four_iff_not_linearIndependent, four_smul_rootForm_sq_eq_coxeterWeight_smul
flip πŸ“–CompOp
26 mathmath: coreflection_eq_flip_reflection, rootSpan_dualAnnihilator_le_ker_rootForm, IsOrthogonal.flip, Hom.weight_coweight_transpose, coxeterWeight_flip, flip_comp_polarization_eq_rootForm, flipEquiv_apply, instIsValuedInFlip, flipEquiv_symm_apply, flip_root, Hom.weight_coweight_transpose_apply, CoPolarization_eq, flip_reflectionPerm, instIsIrreducibleFlip, flip_toFun_apply, rootSpan_dualAnnihilator_map_eq_iInf_ker_root', flip_flip, flip_toLinearMap, instIsRootSystemFlip, rootSpan_dualAnnihilator_map_eq, pairing_flip, Base.flip_support, instIsAnisotropicFlip, ker_corootForm_eq_dualAnnihilator, instFlipIsReduced, flip_coroot
flipEquiv πŸ“–CompOp
2 mathmath: flipEquiv_apply, flipEquiv_symm_apply
indexNeg πŸ“–CompOp
5 mathmath: Base.height_reflectionPerm_self, Base.IsPos.or_neg, Base.IsPos.neg_iff_not, indexNeg_neg, EmbeddedG2.setOf_index_eq_univ
map πŸ“–CompOp
1 mathmath: instIsRootSystemMap
pairing πŸ“–CompOp
47 mathmath: pairing_two_two_iff, pairing_smul_root_eq_of_not_linearIndependent, Base.algebraMap_cartanMatrixIn_apply, reflectionPerm_eq_iff_smul_root, InvariantForm.pairing_mul_eq_pairing_mul_swap, root_coroot_eq_pairing, root'_coroot_eq_pairing, restrictScalars_pairing, pairing_eq_zero_iff, pairing_eq_zero_iff', pairing_one_four_iff', pairing_reflectionPerm_self_left, pairing_reflectionPerm_self_right, exists_value, pairing_eq_add_of_root_eq_add, rootForm_root_self, smul_coroot_eq_of_root_add_root_eq, Base.cartanMatrix_apply_eq_zero_iff_pairing, pairing_neg_one_neg_four_iff, algebraMap_pairingIn, pairing_eq_zero_of_add_notMem_of_sub_notMem, isValuedIn_iff_mem_range, isValuedIn_iff, pairing_same, EmbeddedG2.pairing_long_short, RootPositiveForm.two_mul_apply_root_root, coroot_root_eq_pairing, IsValuedIn.exists_value, LieAlgebra.IsKilling.rootSystem_pairing_apply, pairing_neg_one_neg_four_iff', EmbeddedG2.pairing_short_long, InvariantForm.apply_root_root_zero_iff, pairing_smul_coroot_eq, pairing_smul_root_eq, pairing_eq_add_of_root_eq_smul_add_smul, pairing_one_four_iff, pairing_flip, pairing_reflectionPerm, isFixedPt_reflectionPerm_iff, root_coroot'_eq_pairing, InvariantForm.two_mul_apply_root_root, coreflection_apply_coroot, forall_pairing_eq_swap_or, isOrthogonal_iff_pairing_eq_zero, reflection_apply_root, reflectionPerm_eq_iff_smul_coroot, pairing_neg_two_neg_two_iff
reflection πŸ“–CompOp
38 mathmath: InvariantForm.apply_reflection_reflection, coreflection_eq_flip_reflection, two_nsmul_reflection_eq_of_perm_eq, Base.forall_mem_support_invtSubmodule_iff, mapsTo_reflection_root, reflection_apply_root', RootSystem.reflectionPerm_eq_reflectionPerm_iff, IsOrthogonal.reflection_apply_left, mem_invtRootSubmodule_iff, reflection_same, reflection_sq, RootPositiveForm.isOrthogonal_reflection, InvariantForm.isOrthogonal_reflection, reflectionPerm_eq_reflectionPerm_iff_of_isSMulRegular, bijOn_reflection_root, rootForm_reflection_reflection_apply, IsOrthogonal.reflection_apply_right, reflectionPerm_eq_reflectionPerm_iff_of_span, reflection_dualMap_eq_coreflection, reflection_apply_self, isFixedPt_reflection_of_isOrthogonal, coroot'_reflection, toPerfPair_conj_reflection, reflection_inv, rootSpan_mem_invtSubmodule_reflection, toPerfPair_flip_conj_coreflection, Equiv.reflection_smul, reflectionPerm_eq_reflectionPerm_iff, range_weylGroup_weightHom, reflection_apply, invtSubmodule_reflection_of_invtSubmodule_coreflection, coroot'_reflectionPerm, isOrthogonal_comm, reflection_reflectionPerm, Equiv.reflection_weightEquiv, root_reflectionPerm, reflection_image_eq, reflection_apply_root
reflectionPerm πŸ“–CompOp
42 mathmath: reflectionPerm_symm, chainTopCoeff_reflectionPerm_right, reflectionPerm_eq_iff_smul_root, reflectionPerm_involutive, reflectionPerm_sq, reflectionPerm_self, RootSystem.reflectionPerm_eq_reflectionPerm_iff, pairing_reflectionPerm_self_left, pairing_reflectionPerm_self_right, chainBotCoeff_reflectionPerm_right, reflectionPerm_coroot, corootSpanMem_reflectionPerm_self, reflectionPerm_eq_reflectionPerm_iff_of_isSMulRegular, pairingIn_reflectionPerm_self_left, reflectionPerm_root, coroot_eq_neg_iff, root_eq_neg_iff, pairingIn_reflectionPerm_self_right, reflectionPerm_eq_reflectionPerm_iff_of_span, RootPositiveForm.rootLength_reflectionPerm_self, chainTopCoeff_reflectionPerm_left, range_weylGroupToPerm, flip_reflectionPerm, rootSpanMem_reflectionPerm_self, pairingIn_reflectionPerm, coroot'_reflection, Equiv.reflection_indexEquiv, reflectionPerm_eq_reflectionPerm_iff, reflectionPerm_inv, reflectionPerm_eq_of_pairing_eq_zero', reflectionPerm_eq_of_pairing_eq_zero, indexNeg_neg, chainBotCoeff_reflectionPerm_left, Base.IsPos.reflectionPerm, pairing_reflectionPerm, EmbeddedG2.ofPairingInThree_long, coroot_reflectionPerm, isFixedPt_reflectionPerm_iff, coroot'_reflectionPerm, reflection_reflectionPerm, root_reflectionPerm, reflectionPerm_eq_iff_smul_coroot
root πŸ“–CompOp
123 mathmath: rootForm_self_smul_coroot, RootPositiveForm.algebraMap_rootLength, posRootForm_posForm_apply_apply, four_nsmul_coPolarization_compl_polarization_apply_root, linearIndepOn_root_baseOf', coroot_eq_polarizationEquiv_apply_root, instIsRootSystemSubtypeMemSubmoduleSpanRangeCoeEmbeddingRootCorootRestrictScalars', reflectionPerm_eq_iff_smul_root, Hom.root_weightMap, root_coroot_two, restrictScalars_coe_coroot, Base.root_mem_span_int, zero_notMem_range_root, InvariantForm.pairing_mul_eq_pairing_mul_swap, root_sub_root_mem_of_pairingIn_pos, span_orbit_eq_top, Hom.root_weightMap_apply, invtRootSubmodule.eq_top_iff, coxeterWeightIn_eq_four_iff_not_linearIndependent, Base.cartanMatrix_apply_eq_zero_iff, root_coroot_eq_pairing, RootPositiveForm.zero_lt_posForm_iff, Base.linearIndependent_pair_of_ne, coroot_eq_smul_coroot_iff, toPerfPair_comp_root, mapsTo_reflection_root, injOn_dualMap_subtype_span_root_coroot, restrictScalars_pairing, Base.exists_root_eq_sum_nat_or_neg, reflection_apply_root', IsOrthogonal.reflection_apply_left, pairing_one_four_iff', IsReduced.linearIndependent_iff, exist_set_root_not_disjoint_and_le_ker_coroot'_of_invtSubmodule, linearIndependent_iff_coxeterWeightIn_ne_four, weylGroup_apply_root, Equiv.root_indexEquiv_eq_smul, RootPositiveForm.exists_eq, rootForm_root_self, EmbeddedG2.indexEquivAllRoots_symm_apply, root_add_root_mem_of_pairingIn_neg, InvariantForm.exists_apply_eq_or, reflectionPerm_coroot, pairing_neg_one_neg_four_iff, bijOn_reflection_root, chainTopCoeff_eq_zero_iff, posRootForm_posForm_pos_of_ne_zero, isReduced_iff', prod_rootForm_smul_coroot_mem_range_domRestrict, IsG2.span_eq_rootSpan_int, reflectionPerm_root, flip_root, invtRootSubmodule.eq_bot_iff, linearIndepOn_root_baseOf, linearIndependent_iff_coxeterWeight_ne_four, IsRootSystem.span_root_eq_top, zero_le_posForm, IsReduced.linearIndependent, root_eq_neg_iff, Base.linearIndepOn_root, IsOrthogonal.reflection_apply_right, Base.span_int_root_support, coroot_root_two, CoPolarization_apply, RootPositiveForm.two_mul_apply_root_root, algebraMap_posRootForm_posForm, restrictScalars_coe_root, reflection_apply_self, InvariantForm.apply_eq_or_aux, pairingIn_one_four_iff, pairingIn_neg_one_neg_four_iff, neg_root_mem, RootPositiveForm.isSymm_posForm, coroot_root_eq_pairing, polarizationEquiv_symm_apply_coroot, Base.exists_root_eq_sum_int, linearIndepOn_coroot_iff, Base.root_mem_or_neg_mem, Base.toWeightBasis_apply, RootPositiveForm.exists_pos_eq, EmbeddedG2.indexEquivAllRoots_apply_coe, pairing_neg_one_neg_four_iff', posRootForm_posForm_nondegenerate, coxeterWeight_eq_four_iff_not_linearIndependent, ext_iff, corootForm_self_smul_root, exists_form_eq_form_and_form_ne_zero, Base.toWeightBasis_repr_root, InvariantForm.apply_root_root_zero_iff, RootPositiveForm.algebraMap_apply_eq_form_iff, restrictScalars_toLinearMap_apply_apply, pairing_smul_root_eq, InvariantForm.apply_eq_or, Base.span_root_support, pairingIn_neg_two_neg_two_iff, posRootForm_posForm_anisotropic, span_root_image_eq_top_of_forall_orthogonal, four_smul_rootForm_sq_eq_coxeterWeight_smul, Base.sub_notMem_range_root, neg_mem_range_root_iff, Base.cartanMatrixIn_mul_diagonal_eq, chainBotCoeff_eq_zero_iff, pairing_one_four_iff, nsmul_notMem_range_root, Base.exists_eq_sum_and_forall_sum_mem_of_isPos, RootPositiveForm.algebraMap_posForm, EmbeddedG2.allRoots_subset_range_root, reflection_apply, root_chainTopIdx, CoPolarizationIn_apply, root_coroot'_eq_pairing, InvariantForm.apply_eq_or_of_apply_ne, InvariantForm.two_mul_apply_root_root, isReduced_iff, root_chainBotIdx, LieAlgebra.IsKilling.rootSystem_root_apply, root_reflectionPerm, flip_coroot, EmbeddedG2.mem_allRoots, reflection_image_eq, baseOf_pairwise_pairing_le_zero, reflection_apply_root, pairing_neg_two_neg_two_iff
root' πŸ“–CompOp
12 mathmath: toPerfPair_comp_root, root'_coroot_eq_pairing, rootSpan_map_toPerfPair, corootForm_apply_apply, iInf_ker_root'_eq, CoPolarization_apply, span_root'_eq_top, root'_apply_apply_mem_of_mem_span, coreflection_apply, rootSpan_dualAnnihilator_map_eq_iInf_ker_root', rootSpan_dualAnnihilator_map_eq, algebraMap_root'In_apply
toLinearMap πŸ“–CompOp
38 mathmath: LieAlgebra.IsKilling.rootSystem_toLinearMap_apply, root_coroot_two, rootSpan_dualAnnihilator_le_ker_rootForm, root_coroot_eq_pairing, self_comp_coPolarization_eq_corootForm, toLinearMap_apply_CoPolarization, Hom.weight_coweight_transpose, toPerfPair_comp_root, injOn_dualMap_subtype_span_root_coroot, flip_comp_polarization_eq_rootForm, toLinearMap_apply_apply_Polarization, isPerfPair_toLinearMap, corootSpan_map_flip_toPerfPair, reflectionPerm_coroot, toLinearMap_apply_PolarizationIn, rootSpan_map_toPerfPair, IsBalanced.isPerfectCompl, corootSpan_dualAnnihilator_map_eq, toPerfPair_flip_comp_coroot, reflectionPerm_root, coroot_root_two, Hom.weight_coweight_transpose_apply, reflection_dualMap_eq_coreflection, ker_rootForm_eq_dualAnnihilator, coroot_root_eq_pairing, flip_toFun_apply, rootSpan_dualAnnihilator_map_eq_iInf_ker_root', ext_iff, toPerfPair_conj_reflection, flip_toLinearMap, restrictScalars_toLinearMap_apply_apply, toPerfPair_flip_conj_coreflection, corootSpan_dualAnnihilator_le_ker_rootForm, rootSpan_dualAnnihilator_map_eq, toLinearMap_apply_apply_mem_range_algebraMap, corootSpan_dualAnnihilator_map_eq_iInf_ker_coroot', invtSubmodule_reflection_of_invtSubmodule_coreflection, ker_corootForm_eq_dualAnnihilator

Theorems

NameKindAssumesProvesValidatesDepends On
bijOn_coreflection_coroot πŸ“–mathematicalβ€”Set.BijOn
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
coreflection
Set.range
Function.Embedding
Function.instFunLikeEmbedding
coroot
β€”bijOn_reflection_root
bijOn_reflection_root πŸ“–mathematicalβ€”Set.BijOn
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
reflection
Set.range
Function.Embedding
Function.instFunLikeEmbedding
root
β€”Module.bijOn_reflection_of_mapsTo
mapsTo_reflection_root
coreflection_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
coreflection
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Module.Dual
LinearMap.instFunLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
root'
Function.Embedding
Function.instFunLikeEmbedding
coroot
β€”RingHomInvPair.ids
coreflection_apply_coroot πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
coreflection
Function.Embedding
Function.instFunLikeEmbedding
coroot
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
pairing
β€”RingHomInvPair.ids
coreflection_apply_self πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
coreflection
Function.Embedding
Function.instFunLikeEmbedding
coroot
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Module.reflection_apply_self
SMulCommClass.symm
Algebra.to_smulCommClass
coroot_root_two
coreflection_eq_flip_reflection πŸ“–mathematicalβ€”coreflection
reflection
flip
β€”RingHomInvPair.ids
coreflection_image_eq πŸ“–mathematicalβ€”Set.image
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
coreflection
Set.range
Function.Embedding
Function.instFunLikeEmbedding
coroot
β€”Set.BijOn.image_eq
RingHomInvPair.ids
bijOn_coreflection_coroot
coreflection_inv πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
LinearEquiv.automorphismGroup
coreflection
β€”RingHomInvPair.ids
coreflection_same πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
coreflection
β€”Module.involutive_reflection
SMulCommClass.symm
Algebra.to_smulCommClass
coroot_root_two
coreflection_sq πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
coreflection
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”RingHomInvPair.ids
mul_eq_one_iff_eq_inv
coroot'_reflection πŸ“–mathematicalβ€”DFunLike.coe
Module.Dual
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
coroot'
LinearEquiv
RingHomInvPair.ids
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
reflection
Equiv
Equiv.instEquivLike
reflectionPerm
β€”RingHomCompTriple.ids
RingHomInvPair.ids
LinearMap.congr_fun
coroot'_reflectionPerm
coroot'_reflectionPerm πŸ“–mathematicalβ€”coroot'
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
LinearMap.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
reflection
β€”LinearMap.ext
RingHomCompTriple.ids
RingHomInvPair.ids
coroot_reflectionPerm
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
mul_comm
coroot_eq_coreflection_of_root_eq πŸ“–mathematicalDFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
reflection
coroot
coreflection
β€”RingHomInvPair.ids
coroot_reflectionPerm
EmbeddingLike.apply_eq_iff_eq
Function.instEmbeddingLikeEmbedding
root_reflectionPerm
coroot_eq_neg_iff πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
coroot
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
β€”root_eq_neg_iff
coroot_eq_smul_coroot_iff πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
coroot
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
root
β€”smul_coroot_eq_of_root_eq_smul
coroot_reflectionPerm πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
coroot
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
DFinsupp.instEquivLikeLinearEquiv
coreflection
β€”Algebra.to_smulCommClass
reflectionPerm_coroot
coroot_root_eq_pairing πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
LinearMap.flip
toLinearMap
Function.Embedding
Function.instFunLikeEmbedding
coroot
root
pairing
β€”β€”
coroot_root_two πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
LinearMap.flip
toLinearMap
Function.Embedding
Function.instFunLikeEmbedding
coroot
root
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
β€”SMulCommClass.symm
Algebra.to_smulCommClass
Nat.instAtLeastTwoHAddOfNat
pairing_same
coxeterWeight_flip πŸ“–mathematicalβ€”coxeterWeight
flip
β€”mul_comm
coxeterWeight_swap πŸ“–mathematicalβ€”coxeterWeightβ€”mul_comm
coxeterWeight_zero_iff_isOrthogonal πŸ“–mathematicalβ€”coxeterWeight
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsOrthogonal
β€”Nat.instAtLeastTwoHAddOfNat
Module.IsReflexive.of_isPerfPair
isPerfPair_toLinearMap
IsDomain.to_noZeroDivisors
pairing_eq_zero_iff
Module.IsReflexive.to_isTorsionFree
exists_ne_zero πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
ne_zero
exists_ne_zero' πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
exists_ne_zero
flipEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
RootPairing
EquivLike.toFunLike
Equiv.instEquivLike
flipEquiv
flip
β€”β€”
flipEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
RootPairing
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
flipEquiv
flip
β€”β€”
flip_coroot πŸ“–mathematicalβ€”coroot
flip
root
β€”β€”
flip_flip πŸ“–mathematicalβ€”flipβ€”β€”
flip_reflectionPerm πŸ“–mathematicalβ€”reflectionPerm
flip
β€”β€”
flip_root πŸ“–mathematicalβ€”root
flip
coroot
β€”β€”
flip_toFun_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
LinearMap.instFunLike
AddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearMap.addCommMonoid
LinearMap.toAddHom
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
toLinearMap
flip
β€”Algebra.to_smulCommClass
flip_toLinearMap πŸ“–mathematicalβ€”toLinearMap
flip
LinearMap.flip
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
β€”SMulCommClass.symm
indexNeg_neg πŸ“–mathematicalβ€”InvolutiveNeg.toNeg
indexNeg
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
β€”β€”
instIsRootSystemFlip πŸ“–mathematicalβ€”IsRootSystem
flip
β€”IsRootSystem.span_coroot_eq_top
IsRootSystem.span_root_eq_top
instIsRootSystemMap πŸ“–mathematicalβ€”IsRootSystem
map
β€”RingHomInvPair.ids
RingHomSurjective.invPair
Set.range_comp
EquivLike.range_eq_univ
Set.image_univ
Submodule.span_image_linearEquiv
Submodule.map.congr_simp
IsRootSystem.span_root_eq_top
Submodule.map_top
LinearEquiv.range
IsRootSystem.span_coroot_eq_top
isFixedPt_reflectionPerm_iff πŸ“–mathematicalβ€”Function.IsFixedPt
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
pairing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Nat.instAtLeastTwoHAddOfNat
IsDomain.toIsCancelMulZero
ne_zero
isFixedPt_reflection_of_isOrthogonal πŸ“–mathematicalIsOrthogonal
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.span
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Function.IsFixedPt
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
reflection
β€”RingHomInvPair.ids
Function.IsFixedPt.eq_1
Submodule.span_induction
IsOrthogonal.reflection_apply_right
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
map_add
SemilinearMapClass.toAddHomClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
isOrthogonal_comm πŸ“–mathematicalIsOrthogonalCommute
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
reflection
β€”RingHomInvPair.ids
commute_iff_eq
LinearEquiv.ext
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
zero_smul
sub_zero
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
add_zero
isOrthogonal_iff_pairing_eq_zero πŸ“–mathematicalβ€”IsOrthogonal
pairing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Nat.instAtLeastTwoHAddOfNat
pairing_eq_zero_iff
isOrthogonal_symm πŸ“–mathematicalβ€”IsOrthogonalβ€”β€”
isPerfPair_toLinearMap πŸ“–mathematicalβ€”LinearMap.IsPerfPair
toLinearMap
β€”β€”
mapsTo_coreflection_coroot πŸ“–mathematicalβ€”Set.MapsTo
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
coreflection
Set.range
Function.Embedding
Function.instFunLikeEmbedding
coroot
β€”RingHomInvPair.ids
Set.mem_range_self
coroot_reflectionPerm
mapsTo_reflection_root πŸ“–mathematicalβ€”Set.MapsTo
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
reflection
Set.range
Function.Embedding
Function.instFunLikeEmbedding
root
β€”RingHomInvPair.ids
Set.mem_range_self
root_reflectionPerm
mem_range_coroot_of_mem_range_coreflection_of_mem_range_coroot πŸ“–mathematicalLinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
Set.range
coreflection
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
coroot
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
LinearEquiv.applyDistribMulAction
β€”RingHomInvPair.ids
coroot_reflectionPerm
mem_range_root_of_mem_range_reflection_of_mem_range_root πŸ“–mathematicalLinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Set
Set.instMembership
Set.range
reflection
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
LinearEquiv.applyDistribMulAction
β€”RingHomInvPair.ids
root_reflectionPerm
ne_neg πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
Module.IsReflexive.of_isPerfPair
isPerfPair_toLinearMap
RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
two_smul
Module.IsReflexive.to_isTorsionFree
IsDomain.toIsCancelMulZero
ne_zero
ne_zero πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
Algebra.to_smulCommClass
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
root_coroot_two
ne_zero' πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
ne_zero
neg_coroot_mem πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
coroot
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”neg_root_mem
neg_mem_range_coroot_iff πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
coroot
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”neg_mem_range_root_iff
neg_mem_range_root_iff πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
neg_eq_iff_eq_neg
neg_neg
neg_root_mem πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
nontrivial πŸ“–mathematicalβ€”Nontrivialβ€”Nat.instAtLeastTwoHAddOfNat
exists_ne_zero
nontrivial' πŸ“–mathematicalβ€”Nontrivialβ€”Nat.instAtLeastTwoHAddOfNat
nontrivial
pairing_eq_add_of_root_eq_add πŸ“–mathematicalDFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
pairing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Algebra.to_smulCommClass
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
pairing_eq_add_of_root_eq_smul_add_smul πŸ“–mathematicalDFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
pairing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toSMul
Algebra.id
β€”Algebra.to_smulCommClass
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
pairing_eq_zero_iff πŸ“–mathematicalβ€”pairing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Nat.instAtLeastTwoHAddOfNat
IsDomain.toIsCancelMulZero
ne_zero
reflectionPerm_eq_of_pairing_eq_zero'
pairing_eq_zero_iff' πŸ“–mathematicalβ€”pairing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Nat.instAtLeastTwoHAddOfNat
Module.IsReflexive.of_isPerfPair
isPerfPair_toLinearMap
pairing_eq_zero_iff
Module.IsReflexive.to_isTorsionFree
pairing_flip πŸ“–mathematicalβ€”pairing
flip
β€”β€”
pairing_reflectionPerm πŸ“–mathematicalβ€”pairing
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
β€”RingHomInvPair.ids
coroot_reflectionPerm
root_reflectionPerm
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Algebra.to_smulCommClass
mul_comm
pairing_reflectionPerm_self_left πŸ“–mathematicalβ€”pairing
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
β€”pairing.eq_1
root'.eq_1
Algebra.to_smulCommClass
reflectionPerm_root
root'_coroot_eq_pairing
Nat.instAtLeastTwoHAddOfNat
pairing_same
two_smul
sub_add_cancel_left
LinearMap.map_negβ‚‚
pairing_reflectionPerm_self_right πŸ“–mathematicalβ€”pairing
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
β€”pairing.eq_1
Algebra.to_smulCommClass
reflectionPerm_coroot
root_coroot_eq_pairing
Nat.instAtLeastTwoHAddOfNat
pairing_same
two_smul
sub_add_cancel_left
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
pairing_same πŸ“–mathematicalβ€”pairing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
β€”root_coroot_two
pairing_smul_coroot_eq πŸ“–mathematicalreflectionPermSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
pairing
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
coroot
β€”RingHomInvPair.ids
pairing_smul_root_eq πŸ“–mathematicalreflectionPermSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
pairing
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
β€”RingHomInvPair.ids
reflectionPerm_coroot πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
coroot
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
toLinearMap
root
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
β€”β€”
reflectionPerm_eq_iff_smul_coroot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
pairing
Function.Embedding
Function.instFunLikeEmbedding
coroot
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”reflectionPerm_eq_iff_smul_root
reflectionPerm_eq_iff_smul_root πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
pairing
Function.Embedding
Function.instFunLikeEmbedding
root
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Algebra.to_smulCommClass
reflectionPerm_root
Function.Embedding.injective
RingHomInvPair.ids
root_reflectionPerm
sub_zero
reflectionPerm_eq_of_pairing_eq_zero πŸ“–mathematicalpairing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
β€”Function.Embedding.injective
RingHomInvPair.ids
root_reflectionPerm
zero_smul
sub_zero
reflectionPerm_eq_of_pairing_eq_zero' πŸ“–mathematicalpairing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
β€”reflectionPerm_eq_of_pairing_eq_zero
reflectionPerm_eq_reflectionPerm_iff πŸ“–mathematicalβ€”reflectionPerm
reflection
β€”RingHomInvPair.ids
LinearEquiv.ext
reflectionPerm_eq_reflectionPerm_iff_of_span
IsRootSystem.span_root_eq_top
Equiv.ext
Function.Embedding.injective
root_reflectionPerm
reflectionPerm_eq_reflectionPerm_iff_of_isSMulRegular πŸ“–mathematicalIsSMulRegular
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
reflectionPerm
reflection
β€”RingHomInvPair.ids
IsSMulRegular.pi
two_nsmul_reflection_eq_of_perm_eq
DFunLike.coe_injective
Equiv.ext
Function.Embedding.injective
root_reflectionPerm
reflectionPerm_eq_reflectionPerm_iff_of_span πŸ“–mathematicalβ€”reflectionPerm
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
reflection
β€”RingHomInvPair.ids
Submodule.span_induction
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
map_add
SemilinearMapClass.toAddHomClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Equiv.Perm.ext
Function.Embedding.injective
root_reflectionPerm
Submodule.subset_span
Set.mem_range_self
reflectionPerm_inv πŸ“–mathematicalβ€”Equiv
Equiv.Perm.instInv
reflectionPerm
β€”mul_eq_one_iff_eq_inv
reflectionPerm_sq
reflectionPerm_involutive πŸ“–mathematicalβ€”Function.Involutive
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
β€”Function.involutive_iff_iter_2_eq_id
Function.iterate_one
reflectionPerm_self
reflectionPerm_root πŸ“–mathematicalβ€”SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
toLinearMap
coroot
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
β€”β€”
reflectionPerm_self πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
β€”Function.Embedding.injective
RingHomInvPair.ids
root_reflectionPerm
reflection_same
reflectionPerm_sq πŸ“–mathematicalβ€”Equiv
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
reflectionPerm
Equiv.Perm.instOne
β€”Equiv.Perm.ext
Function.Embedding.injective
RingHomInvPair.ids
sq
root_reflectionPerm
reflection_same
reflectionPerm_symm πŸ“–mathematicalβ€”Equiv.symm
reflectionPerm
β€”Function.Involutive.symm_eq_self_of_involutive
reflectionPerm_involutive
reflection_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
reflection
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Module.Dual
LinearMap.instFunLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
coroot'
Function.Embedding
Function.instFunLikeEmbedding
root
β€”RingHomInvPair.ids
reflection_apply_root πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
reflection
Function.Embedding
Function.instFunLikeEmbedding
root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
pairing
β€”RingHomInvPair.ids
reflection_apply_self πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
reflection
Function.Embedding
Function.instFunLikeEmbedding
root
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Module.reflection_apply_self
SMulCommClass.symm
Algebra.to_smulCommClass
coroot_root_two
reflection_dualMap_eq_coreflection πŸ“–mathematicalβ€”LinearMap.comp
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
Module.Dual
NonAssocSemiring.toNonUnitalNonAssocSemiring
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
LinearEquiv.dualMap
reflection
LinearMap.flip
toLinearMap
coreflection
β€”LinearMap.ext
SMulCommClass.symm
Algebra.to_smulCommClass
RingHomCompTriple.ids
RingHomInvPair.ids
smulCommClass_self
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
mul_comm
reflection_image_eq πŸ“–mathematicalβ€”Set.image
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
reflection
Set.range
Function.Embedding
Function.instFunLikeEmbedding
root
β€”Set.BijOn.image_eq
RingHomInvPair.ids
bijOn_reflection_root
reflection_inv πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
LinearEquiv.automorphismGroup
reflection
β€”RingHomInvPair.ids
reflection_reflectionPerm πŸ“–mathematicalβ€”reflection
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
β€”LinearEquiv.ext
RingHomInvPair.ids
Nat.instAtLeastTwoHAddOfNat
coroot_reflectionPerm
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
root_reflectionPerm
Algebra.to_smulCommClass
pairing_same
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
AddCommGroup.intIsScalarTower
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval₃
sub_zero
Mathlib.Tactic.Module.NF.sub_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
eq_intCast
Int.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
reflection_same πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
reflection
β€”Module.involutive_reflection
SMulCommClass.symm
Algebra.to_smulCommClass
coroot_root_two
reflection_sq πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
reflection
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”RingHomInvPair.ids
mul_eq_one_iff_eq_inv
root'_coroot_eq_pairing πŸ“–mathematicalβ€”DFunLike.coe
Module.Dual
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
root'
Function.Embedding
Function.instFunLikeEmbedding
coroot
pairing
β€”β€”
root_coroot'_eq_pairing πŸ“–mathematicalβ€”DFunLike.coe
Module.Dual
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
coroot'
Function.Embedding
Function.instFunLikeEmbedding
root
pairing
β€”β€”
root_coroot_eq_pairing πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
toLinearMap
Function.Embedding
Function.instFunLikeEmbedding
root
coroot
pairing
β€”Algebra.to_smulCommClass
root_coroot_two πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
toLinearMap
Function.Embedding
Function.instFunLikeEmbedding
root
coroot
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
β€”β€”
root_eq_neg_iff πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
β€”Function.Embedding.injective
RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
root_reflectionPerm πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
reflectionPerm
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
DFinsupp.instEquivLikeLinearEquiv
reflection
β€”Algebra.to_smulCommClass
reflectionPerm_root
smul_coroot_eq_of_root_eq_smul πŸ“–mathematicalDFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
corootβ€”Nat.instAtLeastTwoHAddOfNat
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
pairing_same
LinearMap.congr_arg
Module.eq_of_mapsTo_reflection_of_mem
Set.finite_range
RingHomInvPair.ids
Algebra.to_smulCommClass
LinearMap.ext
Module.preReflection_apply
SMulCommClass.smul_comm
smulCommClass_self
SemigroupAction.mul_smul
mapsTo_coreflection_coroot
Set.mem_range_self
toPerfPair_comp_root πŸ“–mathematicalβ€”Module.Dual
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toPerfPair
toLinearMap
isPerfPair_toLinearMap
Function.Embedding
Function.instFunLikeEmbedding
root
root'
β€”RingHomInvPair.ids
Algebra.to_smulCommClass
isPerfPair_toLinearMap
toPerfPair_conj_reflection πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Module.End
AddCommGroup.toAddCommMonoid
Module.Dual
LinearMap.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.conj
LinearMap.toPerfPair
toLinearMap
isPerfPair_toLinearMap
LinearEquiv.toLinearMap
reflection
LinearMap.dualMap
coreflection
β€”LinearMap.ext
Algebra.to_smulCommClass
RingHomInvPair.ids
smulCommClass_self
isPerfPair_toLinearMap
LinearMap.apply_symm_toPerfPair_self
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
mul_comm
toPerfPair_flip_comp_coroot πŸ“–mathematicalβ€”Module.Dual
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toPerfPair
LinearMap.flip
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toLinearMap
LinearMap.flip.instIsPerfPair
isPerfPair_toLinearMap
Function.Embedding
Function.instFunLikeEmbedding
coroot
coroot'
β€”RingHomInvPair.ids
Algebra.to_smulCommClass
LinearMap.flip.instIsPerfPair
isPerfPair_toLinearMap
toPerfPair_flip_conj_coreflection πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Module.End
AddCommGroup.toAddCommMonoid
Module.Dual
LinearMap.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.conj
LinearMap.toPerfPair
LinearMap.flip
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toLinearMap
LinearMap.flip.instIsPerfPair
isPerfPair_toLinearMap
LinearEquiv.toLinearMap
coreflection
LinearMap.dualMap
reflection
β€”toPerfPair_conj_reflection
two_nsmul_reflection_eq_of_perm_eq πŸ“–mathematicalreflectionPermAddMonoid.toNatSMul
Pi.addMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
reflection
β€”RingHomInvPair.ids
Algebra.to_smulCommClass
Nat.instAtLeastTwoHAddOfNat
SMulCommClass.smul_comm
AddMonoid.nat_smulCommClass
Nat.cast_smul_eq_nsmul
Nat.cast_ofNat
pairing_smul_root_eq
pairing_same
smulCommClass_self
smul_assoc
IsScalarTower.left
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
pairing_smul_coroot_eq
smul_sub
zero_notMem_range_coroot πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
coroot
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
zero_notMem_range_root
zero_notMem_range_root πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
ne_zero

RootPairing.IsOrthogonal

Theorems

NameKindAssumesProvesValidatesDepends On
coreflection_apply_left πŸ“–mathematicalRootPairing.IsOrthogonalDFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
RootPairing.coreflection
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.coroot
β€”reflection_apply_left
flip
coreflection_apply_right πŸ“–mathematicalRootPairing.IsOrthogonalDFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
RootPairing.coreflection
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.coroot
β€”reflection_apply_right
flip
flip πŸ“–mathematicalRootPairing.IsOrthogonalRootPairing.flipβ€”β€”
reflection_apply_left πŸ“–mathematicalRootPairing.IsOrthogonalDFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
RootPairing.reflection
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
β€”RingHomInvPair.ids
zero_smul
sub_zero
reflection_apply_right πŸ“–mathematicalRootPairing.IsOrthogonalDFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
RootPairing.reflection
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
β€”reflection_apply_left
symm

RootPairing.IsRootSystem

Theorems

NameKindAssumesProvesValidatesDepends On
span_coroot_eq_top πŸ“–mathematicalβ€”Submodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.coroot
Top.top
Submodule
Submodule.instTop
β€”β€”
span_root_eq_top πŸ“–mathematicalβ€”Submodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Top.top
Submodule
Submodule.instTop
β€”β€”

RootSystem

Theorems

NameKindAssumesProvesValidatesDepends On
reflectionPerm_eq_reflectionPerm_iff πŸ“–mathematicalβ€”RootPairing.reflectionPerm
RootPairing.reflection
β€”RootPairing.reflectionPerm_eq_reflectionPerm_iff

(root)

Definitions

NameCategoryTheorems
RootDatum πŸ“–CompOpβ€”
RootPairing πŸ“–CompData
2 mathmath: RootPairing.flipEquiv_apply, RootPairing.flipEquiv_symm_apply

---

← Back to Index