Documentation Verification Report

G2

πŸ“ Source: Mathlib/LinearAlgebra/RootSystem/Finite/G2.lean

Statistics

MetricCount
DefinitionsG2, EmbeddedG2, allCoeffs, allRoots, basis, indexEquivAllRoots, long, longRoot, ofPairingInThree, short, shortAddLong, shortAddLongRoot, shortRoot, threeShortAddLong, threeShortAddLongRoot, threeShortAddTwoLong, threeShortAddTwoLongRoot, twoShortAddLong, twoShortAddLongRoot, IsG2, toEmbeddedG2, IsNotG2
22
TheoremsallRoots_eq_map_allCoeffs, allRoots_nodup, allRoots_subset_range_root, card_index_eq_twelve, indexEquivAllRoots_apply_coe, indexEquivAllRoots_symm_apply, instIsG2OfIsIrreducible, isOrthogonal_short_and_long, linearIndependent_short_long, long_eq_three_mul_short, mem_allRoots, mem_span_of_mem_allRoots, ofPairingInThree_long, ofPairingInThree_short, pairingIn_long_short, pairingIn_shortAddLong_left, pairingIn_shortAddLong_right, pairingIn_short_long, pairingIn_threeShortAddLong_left, pairingIn_threeShortAddLong_right, pairingIn_threeShortAddTwoLong_left, pairingIn_threeShortAddTwoLong_right, pairingIn_twoShortAddLong_left, pairingIn_twoShortAddLong_right, pairing_long_short, pairing_short_long, setOf_index_eq_univ, shortAddLongRoot_eq, shortAddLongRoot_shortRoot, span_eq_top, threeShortAddLongRoot_eq, threeShortAddLongRoot_longRoot, threeShortAddTwoLongRoot_eq, threeShortAddTwoLongRoot_longRoot, toIsReduced, toIsValuedIn, twoShortAddLongRoot_eq, twoShortAddLongRoot_shortRoot, card_base_support_eq_two, exists_pairingIn_neg_three, nonempty, pairingIn_mem_zero_one_three, span_eq_rootSpan_int, toIsIrreducible, toIsReduced, toIsValuedIn, pairingIn_mem_zero_one_two, toIsIrreducible, toIsReduced, toIsValuedIn, chainBotCoeff_add_chainTopCoeff_le_two, chainBotCoeff_if_one_zero, chainTopCoeff_if_one_zero, isG2_iff, isNotG2_iff, not_isG2_iff_isNotG2, pairingIn_le_zero_of_root_add_mem, zero_le_pairingIn_of_root_sub_mem
58
Total80

EisensteinSeries

Definitions

NameCategoryTheorems
G2 πŸ“–CompOp
7 mathmath: G2_slash_action, G2_eq_tsum_symmetricIco, G2_S_transform, tendsto_double_sum_S_act, G2_eq_tsum_cexp, tsum_symmetricIco_tsum_eq_S_act, G2_T_transform

RootPairing

Definitions

NameCategoryTheorems
EmbeddedG2 πŸ“–CompDataβ€”
IsG2 πŸ“–CompData
3 mathmath: EmbeddedG2.instIsG2OfIsIrreducible, isG2_iff, not_isG2_iff_isNotG2
IsNotG2 πŸ“–CompData
3 mathmath: not_isG2_iff_isNotG2, chainBotCoeff_mul_chainTopCoeff.isNotG2, isNotG2_iff

Theorems

NameKindAssumesProvesValidatesDepends On
chainBotCoeff_add_chainTopCoeff_le_two πŸ“–mathematicalβ€”chainBotCoeff
IsNotG2.toIsValuedIn
chainTopCoeff
β€”IsNotG2.toIsValuedIn
Nat.cast_add
Nat.instAtLeastTwoHAddOfNat
Nat.cast_ofNat
chainBotCoeff_add_chainTopCoeff_eq_pairingIn_chainTopIdx
IsNotG2.pairingIn_mem_zero_one_two
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
chainBotCoeff_of_not_linearIndependent
chainTopCoeff_of_not_linearIndependent
add_zero
Nat.instCanonicallyOrderedAdd
chainBotCoeff_if_one_zero πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
chainBotCoeff
IsNotG2.toIsValuedIn
pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”Module.IsReflexive.of_isPerfPair
isPerfPair_toLinearMap
linearIndependent_of_add_mem_range_root'
IsNotG2.toIsReduced
IsNotG2.toIsValuedIn
chainBotCoeff_add_chainTopCoeff_le_two
one_le_chainTopCoeff_of_root_add_mem
eq_or_ne
pairingIn_eq_zero_iff
Module.IsReflexive.to_isTorsionFree
CharZero.NeZero.two
instFaithfulSMulIntOfCharZero
chainBotCoeff_sub_chainTopCoeff
Int.instCharZero
chainTopCoeff_if_one_zero πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
chainTopCoeff
IsNotG2.toIsValuedIn
pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
IsNotG2.toIsValuedIn
chainBotCoeff_reflectionPerm_right
pairingIn_reflectionPerm_self_right
instFaithfulSMulIntOfCharZero
chainBotCoeff_if_one_zero
isG2_iff πŸ“–mathematicalβ€”IsG2
pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”IsG2.exists_pairingIn_neg_three
isNotG2_iff πŸ“–mathematicalβ€”IsNotG2
Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”IsNotG2.pairingIn_mem_zero_one_two
not_isG2_iff_isNotG2 πŸ“–mathematicalβ€”IsG2
IsNotG2
β€”pairingIn_pairingIn_mem_set_of_isCrystal_of_isRed
pairingIn_reflectionPerm_self_left
instFaithfulSMulIntOfCharZero
Int.instCharZero
Nat.instAtLeastTwoHAddOfNat
pairingIn_le_zero_of_root_add_mem πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
IsNotG2.toIsValuedIn
β€”linearIndependent_of_add_mem_range_root'
IsNotG2.toIsReduced
add_comm
IsNotG2.toIsValuedIn
chainBotCoeff_add_chainTopCoeff_le_two
root_add_nsmul_mem_range_iff_le_chainTopCoeff
one_smul
chainBotCoeff_sub_chainTopCoeff
zero_le_pairingIn_of_root_sub_mem πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
IsNotG2.toIsValuedIn
β€”RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
IsNotG2.toIsValuedIn
pairingIn_reflectionPerm_self_right
instFaithfulSMulIntOfCharZero
Int.instAddLeftMono
pairingIn_le_zero_of_root_add_mem

RootPairing.EmbeddedG2

Definitions

NameCategoryTheorems
allCoeffs πŸ“–CompOp
1 mathmath: allRoots_eq_map_allCoeffs
allRoots πŸ“–CompOp
6 mathmath: indexEquivAllRoots_symm_apply, allRoots_eq_map_allCoeffs, indexEquivAllRoots_apply_coe, allRoots_nodup, allRoots_subset_range_root, mem_allRoots
basis πŸ“–CompOpβ€”
indexEquivAllRoots πŸ“–CompOp
2 mathmath: indexEquivAllRoots_symm_apply, indexEquivAllRoots_apply_coe
long πŸ“–CompOp
15 mathmath: pairingIn_threeShortAddLong_right, isOrthogonal_short_and_long, pairingIn_twoShortAddLong_left, pairingIn_threeShortAddTwoLong_right, pairingIn_long_short, pairingIn_threeShortAddLong_left, pairing_long_short, pairingIn_short_long, pairingIn_twoShortAddLong_right, pairingIn_threeShortAddTwoLong_left, pairing_short_long, pairingIn_shortAddLong_left, ofPairingInThree_long, setOf_index_eq_univ, pairingIn_shortAddLong_right
longRoot πŸ“–CompOp
11 mathmath: mem_span_of_mem_allRoots, twoShortAddLongRoot_eq, long_eq_three_mul_short, allRoots_eq_map_allCoeffs, linearIndependent_short_long, threeShortAddTwoLongRoot_eq, span_eq_top, threeShortAddLongRoot_longRoot, threeShortAddTwoLongRoot_longRoot, threeShortAddLongRoot_eq, shortAddLongRoot_eq
ofPairingInThree πŸ“–CompOp
2 mathmath: ofPairingInThree_short, ofPairingInThree_long
short πŸ“–CompOp
15 mathmath: pairingIn_threeShortAddLong_right, isOrthogonal_short_and_long, pairingIn_twoShortAddLong_left, pairingIn_threeShortAddTwoLong_right, pairingIn_long_short, pairingIn_threeShortAddLong_left, pairing_long_short, pairingIn_short_long, pairingIn_twoShortAddLong_right, ofPairingInThree_short, pairingIn_threeShortAddTwoLong_left, pairing_short_long, pairingIn_shortAddLong_left, setOf_index_eq_univ, pairingIn_shortAddLong_right
shortAddLong πŸ“–CompOp
3 mathmath: pairingIn_shortAddLong_left, setOf_index_eq_univ, pairingIn_shortAddLong_right
shortAddLongRoot πŸ“–CompOp
2 mathmath: shortAddLongRoot_shortRoot, shortAddLongRoot_eq
shortRoot πŸ“–CompOp
11 mathmath: mem_span_of_mem_allRoots, shortAddLongRoot_shortRoot, twoShortAddLongRoot_eq, long_eq_three_mul_short, allRoots_eq_map_allCoeffs, linearIndependent_short_long, threeShortAddTwoLongRoot_eq, twoShortAddLongRoot_shortRoot, span_eq_top, threeShortAddLongRoot_eq, shortAddLongRoot_eq
threeShortAddLong πŸ“–CompOp
3 mathmath: pairingIn_threeShortAddLong_right, pairingIn_threeShortAddLong_left, setOf_index_eq_univ
threeShortAddLongRoot πŸ“–CompOp
2 mathmath: threeShortAddLongRoot_longRoot, threeShortAddLongRoot_eq
threeShortAddTwoLong πŸ“–CompOp
3 mathmath: pairingIn_threeShortAddTwoLong_right, pairingIn_threeShortAddTwoLong_left, setOf_index_eq_univ
threeShortAddTwoLongRoot πŸ“–CompOp
2 mathmath: threeShortAddTwoLongRoot_eq, threeShortAddTwoLongRoot_longRoot
twoShortAddLong πŸ“–CompOp
3 mathmath: pairingIn_twoShortAddLong_left, pairingIn_twoShortAddLong_right, setOf_index_eq_univ
twoShortAddLongRoot πŸ“–CompOp
2 mathmath: twoShortAddLongRoot_eq, twoShortAddLongRoot_shortRoot

Theorems

NameKindAssumesProvesValidatesDepends On
allRoots_eq_map_allCoeffs πŸ“–mathematicalβ€”allRoots
DFunLike.coe
LinearMap
Int.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddCommGroup.toAddCommMonoid
Pi.Function.module
Semiring.toModule
AddCommGroup.toIntModule
LinearMap.instFunLike
Fintype.linearCombination
Fin.fintype
Matrix.vecCons
shortRoot
longRoot
Matrix.vecEmpty
allCoeffs
β€”Nat.instAtLeastTwoHAddOfNat
Finset.sum_congr
Int.cast_smul_eq_zsmul
Fin.sum_univ_two
Int.cast_zero
zero_smul
Matrix.cons_val_fin_one
Int.cast_one
one_smul
zero_add
Int.cast_neg
neg_smul
add_zero
Int.cast_ofNat
shortAddLongRoot_eq
neg_add
twoShortAddLongRoot_eq
threeShortAddLongRoot_eq
threeShortAddTwoLongRoot_eq
allRoots_nodup πŸ“–mathematicalβ€”allRootsβ€”linearIndependent_iff_injective_fintypeLinearCombination
LinearIndependent.restrict_scalars'
AddCommGroup.intIsScalarTower
instFaithfulSMulIntOfCharZero
IsScalarTower.right
linearIndependent_short_long
allRoots_eq_map_allCoeffs
List.nodup_map_iff
allRoots_subset_range_root πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
List.toFinset
allRoots
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
β€”List.toFinset_cons
Finset.instLawfulSingleton
Finset.coe_insert
Finset.coe_singleton
Set.mem_insert_iff
Function.instEmbeddingLikeEmbedding
card_index_eq_twelve πŸ“–mathematicalβ€”Nat.cardβ€”Nat.card_eq_fintype_card
Fintype.card_coe
List.toFinset_card_of_nodup
allRoots_nodup
zero_add
Nat.card_congr
indexEquivAllRoots_apply_coe πŸ“–mathematicalβ€”Finset
SetLike.instMembership
Finset.instSetLike
List.toFinset
allRoots
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
indexEquivAllRoots
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
β€”β€”
indexEquivAllRoots_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Finset
SetLike.instMembership
Finset.instSetLike
List.toFinset
allRoots
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
indexEquivAllRoots
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
β€”β€”
instIsG2OfIsIrreducible πŸ“–mathematicalβ€”RootPairing.IsG2β€”toIsValuedIn
toIsReduced
pairingIn_long_short
isOrthogonal_short_and_long πŸ“–mathematicalallRoots
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
RootPairing.IsOrthogonal
short
long
β€”toIsValuedIn
RootPairing.pairingIn_pairingIn_mem_set_of_isCrystal_of_isRed'
toIsReduced
pairingIn_shortAddLong_right
pairingIn_shortAddLong_left
pairingIn_twoShortAddLong_right
pairingIn_twoShortAddLong_left
pairingIn_threeShortAddLong_right
pairingIn_threeShortAddLong_left
pairingIn_threeShortAddTwoLong_right
pairingIn_threeShortAddTwoLong_left
Module.IsReflexive.of_isPerfPair
RootPairing.isPerfPair_toLinearMap
CharZero.NeZero.two
Module.IsReflexive.to_isTorsionFree
RootPairing.algebraMap_pairingIn
eq_intCast
RingHom.instRingHomClass
linearIndependent_short_long πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
shortRoot
longRoot
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”Module.IsReflexive.of_isPerfPair
RootPairing.isPerfPair_toLinearMap
toIsValuedIn
Nat.instAtLeastTwoHAddOfNat
RootPairing.linearIndependent_iff_coxeterWeightIn_ne_four
Module.IsReflexive.to_isTorsionFree
instFaithfulSMulIntOfCharZero
pairingIn_short_long
pairingIn_long_short
mul_neg
neg_mul
one_mul
neg_neg
Int.instCharZero
long_eq_three_mul_short πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
RootPairing.InvariantForm.form
longRoot
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
shortRoot
β€”Nat.instAtLeastTwoHAddOfNat
pairing_short_long
neg_mul
one_mul
pairing_long_short
RootPairing.InvariantForm.pairing_mul_eq_pairing_mul_swap
mem_allRoots πŸ“–mathematicalβ€”allRoots
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
β€”isOrthogonal_short_and_long
RootPairing.IsG2.toIsValuedIn
instIsG2OfIsIrreducible
Int.instIsStrictOrderedRing
instFaithfulSMulIntOfCharZero
Module.IsReflexive.of_isPerfPair
RootPairing.isPerfPair_toLinearMap
LinearMap.ext
span_eq_top
Submodule.span_induction
Function.instEmbeddingLikeEmbedding
CharZero.NeZero.two
RootPairing.InvariantForm.apply_root_root_zero_iff
RootPairing.isOrthogonal_iff_pairing_eq_zero
Module.IsReflexive.to_isTorsionFree
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_add
SemilinearMapClass.toAddHomClass
add_zero
map_smul
SemilinearMapClass.toMulActionSemiHomClass
MulZeroClass.mul_zero
Nat.instAtLeastTwoHAddOfNat
RootPairing.pairing_same
LinearMap.congr_fun
mem_span_of_mem_allRoots πŸ“–mathematicalallRootsSubmodule
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set
Set.instInsert
longRoot
Set.instSingletonSet
shortRoot
β€”Matrix.range_cons
Matrix.range_empty
Set.union_empty
Set.union_singleton
allRoots_eq_map_allCoeffs
ofPairingInThree_long πŸ“–mathematicalRootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
long
ofPairingInThree
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
RootPairing.reflectionPerm
β€”β€”
ofPairingInThree_short πŸ“–mathematicalRootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
short
ofPairingInThree
β€”β€”
pairingIn_long_short πŸ“–mathematicalβ€”RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
toIsValuedIn
long
short
β€”β€”
pairingIn_shortAddLong_left πŸ“–mathematicalβ€”RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
toIsValuedIn
shortAddLong
short
long
β€”toIsValuedIn
RootPairing.pairingIn_eq_add_of_root_eq_add
instFaithfulSMulIntOfCharZero
shortAddLongRoot_eq
pairingIn_shortAddLong_right πŸ“–mathematicalβ€”RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
toIsValuedIn
shortAddLong
short
long
β€”Nat.instAtLeastTwoHAddOfNat
toIsValuedIn
Int.instIsStrictOrderedRing
instFaithfulSMulIntOfCharZero
mul_right_cancelβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
RootPairing.InvariantForm.ne_zero
RootPairing.InvariantForm.two_mul_apply_root_root
shortAddLongRoot_eq
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
mul_add
Distrib.leftDistribClass
long_eq_three_mul_short
shortAddLongRoot_shortRoot
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
FaithfulSMul.algebraMap_injective
RootPairing.algebraMap_pairingIn
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_ofNat
pairingIn_short_long πŸ“–mathematicalβ€”RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
toIsValuedIn
short
long
β€”toIsValuedIn
RootPairing.pairingIn_pairingIn_mem_set_of_isCrystal_of_isRed
toIsReduced
pairingIn_long_short
Int.instCharZero
Nat.instAtLeastTwoHAddOfNat
pairingIn_threeShortAddLong_left πŸ“–mathematicalβ€”RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
toIsValuedIn
threeShortAddLong
short
long
β€”toIsValuedIn
RootPairing.pairingIn_eq_add_of_root_eq_smul_add_smul
instFaithfulSMulIntOfCharZero
AddCommGroup.intIsScalarTower
Nat.instAtLeastTwoHAddOfNat
threeShortAddLongRoot_eq
one_smul
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.cast_smul_eq_nsmul
one_mul
pairingIn_threeShortAddLong_right πŸ“–mathematicalβ€”RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
toIsValuedIn
threeShortAddLong
short
long
β€”toIsValuedIn
Int.instIsStrictOrderedRing
instFaithfulSMulIntOfCharZero
mul_right_cancelβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
RootPairing.InvariantForm.ne_zero
Nat.instAtLeastTwoHAddOfNat
RootPairing.InvariantForm.two_mul_apply_root_root
threeShortAddLongRoot_eq
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
mul_add
Distrib.leftDistribClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
smul_eq_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
long_eq_three_mul_short
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
threeShortAddLongRoot_longRoot
FaithfulSMul.algebraMap_injective
RootPairing.algebraMap_pairingIn
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
pairingIn_threeShortAddTwoLong_left πŸ“–mathematicalβ€”RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
toIsValuedIn
threeShortAddTwoLong
short
long
β€”toIsValuedIn
RootPairing.pairingIn_eq_add_of_root_eq_smul_add_smul
instFaithfulSMulIntOfCharZero
AddCommGroup.intIsScalarTower
Nat.instAtLeastTwoHAddOfNat
threeShortAddTwoLongRoot_eq
Nat.cast_smul_eq_nsmul
pairingIn_threeShortAddTwoLong_right πŸ“–mathematicalβ€”RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
toIsValuedIn
threeShortAddTwoLong
short
long
β€”Nat.instAtLeastTwoHAddOfNat
toIsValuedIn
Int.instIsStrictOrderedRing
instFaithfulSMulIntOfCharZero
mul_right_cancelβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
RootPairing.InvariantForm.ne_zero
RootPairing.InvariantForm.two_mul_apply_root_root
threeShortAddTwoLongRoot_eq
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
mul_add
Distrib.leftDistribClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
long_eq_three_mul_short
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
threeShortAddTwoLongRoot_longRoot
FaithfulSMul.algebraMap_injective
RootPairing.algebraMap_pairingIn
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_ofNat
pairingIn_twoShortAddLong_left πŸ“–mathematicalβ€”RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
toIsValuedIn
twoShortAddLong
short
long
β€”toIsValuedIn
RootPairing.pairingIn_eq_add_of_root_eq_smul_add_smul
instFaithfulSMulIntOfCharZero
AddCommGroup.intIsScalarTower
Nat.instAtLeastTwoHAddOfNat
twoShortAddLongRoot_eq
one_smul
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.cast_smul_eq_nsmul
one_mul
pairingIn_twoShortAddLong_right πŸ“–mathematicalβ€”RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
toIsValuedIn
twoShortAddLong
short
long
β€”Nat.instAtLeastTwoHAddOfNat
toIsValuedIn
Int.instIsStrictOrderedRing
instFaithfulSMulIntOfCharZero
mul_right_cancelβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
RootPairing.InvariantForm.ne_zero
RootPairing.InvariantForm.two_mul_apply_root_root
twoShortAddLongRoot_eq
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
mul_add
Distrib.leftDistribClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
smul_eq_mul
mul_assoc
long_eq_three_mul_short
twoShortAddLongRoot_shortRoot
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
FaithfulSMul.algebraMap_injective
RootPairing.algebraMap_pairingIn
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_ofNat
pairing_long_short πŸ“–mathematicalβ€”RootPairing.pairing
long
short
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
toIsValuedIn
RootPairing.algebraMap_pairingIn
pairingIn_long_short
eq_intCast
RingHom.instRingHomClass
Int.cast_neg
Int.cast_ofNat
pairing_short_long πŸ“–mathematicalβ€”RootPairing.pairing
short
long
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”toIsValuedIn
RootPairing.algebraMap_pairingIn
pairingIn_short_long
eq_intCast
RingHom.instRingHomClass
Int.cast_neg
Int.cast_one
setOf_index_eq_univ πŸ“–mathematicalβ€”Set
Set.instInsert
long
InvolutiveNeg.toNeg
RootPairing.indexNeg
short
shortAddLong
twoShortAddLong
threeShortAddLong
threeShortAddTwoLong
Set.instSingletonSet
Set.univ
β€”Set.eq_univ_iff_forall
Function.instEmbeddingLikeEmbedding
mem_allRoots
shortAddLongRoot_eq πŸ“–mathematicalβ€”shortAddLongRoot
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
shortRoot
longRoot
β€”RingHomInvPair.ids
RootPairing.root_reflectionPerm
pairing_short_long
neg_smul
one_smul
sub_neg_eq_add
shortAddLongRoot_shortRoot πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
RootPairing.InvariantForm.form
shortAddLongRoot
shortRoot
β€”RingHomInvPair.ids
RootPairing.root_reflectionPerm
RootPairing.InvariantForm.apply_reflection_reflection
span_eq_top πŸ“–mathematicalβ€”Submodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instInsert
longRoot
Set.instSingletonSet
shortRoot
Top.top
Submodule
Submodule.instTop
β€”RootPairing.span_root_image_eq_top_of_forall_orthogonal
CharZero.NeZero.two
Set.ext
Function.instEmbeddingLikeEmbedding
Submodule.span_subset_span
AddCommGroup.intIsScalarTower
mem_span_of_mem_allRoots
isOrthogonal_short_and_long
threeShortAddLongRoot_eq πŸ“–mathematicalβ€”threeShortAddLongRoot
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
shortRoot
longRoot
β€”Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.ids
RootPairing.root_reflectionPerm
pairing_long_short
neg_smul
sub_neg_eq_add
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_eval₁
zero_add
Mathlib.Tactic.Module.NF.add_eq_eval₃
add_zero
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
threeShortAddLongRoot_longRoot πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
RootPairing.InvariantForm.form
threeShortAddLongRoot
longRoot
β€”RingHomInvPair.ids
RootPairing.root_reflectionPerm
RootPairing.InvariantForm.apply_reflection_reflection
threeShortAddTwoLongRoot_eq πŸ“–mathematicalβ€”threeShortAddTwoLongRoot
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
shortRoot
longRoot
β€”Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.ids
RootPairing.root_reflectionPerm
pairing_long_short
neg_smul
sub_neg_eq_add
map_add
SemilinearMapClass.toAddHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
RootPairing.reflection_apply_self
map_smul
SemilinearMapClass.toMulActionSemiHomClass
pairing_short_long
one_smul
smul_add
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.neg_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval₃
add_zero
AddCommGroup.intIsScalarTower
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
zero_add
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
eq_intCast
Int.cast_neg
Int.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
threeShortAddTwoLongRoot_longRoot πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
RootPairing.InvariantForm.form
threeShortAddTwoLongRoot
longRoot
β€”RingHomInvPair.ids
RootPairing.root_reflectionPerm
RootPairing.InvariantForm.apply_reflection_reflection
toIsReduced πŸ“–mathematicalβ€”RootPairing.IsReducedβ€”β€”
toIsValuedIn πŸ“–mathematicalβ€”RootPairing.IsValuedIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”β€”
twoShortAddLongRoot_eq πŸ“–mathematicalβ€”twoShortAddLongRoot
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
shortRoot
longRoot
β€”Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.ids
RootPairing.root_reflectionPerm
pairing_short_long
neg_smul
one_smul
sub_neg_eq_add
map_add
SemilinearMapClass.toAddHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
RootPairing.reflection_apply_self
pairing_long_short
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.neg_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval₃
add_zero
AddCommGroup.intIsScalarTower
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
zero_add
Mathlib.Tactic.Module.NF.add_eq_eval₁
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
eq_intCast
Int.cast_neg
Int.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
twoShortAddLongRoot_shortRoot πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
RootPairing.InvariantForm.form
twoShortAddLongRoot
shortRoot
β€”RingHomInvPair.ids
RootPairing.root_reflectionPerm
RootPairing.InvariantForm.apply_reflection_reflection

RootPairing.IsG2

Definitions

NameCategoryTheorems
toEmbeddedG2 πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
card_base_support_eq_two πŸ“–mathematicalβ€”Finset.card
RootPairing.Base.support
β€”nonempty
Fintype.card_fin
Module.finrank_eq_card_basis
commRing_strongRankCondition
instNontrivialOfCharZero
toIsIrreducible
RootPairing.instIsRootSystemOfNonemptyOfNeZeroOfNatOfIsIrreducible
CharZero.NeZero.two
Fintype.card_coe
exists_pairingIn_neg_three πŸ“–mathematicalβ€”RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
toIsValuedIn
β€”β€”
nonempty πŸ“–β€”β€”β€”β€”toIsValuedIn
exists_pairingIn_neg_three
pairingIn_mem_zero_one_three πŸ“–mathematicalβ€”Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”toIsValuedIn
exists_pairingIn_neg_three
Mathlib.Tactic.Push.not_forall_eq
RootPairing.pairingIn_pairingIn_mem_set_of_isCrystal_of_isRed
Set.mem_insert_iff
RootPairing.forall_pairingIn_eq_swap_or
RootPairing.pairingIn_pairingIn_mem_set_of_isCrystal_of_isRed'
span_eq_rootSpan_int πŸ“–mathematicalFinset
Finset.instMembership
RootPairing.Base.support
Submodule.span
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
Set
Set.instInsert
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Set.instSingletonSet
RootPairing.rootSpan
Int.instCommRing
β€”Set.image_pair
Finset.coe_pair
Finset.eq_of_subset_of_card_le
card_base_support_eq_two
Finset.card_insert_of_notMem
Finset.card_singleton
RootPairing.Base.span_int_root_support
toIsIrreducible πŸ“–mathematicalβ€”RootPairing.IsIrreducibleβ€”β€”
toIsReduced πŸ“–mathematicalβ€”RootPairing.IsReducedβ€”β€”
toIsValuedIn πŸ“–mathematicalβ€”RootPairing.IsValuedIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”β€”

RootPairing.IsNotG2

Theorems

NameKindAssumesProvesValidatesDepends On
pairingIn_mem_zero_one_two πŸ“–mathematicalβ€”Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
RootPairing.pairingIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
toIsValuedIn
β€”β€”
toIsIrreducible πŸ“–mathematicalβ€”RootPairing.IsIrreducibleβ€”β€”
toIsReduced πŸ“–mathematicalβ€”RootPairing.IsReducedβ€”β€”
toIsValuedIn πŸ“–mathematicalβ€”RootPairing.IsValuedIn
Int.instCommRing
Ring.toIntAlgebra
CommRing.toRing
β€”β€”

---

← Back to Index