| Name | Category | Theorems |
cartanSubalgebra 📖 | CompOp | 4 mathmath: instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraCartanSubalgebra, h_mem_cartanSubalgebra, cartanSubalgebra_eq_lieSpan, cartanSubalgebra_le_lieAlgebra
|
cartanSubalgebra' 📖 | CompOp | 5 mathmath: span_range_h'_eq_top, instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra', instIsTriangularizableSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra'Forall, h_mem_cartanSubalgebra', coe_genWeightSpace_zero_eq_span_range_u
|
e 📖 | CompOp | 12 mathmath: isSl2Triple, lie_h_e, lie_e_f_same, e_lie_v_ne, ω_mul_e, isNilpotent_e, ω_mul_f, lie_e_lie_f_apply, e_mem_lieAlgebra, lie_e_f_mul_ω, e_lie_u, lie_e_f_ne
|
f 📖 | CompOp | 12 mathmath: isSl2Triple, isNilpotent_f, lie_e_f_same, f_lie_v_ne, ω_mul_e, lie_h_f, ω_mul_f, lie_e_lie_f_apply, f_lie_v_same, f_mem_lieAlgebra, lie_e_f_mul_ω, lie_e_f_ne
|
h 📖 | CompOp | 14 mathmath: h_def, isSl2Triple, h_mem_cartanSubalgebra, trace_h_eq_zero, cartanSubalgebra_eq_lieSpan, lie_h_e, span_range_h_le_range_diagonal, ω_mul_h, diagonal_elim_mem_span_h_iff, lie_e_f_same, h_mem_lieAlgebra, lie_h_f, lie_h_h, h_eq_diagonal
|
h' 📖 | CompOp | 1 mathmath: span_range_h'_eq_top
|
lieAlgebra 📖 | CompOp | 13 mathmath: instHasTrivialRadical, mem_ωConjLieSubmodule_iff, trace_toEnd_eq_zero, span_range_h'_eq_top, instIsLieAbelianSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra', instIsIrreducible, ωConjLieSubmodule_eq_top_iff, cartanSubalgebra_le_lieAlgebra, instIsTriangularizableSubtypeMatrixSumMemFinsetSupportLieSubalgebraLieAlgebraCartanSubalgebra'Forall, h_mem_lieAlgebra, f_mem_lieAlgebra, e_mem_lieAlgebra, coe_genWeightSpace_zero_eq_span_range_u
|
u 📖 | CompOp | 4 mathmath: lie_e_lie_f_apply, f_lie_v_same, coe_genWeightSpace_zero_eq_span_range_u, e_lie_u
|
v 📖 | CompOp | 4 mathmath: f_lie_v_ne, e_lie_v_ne, f_lie_v_same, e_lie_u
|
ω 📖 | CompOp | 8 mathmath: mem_ωConjLieSubmodule_iff, ω_mul_h, ωConj_invFun, ω_mul_ω, ωConj_toFun, ω_mul_e, ω_mul_f, lie_e_f_mul_ω
|
ωConj 📖 | CompOp | 3 mathmath: ωConj_invFun, ωConj_toFun, ωConj_mem_of_mem
|
ωConjLieSubmodule 📖 | CompOp | 2 mathmath: mem_ωConjLieSubmodule_iff, ωConjLieSubmodule_eq_top_iff
|