Documentation Verification Report

Lemmas

šŸ“ Source: Mathlib/LinearAlgebra/RootSystem/GeckConstruction/Lemmas.lean

Statistics

MetricCount
Definitions0
Theoremsroot_add_root_mem_of_mem_of_mem, root_sub_mem_iff_root_add_mem, root_sub_root_mem_of_mem_of_mem, chainBotCoeff_mul_chainTopCoeff, isNotG2
5
Total5

RootPairing

Theorems

NameKindAssumesProvesValidatesDepends On
chainBotCoeff_mul_chainTopCoeff šŸ“–mathematicalFinset
Finset.instMembership
Base.support
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Set
Set.instMembership
Set.range
chainBotCoeff
chainTopCoeff
—chainBotCoeff_mul_chainTopCoeff.isNotG2
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
add_zero
Set.mem_range_self
RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
sub_eq_add_neg
neg_add_rev
neg_neg
neg_mem_range_root_iff
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
add_comm
chainBotCoeff.congr_simp
pairingIn_reflectionPerm_self_left
instFaithfulSMulIntOfCharZero
chainBotCoeff_reflectionPerm_right
chainTopCoeff_reflectionPerm_right
IsNotG2.toIsValuedIn
chainBotCoeff_if_one_zero

RootPairing.Base

Theorems

NameKindAssumesProvesValidatesDepends On
root_add_root_mem_of_mem_of_mem šŸ“–ā€”Finset
Finset.instMembership
support
Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
——RootPairing.neg_mem_range_root_iff
RingHomInvPair.ids
RootPairing.root_reflectionPerm
RootPairing.reflection_apply_self
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.neg_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval₁
zero_add
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_evalā‚ƒ
sub_zero
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
root_sub_root_mem_of_mem_of_mem
Mathlib.Tactic.Contrapose.contraposeā‚„
neg_neg
neg_add_eq_sub
neg_sub
root_sub_mem_iff_root_add_mem šŸ“–ā€”Finset
Finset.instMembership
support
Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
——root_add_root_mem_of_mem_of_mem
root_sub_root_mem_of_mem_of_mem
root_sub_root_mem_of_mem_of_mem šŸ“–ā€”Finset
Finset.instMembership
support
Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
——lt_or_ge
RootPairing.neg_mem_range_root_iff
neg_sub
RootPairing.root_sub_root_mem_of_pairingIn_pos
Function.Embedding.injective
sub_eq_zero
left_eq_add
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_sub_assoc
add_comm
Function.instEmbeddingLikeEmbedding
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval₁
zero_add
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_evalā‚‚
sub_zero
Mathlib.Tactic.Module.NF.eq_cons_const
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Module.NF.eq_cons_cons
Mathlib.Tactic.Ring.neg_congr
sub_notMem_range_root
Mathlib.Tactic.Contrapose.contraposeā‚‚
FaithfulSMul.algebraMap_injective
instFaithfulSMulIntOfCharZero
Nat.instAtLeastTwoHAddOfNat
RootPairing.algebraMap_pairingIn
map_sub
RingHomClass.toAddMonoidHomClass
map_add
AddMonoidHomClass.toAddHomClass
map_ofNat
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
SemilinearMapClass.toAddHomClass
RootPairing.pairing_same
LinearMap.congr_arg
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
neg_eq_zero
sub_eq_zero_of_eq
sub_ne_zero
sub_neg_eq_add
RootPairing.ne_zero
CharZero.NeZero.two
Module.IsReflexive.of_isPerfPair
RootPairing.isPerfPair_toLinearMap
Mathlib.Tactic.Contrapose.contraposeā‚„
RootPairing.pairingIn_neg_two_neg_two_iff
Module.IsReflexive.to_isTorsionFree
RootPairing.pairingIn_pairingIn_mem_set_of_isCrystallographic
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
Int.instZeroLEOneClass
Int.instCharZero
eq_intCast
Int.cast_neg
Int.cast_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Mathlib.Meta.NormNum.instAtLeastTwo
pairingIn_le_zero_of_ne
Mathlib.Tactic.Module.NF.sub_eq_evalā‚ƒ
Mathlib.Tactic.Module.NF.eq_const_cons

RootPairing.chainBotCoeff_mul_chainTopCoeff

Theorems

NameKindAssumesProvesValidatesDepends On
isNotG2 šŸ“–mathematicalFinset
Finset.instMembership
RootPairing.Base.support
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Set
Set.instMembership
Set.range
RootPairing.IsNotG2—Module.IsReflexive.of_isPerfPair
RootPairing.isPerfPair_toLinearMap
IsAddTorsionFree.of_isTorsionFree
Module.IsReflexive.to_isTorsionFree
IsDomain.toIsCancelMulZero
RootPairing.not_isG2_iff_isNotG2
Submodule.mem_span_pair
RootPairing.IsG2.span_eq_rootSpan_int
Submodule.subset_span
Set.mem_range_self
two_nsmul
RootPairing.nsmul_notMem_range_root
Nat.instAtLeastTwoHAddOfNat
neg_add_cancel
RootPairing.ne_zero
CharZero.NeZero.two
add_eq_right
AddRightCancelSemigroup.toIsRightCancelAdd
sub_eq_iff_eq_add
sub_eq_add_neg
neg_eq_iff_eq_neg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
add_zero
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Abel.zero_termg
Mathlib.Tactic.Abel.subst_into_smul_upcast
Mathlib.Tactic.Abel.term_smulg
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Abel.zero_smulg
sub_eq_zero
left_eq_add
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_sub_assoc
add_comm
sub_self
eq_neg_add_iff_add_eq
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_eval₁
Mathlib.Tactic.Module.NF.add_eq_evalā‚‚
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
RootPairing.pairingIn_eq_add_of_root_eq_smul_add_smul
instFaithfulSMulIntOfCharZero
AddCommGroup.intIsScalarTower
RootPairing.pairingIn_same
Int.zsmul_eq_mul
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
RootPairing.IsG2.pairingIn_mem_zero_one_three
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval₁
Mathlib.Tactic.Module.NF.sub_eq_evalā‚‚
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Function.Embedding.injective
RootPairing.Base.root_ne_neg_of_ne
instNontrivialOfCharZero

---

← Back to Index