Documentation Verification Report

Relations

πŸ“ Source: Mathlib/LinearAlgebra/RootSystem/GeckConstruction/Relations.lean

Statistics

MetricCount
DefinitionsRelations, Relations, Relations
3
TheoremsisSl2Triple, lie_e_f_ne, lie_e_f_same, lie_h_e, lie_h_f
5
Total8

AddCommGrpCat.Colimits

Definitions

NameCategoryTheorems
Relations πŸ“–CompOpβ€”

FirstOrder.Language

Definitions

NameCategoryTheorems
Relations πŸ“–CompOp
27 mathmath: LHom.id_onRelation, lhomWithConstants_onRelation, order.instSubsingleton, card_eq_card_functions_add_card_relations, empty.isFraisseLimit_of_countable_infinite, constantsOn_Relations, LHom.ofIsEmpty_onRelation, LHom.sumInr_onRelation, graph.instSubsingleton, LHom.sumElim_onRelation, order.instIsEmptyRelationsOfNatNat, withConstants_relMap_sumInl, BoundedFormula.mapTermRelEquiv_apply, orderLHom_onRelation, BoundedFormula.listEncode_sigma_injective, LHom.sumInl_onRelation, relMap_sumInl, LHom.sumMap_onRelation, BoundedFormula.listDecode_encode_list, BoundedFormula.mapTermRelEquiv_symm_apply, BoundedFormula.encoding_Ξ“, BoundedFormula.mapTermRel_mapTermRel, BoundedFormula.mapTermRel_id_id_id, card_relations_sum, relMap_sumInr, LHom.Injective.onRelation, skolem₁_Relations

Module

Definitions

NameCategoryTheorems
Relations πŸ“–CompDataβ€”

RootPairing.GeckConstruction

Theorems

NameKindAssumesProvesValidatesDepends On
isSl2Triple πŸ“–mathematicalβ€”IsSl2Triple
Matrix
Finset
SetLike.instMembership
Finset.instSetLike
RootPairing.Base.support
LieRing.ofAssociativeRing
Matrix.instRing
instFintypeSum
Finset.Subtype.fintype
CommRing.toRing
h
e
f
β€”Nat.instAtLeastTwoHAddOfNat
Matrix.diagonal_apply_eq
RootPairing.pairingIn_same
instFaithfulSMulIntOfCharZero
Int.cast_ofNat
lie_e_f_same
lie_h_e
RootPairing.Base.cartanMatrixIn_apply_same
zsmul_eq_mul
nsmul_eq_mul
lie_h_f
neg_smul
lie_e_f_ne πŸ“–mathematicalβ€”Bracket.bracket
Matrix
Finset
SetLike.instMembership
Finset.instSetLike
RootPairing.Base.support
Ring.instBracket
Matrix.nonUnitalNonAssocRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instFintypeSum
Finset.Subtype.fintype
e
f
Matrix.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”Matrix.ext
Fintype.sum_sum_type
Finset.sum_congr
MulZeroClass.mul_zero
Finset.sum_const_zero
mul_ite
ite_mul
RootPairing.Base.cartanMatrix.congr_simp
one_mul
MulZeroClass.zero_mul
Finset.sum_ite_eq'
zero_add
add_zero
sub_zero
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
RootPairing.Base.sub_notMem_range_root
RingHomInvPair.ids
RootPairing.root_reflectionPerm
RootPairing.reflection_apply_self
RootPairing.chainBotCoeff_reflectionPerm_right
sub_self
eq_or_ne
Matrix.transpose_apply
Pi.zero_apply
Matrix.zero_apply
RootPairing.Base.root_sub_root_mem_of_mem_of_mem
Finset.sum_eq_single_of_mem
Finset.mem_univ
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.const_add_termg
add_comm
RootPairing.chainBotCoeff_mul_chainTopCoeff
Nat.cast_one
RootPairing.Base.root_sub_mem_iff_root_add_mem
Finset.sum_ite_of_false
mul_one
sub_eq_zero
lie_e_f_same πŸ“–mathematicalβ€”Bracket.bracket
Matrix
Finset
SetLike.instMembership
Finset.instSetLike
RootPairing.Base.support
Ring.instBracket
Matrix.nonUnitalNonAssocRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instFintypeSum
Finset.Subtype.fintype
e
f
h
β€”Module.IsReflexive.of_isPerfPair
RootPairing.isPerfPair_toLinearMap
IsAddTorsionFree.of_isTorsionFree
Module.IsReflexive.to_isTorsionFree
IsDomain.toIsCancelMulZero
Matrix.ext
Fintype.sum_sum_type
Finset.sum_congr
MulZeroClass.mul_zero
Finset.sum_const_zero
mul_ite
ite_mul
one_mul
MulZeroClass.zero_mul
Finset.sum_ite_eq'
zero_add
sub_self
RingHomInvPair.ids
RootPairing.root_reflectionPerm
RootPairing.reflection_apply_self
sub_eq_add_neg
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instAtLeastTwoHAddOfNat
RootPairing.ne_zero
CharZero.NeZero.two
AddLeftCancelSemigroup.toIsLeftCancelAdd
mul_one
add_zero
add_neg_cancel
RootPairing.chainBotCoeff_reflectionPerm_right
eq_or_ne
RootPairing.nsmul_notMem_range_root
two_smul
eq_sub_iff_add_eq
RootPairing.ne_neg
Finset.sum_eq_single_of_mem
Finset.mem_univ
RootPairing.Base.cartanMatrixIn_apply_same
instFaithfulSMulIntOfCharZero
Nat.abs_ofNat
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Int.cast_ofNat
sub_zero
RootPairing.pairingIn_same
neg_add_rev
smul_neg
zero_sub
neg_zero
RootPairing.pairingIn_reflectionPerm_self_left
Int.cast_neg
add_sub_cancel
Function.instEmbeddingLikeEmbedding
add_sub_cancel_left
Matrix.diagonal_apply_ne
lie_h_e πŸ“–mathematicalβ€”Bracket.bracket
Matrix
Finset
SetLike.instMembership
Finset.instSetLike
RootPairing.Base.support
Ring.instBracket
Matrix.nonUnitalNonAssocRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instFintypeSum
Finset.Subtype.fintype
h
e
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Matrix.addGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
RootPairing.Base.cartanMatrix
β€”Matrix.ext
Fintype.sum_sum_type
Finset.sum_congr
MulZeroClass.mul_zero
Finset.sum_const_zero
mul_ite
MulZeroClass.zero_mul
add_zero
sub_self
smul_zero
Finset.sum_eq_ite
Matrix.diagonal_apply_ne
mul_one
Matrix.diagonal_apply_eq
ite_mul
RootPairing.pairingIn.congr_simp
RootPairing.pairingIn_reflectionPerm_self_left
instFaithfulSMulIntOfCharZero
Int.cast_neg
mul_neg
one_mul
zero_add
zero_sub
smul_ite
zsmul_eq_mul
neg_zero
neg_neg
Finset.sum_ite_eq'
sub_zero
smul_add
Finset.sum_sub_distrib
Finset.sum_subset
Finset.subset_univ
IsDomain.to_noZeroDivisors
eq_or_ne
Finset.insert_eq_of_mem
Finset.sum_singleton
AddRightCancelSemigroup.toIsRightCancelAdd
RootPairing.ne_zero
CharZero.NeZero.two
Finset.sum_insert
ite_sub_ite
RootPairing.pairingIn_eq_add_of_root_eq_add
Int.cast_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
lie_h_f πŸ“–mathematicalβ€”Bracket.bracket
Matrix
Finset
SetLike.instMembership
Finset.instSetLike
RootPairing.Base.support
Ring.instBracket
Matrix.nonUnitalNonAssocRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instFintypeSum
Finset.Subtype.fintype
h
f
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Matrix.addGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
RootPairing.Base.cartanMatrix
β€”Ring.lie_def
mul_sub
mul_assoc
Ο‰_mul_h
Ο‰_mul_f
neg_sub
neg_mul
mul_neg
sub_mul
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
add_zero
lie_h_e
Matrix.mul_smul
Algebra.to_smulCommClass
zsmul_eq_mul
neg_smul
Ο‰_mul_Ο‰
one_mul

---

← Back to Index