Documentation Verification Report

Irreducible

πŸ“ Source: Mathlib/LinearAlgebra/RootSystem/Irreducible.lean

Statistics

MetricCount
DefinitionsIsIrreducible, instBoundedOrderSubtypeSubmoduleMemSublatticeInvtRootSubmodule, invtRootSubmodule
3
Theoremseq_top_of_invtSubmodule_coreflection, eq_top_of_invtSubmodule_reflection, mk', nontrivial, nontrivial', coe_bot, coe_top, eq_top_of_mem_invtSubmodule_of_forall_eq_univ, exist_set_root_not_disjoint_and_le_ker_coroot'_of_invtSubmodule, exists_form_eq_form_and_form_ne_zero, instIsIrreducibleFlip, instIsRootSystemOfNonemptyOfNeZeroOfNatOfIsIrreducible, instNontrivialSubtypeSubmoduleMemSublatticeInvtRootSubmodule, bot_mem, eq_bot_iff, eq_top_iff, top_mem, invtSubmodule_reflection_of_invtSubmodule_coreflection, isIrreducible_iff, isIrreducible_iff_invtRootSubmodule, isSimpleModule_weylGroupRootRep, isSimpleModule_weylGroupRootRep_iff, mem_invtRootSubmodule_iff, span_orbit_eq_top, span_root_image_eq_top_of_forall_orthogonal
25
Total28

RootPairing

Definitions

NameCategoryTheorems
IsIrreducible πŸ“–CompData
7 mathmath: IsNotG2.toIsIrreducible, isIrreducible_iff, IsIrreducible.mk', instIsIrreducibleFlip, isIrreducible_iff_invtRootSubmodule, IsG2.toIsIrreducible, LieAlgebra.IsKilling.instIsIrreducibleSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystemOfIsSimple
instBoundedOrderSubtypeSubmoduleMemSublatticeInvtRootSubmodule πŸ“–CompOp
5 mathmath: invtRootSubmodule.eq_top_iff, invtRootSubmodule.eq_bot_iff, coe_bot, isIrreducible_iff_invtRootSubmodule, coe_top
invtRootSubmodule πŸ“–CompOp
10 mathmath: instNontrivialSubtypeSubmoduleMemSublatticeInvtRootSubmodule, invtRootSubmodule.bot_mem, invtRootSubmodule.eq_top_iff, mem_invtRootSubmodule_iff, invtRootSubmodule.top_mem, invtRootSubmodule.eq_bot_iff, root_mem_submodule_iff_of_add_mem_invtSubmodule, coe_bot, isIrreducible_iff_invtRootSubmodule, coe_top

Theorems

NameKindAssumesProvesValidatesDepends On
coe_bot πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
invtRootSubmodule
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
BoundedOrder.toOrderBot
instBoundedOrderSubtypeSubmoduleMemSublatticeInvtRootSubmodule
Submodule.instBot
β€”β€”
coe_top πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
invtRootSubmodule
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
BoundedOrder.toOrderTop
instBoundedOrderSubtypeSubmoduleMemSublatticeInvtRootSubmodule
Submodule.instTop
β€”β€”
eq_top_of_mem_invtSubmodule_of_forall_eq_univ πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
LinearEquiv.toLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
reflection
Set.univ
Top.top
Submodule.instTop
β€”Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.ids
exist_set_root_not_disjoint_and_le_ker_coroot'_of_invtSubmodule
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Set.eq_empty_or_nonempty
Algebra.to_smulCommClass
RingHomSurjective.ids
isPerfPair_toLinearMap
corootSpan_dualAnnihilator_map_eq_iInf_ker_coroot'
smulCommClass_self
Submodule.map.congr_simp
IsRootSystem.span_coroot_eq_top
Submodule.dualAnnihilator_top
Submodule.map_bot
Submodule.disjoint_span_singleton'
ne_zero
Set.image_univ
IsRootSystem.span_root_eq_top
exist_set_root_not_disjoint_and_le_ker_coroot'_of_invtSubmodule πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
reflection
Disjoint
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.span
Set
Set.instSingletonSet
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Preorder.toLE
PartialOrder.toPreorder
LinearMap.ker
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
coroot'
β€”Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.ids
pairing_same
Submodule.mem_invtSubmodule_reflection_iff
exists_form_eq_form_and_form_ne_zero πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
InvariantForm.form
Function.Embedding
Function.instFunLikeEmbedding
root
β€”Nat.instAtLeastTwoHAddOfNat
Submodule.span_le
MulAction.mem_orbit_iff
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
weylGroup_apply_root
Mathlib.Tactic.Push.not_and_eq
Equiv.root_indexEquiv_eq_smul
Subgroup.smul_def
InvariantForm.apply_weylGroup_smul
InvariantForm.apply_root_ne_zero
span_orbit_eq_top
instIsIrreducibleFlip πŸ“–mathematicalβ€”IsIrreducible
flip
β€”IsIrreducible.nontrivial'
IsIrreducible.nontrivial
IsIrreducible.eq_top_of_invtSubmodule_coreflection
IsIrreducible.eq_top_of_invtSubmodule_reflection
instIsRootSystemOfNonemptyOfNeZeroOfNatOfIsIrreducible πŸ“–mathematicalβ€”IsRootSystemβ€”Nat.instAtLeastTwoHAddOfNat
IsIrreducible.eq_top_of_invtSubmodule_reflection
rootSpan_mem_invtSubmodule_reflection
rootSpan_ne_bot
IsIrreducible.eq_top_of_invtSubmodule_coreflection
corootSpan_mem_invtSubmodule_coreflection
corootSpan_ne_bot
instNontrivialSubtypeSubmoduleMemSublatticeInvtRootSubmodule πŸ“–mathematicalβ€”Nontrivial
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
invtRootSubmodule
β€”bot_ne_top
Submodule.instNontrivial
invtSubmodule_reflection_of_invtSubmodule_coreflection πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
coreflection
reflection
Submodule.map
Module.Dual
LinearMap.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
RingHomSurjective.ids
LinearEquiv.symm
LinearMap.toPerfPair
toLinearMap
isPerfPair_toLinearMap
Submodule.dualAnnihilator
β€”RingHomInvPair.ids
Algebra.to_smulCommClass
RingHomSurjective.ids
isPerfPair_toLinearMap
smulCommClass_self
LinearEquiv.map_mem_invtSubmodule_iff
LinearEquiv.symm_symm
toPerfPair_conj_reflection
Module.End.mem_invtSubmodule
Submodule.map_le_iff_le_comap
LE.le.trans
Submodule.dualAnnihilator_map_dualMap_le
Submodule.dualAnnihilator_anti
isIrreducible_iff πŸ“–mathematicalβ€”IsIrreducible
Nontrivial
Top.top
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
β€”RingHomInvPair.ids
isIrreducible_iff_invtRootSubmodule πŸ“–mathematicalβ€”IsIrreducible
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsSimpleOrder
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
invtRootSubmodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
instBoundedOrderSubtypeSubmoduleMemSublatticeInvtRootSubmodule
β€”instNontrivialSubtypeSubmoduleMemSublatticeInvtRootSubmodule
IsIrreducible.eq_top_of_invtSubmodule_reflection
RingHomInvPair.ids
mem_invtRootSubmodule_iff
IsIrreducible.mk'
IsSimpleOrder.eq_top_of_lt
isSimpleModule_weylGroupRootRep πŸ“–mathematicalβ€”IsSimpleModule
MonoidAlgebra
Aut
Subgroup
Equiv.instGroup
SetLike.instMembership
Subgroup.instSetLike
weylGroup
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidAlgebra.ring
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Representation.asModule
AddCommGroup.toAddCommMonoid
weylGroupRootRep
Representation.instAddCommGroupAsModule
Representation.instModuleMonoidAlgebraAsModule
β€”IsIrreducible.nontrivial
RingHomInvPair.ids
isSimpleModule_weylGroupRootRep_iff
IsIrreducible.eq_top_of_invtSubmodule_reflection
isSimpleModule_weylGroupRootRep_iff πŸ“–mathematicalβ€”IsSimpleModule
MonoidAlgebra
Aut
Subgroup
Equiv.instGroup
SetLike.instMembership
Subgroup.instSetLike
weylGroup
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidAlgebra.ring
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Representation.asModule
AddCommGroup.toAddCommMonoid
weylGroupRootRep
Representation.instAddCommGroupAsModule
Representation.instModuleMonoidAlgebraAsModule
Top.top
Submodule
Submodule.instTop
β€”RingHomInvPair.ids
isSimpleModule_iff
OrderIso.isSimpleOrder_iff
weylGroup.induction
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
Module.End.invtSubmodule.one
Module.End.invtSubmodule.comp
Representation.mem_invtSubmodule
IsSimpleOrder.eq_bot_or_eq_top
Representation.invtSubmodule.instNontrivialSubtypeSubmoduleMemSublattice
eq_or_ne
reflection_mem_weylGroup
mem_invtRootSubmodule_iff πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
invtRootSubmodule
Module.End.invtSubmodule
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
reflection
β€”RingHomInvPair.ids
span_orbit_eq_top πŸ“–mathematicalβ€”Submodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
MulAction.orbit
Aut
Subgroup
Equiv.instGroup
SetLike.instMembership
Subgroup.instSetLike
weylGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Subgroup.instDistribMulActionSubtypeMem
Equiv.instDistribMulActionAut
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Top.top
Submodule
Submodule.instTop
β€”Nat.instAtLeastTwoHAddOfNat
IsIrreducible.eq_top_of_invtSubmodule_reflection
reflection_mem_weylGroup
Module.End.span_orbit_mem_invtSubmodule
Subgroup.smulCommClass_left
Equiv.instSMulCommClassAut
MulAction.mem_orbit_self
ne_zero
span_root_image_eq_top_of_forall_orthogonal πŸ“–mathematicalSet.Nonempty
IsOrthogonal
Submodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Top.top
Submodule
Submodule.instTop
β€”Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.ids
Submodule.mem_invtSubmodule_reflection_of_mem
Module.End.mem_invtSubmodule
Submodule.mem_comap
LinearEquiv.coe_coe
Function.IsFixedPt.eq
isFixedPt_reflection_of_isOrthogonal
IsIrreducible.eq_top_of_invtSubmodule_reflection
ne_zero

RootPairing.IsIrreducible

Theorems

NameKindAssumesProvesValidatesDepends On
eq_top_of_invtSubmodule_coreflection πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
RootPairing.coreflection
Top.top
Submodule.instTop
β€”β€”
eq_top_of_invtSubmodule_reflection πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
RootPairing.reflection
Top.top
Submodule.instTop
β€”β€”
mk' πŸ“–mathematicalTop.top
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Submodule.instTop
RootPairing.IsIrreducible
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”RingHomInvPair.ids
Module.nontrivial_dual_iff
Module.Projective.of_free
Module.Free.of_divisionRing
Equiv.nontrivial
Algebra.to_smulCommClass
RootPairing.isPerfPair_toLinearMap
smulCommClass_self
RingHomSurjective.ids
not_imp_comm
Submodule.map_eq_top_iff
RootPairing.invtSubmodule_reflection_of_invtSubmodule_coreflection
nontrivial πŸ“–mathematicalβ€”Nontrivialβ€”β€”
nontrivial' πŸ“–mathematicalβ€”Nontrivialβ€”β€”

RootPairing.invtRootSubmodule

Theorems

NameKindAssumesProvesValidatesDepends On
bot_mem πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
RootPairing.invtRootSubmodule
Bot.bot
Submodule.instBot
β€”β€”
eq_bot_iff πŸ“–mathematicalβ€”Bot.bot
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
RootPairing.invtRootSubmodule
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
BoundedOrder.toOrderBot
RootPairing.instBoundedOrderSubtypeSubmoduleMemSublatticeInvtRootSubmodule
Submodule.setLike
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
β€”Nat.instAtLeastTwoHAddOfNat
Module.IsReflexive.of_isPerfPair
RootPairing.isPerfPair_toLinearMap
RootPairing.ne_zero
Subtype.mk_eq_bot_iff
Submodule.eq_bot_iff
Mathlib.Tactic.Contrapose.contraposeβ‚‚
smulCommClass_self
LinearMap.ext_on_range
RootPairing.span_coroot'_eq_top
LinearMap.map_eq_zero_iff
Function.Bijective.injective
Module.bijective_dual_eval
RingHomInvPair.ids
Mathlib.Tactic.Contrapose.contraposeβ‚„
Submodule.smul_mem_iff
IsScalarTower.left
Submodule.sub_mem_iff_right
SMulCommClass.symm
LinearMap.flip_apply
RootPairing.reflection_apply
RootPairing.mem_invtRootSubmodule_iff
eq_top_iff πŸ“–mathematicalβ€”Top.top
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
RootPairing.invtRootSubmodule
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
BoundedOrder.toOrderTop
RootPairing.instBoundedOrderSubtypeSubmoduleMemSublatticeInvtRootSubmodule
Set
Set.instHasSubset
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
SetLike.coe
Submodule.setLike
β€”RootPairing.IsRootSystem.span_root_eq_top
IsScalarTower.left
Submodule.span_coe_eq_restrictScalars
Submodule.restrictScalars_self
Submodule.span_mono
top_mem πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
RootPairing.invtRootSubmodule
Top.top
Submodule.instTop
β€”β€”

---

← Back to Index