Documentation Verification Report

Reduced

πŸ“ Source: Mathlib/LinearAlgebra/RootSystem/Reduced.lean

Statistics

MetricCount
DefinitionsIsReduced
1
Theoremseq_or_eq_neg, linearIndependent, linearIndependent_iff, coxeterWeightIn_eq_four_iff_not_linearIndependent, coxeterWeightIn_ne_four, coxeterWeight_eq_four_iff_not_linearIndependent, coxeterWeight_ne_four_of_linearIndependent, infinite_of_linearIndependent_coxeterWeight_four, instFlipIsReduced, isReduced_iff, isReduced_iff', linearIndependent_iff_coxeterWeightIn_ne_four, linearIndependent_iff_coxeterWeight_ne_four, linearIndependent_of_add_mem_range_root, linearIndependent_of_add_mem_range_root', linearIndependent_of_sub_mem_range_root, linearIndependent_of_sub_mem_range_root', nsmul_notMem_range_root, pairingIn_neg_one_neg_four_iff, pairingIn_neg_two_neg_two_iff, pairingIn_one_four_iff, pairingIn_two_two_iff, pairing_neg_one_neg_four_iff, pairing_neg_one_neg_four_iff', pairing_neg_two_neg_two_iff, pairing_one_four_iff, pairing_one_four_iff', pairing_smul_root_eq_of_not_linearIndependent, pairing_two_two_iff
29
Total30

RootPairing

Definitions

NameCategoryTheorems
IsReduced πŸ“–CompData
7 mathmath: LieAlgebra.IsKilling.instIsReducedSubtypeWeightMemLieSubalgebraFinsetRootDualRootSystem, IsG2.toIsReduced, isReduced_iff', EmbeddedG2.toIsReduced, isReduced_iff, instFlipIsReduced, IsNotG2.toIsReduced

Theorems

NameKindAssumesProvesValidatesDepends On
coxeterWeightIn_eq_four_iff_not_linearIndependent πŸ“–mathematicalβ€”coxeterWeightIn
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
LinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
linearIndependent_iff_coxeterWeightIn_ne_four
coxeterWeightIn_ne_four πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
coxeterWeightIn_eq_four_iff_not_linearIndependent
IsReduced.linearIndependent
coxeterWeight_eq_four_iff_not_linearIndependent πŸ“–mathematicalβ€”coxeterWeight
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
LinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
linearIndependent_iff_coxeterWeight_ne_four
coxeterWeight_ne_four_of_linearIndependent πŸ“–β€”LinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”β€”Nat.instAtLeastTwoHAddOfNat
infinite_of_linearIndependent_coxeterWeight_four
not_finite
infinite_of_linearIndependent_coxeterWeight_four πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
coxeterWeight
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
Infiniteβ€”Nat.instAtLeastTwoHAddOfNat
Set.infinite_range_iff
Function.Embedding.injective
Set.Infinite.mono
RingHomInvPair.ids
RingHomCompTriple.ids
SMulCommClass.symm
Algebra.to_smulCommClass
coroot_root_two
Set.range_subset_iff
Function.IsFixedPt.image_iterate
Set.BijOn.image_eq
Set.BijOn.comp
Module.bijOn_reflection_of_mapsTo
mapsTo_reflection_root
Set.mem_image_of_mem
Set.mem_range_self
Module.infinite_range_reflection_reflection_iterate_iff
coroot_root_eq_pairing
mul_comm
coxeterWeight.eq_1
sub_eq_zero
sub_eq_add_neg
neg_smul
two_ne_zero
LinearIndependent.pair_iff
instFlipIsReduced πŸ“–mathematicalβ€”IsReduced
flip
β€”eq_or_ne
RingHomInvPair.ids
root_eq_neg_iff
Mathlib.Tactic.Push.not_and_eq
IsReduced.linearIndependent_iff
instNontrivialOfCharZero
Nat.instAtLeastTwoHAddOfNat
coxeterWeight_eq_four_iff_not_linearIndependent
coxeterWeight_flip
coroot_reflectionPerm
coreflection_apply_self
isReduced_iff πŸ“–mathematicalβ€”IsReduced
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
isReduced_iff' πŸ“–mathematicalβ€”IsReduced
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”isReduced_iff
Function.instEmbeddingLikeEmbedding
eq_or_ne
linearIndependent_iff_coxeterWeightIn_ne_four πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
linearIndependent_iff_coxeterWeight_ne_four
algebraMap_coxeterWeightIn
map_ofNat
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
linearIndependent_iff_coxeterWeight_ne_four πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”IsAddTorsionFree.of_isTorsionFree
IsDomain.toIsCancelMulZero
Nat.instAtLeastTwoHAddOfNat
coxeterWeight_ne_four_of_linearIndependent
CharZero.NeZero.two
Mathlib.Tactic.Contrapose.contraposeβ‚‚
pairing_smul_root_eq_of_not_linearIndependent
LinearIndependent.pair_symm_iff
SemigroupAction.mul_smul
SMulCommClass.smul_comm
smulCommClass_self
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
smul_left_injective
ne_zero
linearIndependent_of_add_mem_range_root πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LinearIndependent
Matrix.vecCons
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”IsReduced.linearIndependent
nsmul_notMem_range_root
Nat.instAtLeastTwoHAddOfNat
two_smul
zero_notMem_range_root
CharZero.NeZero.two
neg_add_cancel
linearIndependent_of_add_mem_range_root' πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
LinearIndependent
Matrix.vecCons
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Module.IsReflexive.of_isPerfPair
isPerfPair_toLinearMap
IsAddTorsionFree.of_isTorsionFree
Module.IsReflexive.to_isTorsionFree
IsDomain.toIsCancelMulZero
linearIndependent_of_add_mem_range_root
linearIndependent_of_sub_mem_range_root πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LinearIndependent
Matrix.vecCons
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”linearIndependent_of_add_mem_range_root
RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
sub_eq_add_neg
linearIndependent_of_sub_mem_range_root' πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LinearIndependent
Matrix.vecCons
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”Module.IsReflexive.of_isPerfPair
isPerfPair_toLinearMap
IsAddTorsionFree.of_isTorsionFree
Module.IsReflexive.to_isTorsionFree
IsDomain.toIsCancelMulZero
linearIndependent_of_sub_mem_range_root
nsmul_notMem_range_root πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”one_smul
neg_smul
Nat.cast_smul_eq_nsmul
add_neg_cancel
NeZero.charZero_one
instNontrivialOfCharZero
natCast_zsmul
Nat.AtLeastTwo.prop
smul_left_injective
Int.instIsCancelMulZero
instIsTorsionFreeIntOfIsAddTorsionFree
ne_zero
CharZero.NeZero.two
pairingIn_neg_one_neg_four_iff πŸ“–mathematicalβ€”pairingIn
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
pairing_neg_one_neg_four_iff
algebraMap_pairingIn
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_ofNat
map_neg
RingHomClass.toAddMonoidHomClass
FaithfulSMul.algebraMap_injective
pairingIn_neg_two_neg_two_iff πŸ“–mathematicalβ€”pairingIn
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
β€”Nat.instAtLeastTwoHAddOfNat
pairing_neg_two_neg_two_iff
algebraMap_pairingIn
map_ofNat
RingHom.instRingHomClass
RingHomClass.toAddMonoidHomClass
FaithfulSMul.algebraMap_injective
pairingIn_one_four_iff πŸ“–mathematicalβ€”pairingIn
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
pairing_one_four_iff
algebraMap_pairingIn
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_ofNat
FaithfulSMul.algebraMap_injective
pairingIn_two_two_iff πŸ“–mathematicalβ€”pairingIn
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
pairing_two_two_iff
algebraMap_pairingIn
map_ofNat
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
pairing_neg_one_neg_four_iff πŸ“–mathematicalβ€”pairing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”pairing_neg_one_neg_four_iff'
smul_right_injective
Nat.instAtLeastTwoHAddOfNat
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
NoZeroDivisors.toNoZeroSMulDivisors
IsDomain.to_noZeroDivisors
IsDomain.toIsCancelMulZero
two_ne_zero
CharZero.NeZero.two
pairing_neg_one_neg_four_iff' πŸ“–mathematicalIsSMulRegular
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
pairing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
neg_smul
pairing_reflectionPerm_self_right
pairing_reflectionPerm_self_left
RingHomInvPair.ids
root_reflectionPerm
reflection_apply_self
pairing_one_four_iff'
pairing_neg_two_neg_two_iff πŸ“–mathematicalβ€”pairing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
β€”Nat.instAtLeastTwoHAddOfNat
pairing_reflectionPerm_self_left
pairing_reflectionPerm_self_right
pairing_two_two_iff
pairing_one_four_iff πŸ“–mathematicalβ€”pairing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”pairing_one_four_iff'
smul_right_injective
Nat.instAtLeastTwoHAddOfNat
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
NoZeroDivisors.toNoZeroSMulDivisors
IsDomain.to_noZeroDivisors
IsDomain.toIsCancelMulZero
two_ne_zero
CharZero.NeZero.two
pairing_one_four_iff' πŸ“–mathematicalIsSMulRegular
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
pairing
AddMonoidWithOne.toOne
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
IsAddTorsionFree.of_isTorsionFree
IsDomain.toIsCancelMulZero
coxeterWeight_eq_four_iff_not_linearIndependent
coxeterWeight.eq_1
one_mul
pairing_smul_root_eq_of_not_linearIndependent
CharZero.NeZero.two
smul_right_injective
two_ne_zero
SemigroupAction.mul_smul
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_mul
pairing.eq_1
coroot_eq_smul_coroot_iff
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
pairing_same
Mathlib.Meta.NormNum.IsNat.to_eq
mul_one
pairing_smul_root_eq_of_not_linearIndependent πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
pairing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
LinearIndependent.pair_iff
eq_or_ne
smul_eq_zero_iff_left
IsDomain.toIsCancelMulZero
ne_zero
zero_smul
zero_add
add_zero
neg_smul
eq_neg_iff_add_eq_zero
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
pairing_same
Algebra.to_smulCommClass
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
smul_right_injective
neg_ne_zero
smul_smul
neg_mul
SMulCommClass.smul_comm
smulCommClass_self
mul_comm
pairing_two_two_iff πŸ“–mathematicalβ€”pairing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
coxeterWeight_eq_four_iff_not_linearIndependent
coxeterWeight.eq_1
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
pairing_smul_root_eq_of_not_linearIndependent
CharZero.NeZero.two
Function.Embedding.injective
smul_right_injective
IsDomain.toIsCancelMulZero
two_ne_zero
pairing_same

RootPairing.IsReduced

Theorems

NameKindAssumesProvesValidatesDepends On
eq_or_eq_neg πŸ“–mathematicalLinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
linearIndependent πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”eq_or_eq_neg
Function.instEmbeddingLikeEmbedding
linearIndependent_iff πŸ“–mathematicalβ€”LinearIndependent
Matrix.vecCons
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
RootPairing.root
Matrix.vecEmpty
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
eq_or_ne
one_smul
neg_smul
add_neg_cancel
NeZero.one
smul_neg
neg_add_cancel
LinearIndependent.pair_iff
linearIndependent

---

← Back to Index