Documentation Verification Report

Basic

πŸ“ Source: Mathlib/LinearAlgebra/SModEq/Basic.lean

Statistics

MetricCount
DefinitionsinstTrans, Β«term_≑_[SMOD_]Β»
2
Theoremsadd, bot, comap, comm, def, eval, instRefl, map, mono, mul, neg, nsmul, of_toAddSubgroup_le, pow, prod, refl, rfl, smul, sub, sub_mem, sum, top, trans, zero, zsmul, sub_smodEq_zero
26
Total28

SModEq

Definitions

NameCategoryTheorems
instTrans πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalSModEqAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”def
bot πŸ“–mathematicalβ€”SModEq
Bot.bot
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instBot
β€”def
Submodule.Quotient.eq
Submodule.mem_bot
sub_eq_zero
comap πŸ“–mathematicalSModEq
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Submodule.comapβ€”Submodule.Quotient.eq
LinearMap.map_sub
comm πŸ“–mathematicalβ€”SModEqβ€”symm
def πŸ“–mathematicalβ€”SModEqβ€”β€”
eval πŸ“–mathematicalSModEq
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.evalβ€”Polynomial.eval_eq_sum
Finset.sum_congr
sum
mul
refl
pow
instRefl πŸ“–mathematicalβ€”SModEqβ€”refl
map πŸ“–mathematicalSModEqSubmodule.map
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”RingHomSurjective.ids
Submodule.Quotient.eq
Submodule.mem_map_of_mem
LinearMap.map_sub
mono πŸ“–β€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
SModEq
β€”β€”Submodule.Quotient.eq
mul πŸ“–mathematicalSModEq
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Ideal.instIsTwoSided_1
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
neg πŸ“–mathematicalSModEqNegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
nsmul πŸ“–mathematicalSModEqAddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”def
AddCommMonoid.nat_isScalarTower
of_toAddSubgroup_le πŸ“–β€”AddSubgroup
AddCommGroup.toAddGroup
Preorder.toLE
PartialOrder.toPreorder
AddSubgroup.instPartialOrder
Submodule.toAddSubgroup
SModEq
β€”β€”β€”
pow πŸ“–mathematicalSModEq
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Ideal.instIsTwoSided_1
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
prod πŸ“–mathematicalSModEq
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Finset.prod
CommRing.toCommMonoid
β€”Finset.cons_induction
Finset.prod_cons
Mathlib.Tactic.GCongr.rel_imp_rel
instIsTransOfTrans
mul
Finset.mem_cons_self
refl
Finset.mem_cons_of_mem
refl πŸ“–mathematicalβ€”SModEqβ€”β€”
rfl πŸ“–mathematicalβ€”SModEqβ€”refl
smul πŸ“–mathematicalSModEqSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”def
IsScalarTower.left
sub πŸ“–mathematicalSModEqSubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”def
sub_mem πŸ“–mathematicalβ€”SModEq
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”def
Submodule.Quotient.eq
sum πŸ“–mathematicalSModEqFinset.sum
AddCommGroup.toAddCommMonoid
β€”Finset.cons_induction
Finset.sum_cons
Mathlib.Tactic.GCongr.rel_imp_rel
instIsTransOfTrans
add
Finset.mem_cons_self
refl
Finset.mem_cons_of_mem
top πŸ“–mathematicalβ€”SModEq
Top.top
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instTop
β€”Submodule.Quotient.eq
Submodule.mem_top
trans πŸ“–β€”SModEqβ€”β€”β€”
zero πŸ“–mathematicalβ€”SModEq
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
β€”def
Submodule.Quotient.eq
sub_zero
zsmul πŸ“–mathematicalSModEqSubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”def
AddCommGroup.intIsScalarTower

(root)

Definitions

NameCategoryTheorems
Β«term_≑_[SMOD_]Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
sub_smodEq_zero πŸ“–mathematicalβ€”SModEq
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”sub_zero

---

← Back to Index