Documentation Verification Report

Basic

šŸ“ Source: Mathlib/LinearAlgebra/SesquilinearForm/Basic.lean

Statistics

MetricCount
DefinitionsIsAdjointPair, IsAlt, IsNonneg, IsOrtho, IsOrthogonal, IsOrthoįµ¢, IsPairSelfAdjoint, IsPosSemidef, IsRefl, IsSelfAdjoint, IsSkewAdjoint, IsSymm, SeparatingLeft, SeparatingRight, isPairSelfAdjointSubmodule, selfAdjointSubmodule, skewAdjointSubmodule, orthogonalBilin
18
TheoremsisAdjointPair_symm_iff, apply_apply_same_eq_zero_iff, apply_mul_apply_le_of_forall_zero_le, apply_mul_apply_lt_iff_linearIndependent, apply_smul_sub_smul_sub_eq, apply_sq_le_of_symm, apply_sq_lt_iff_linearIndependent_of_symm, nondegenerate_iff, nondegenerate_iff', nondegenerate_restrict_iff_disjoint_ker, not_linearIndependent_of_apply_mul_apply_eq, isSymm_iff_eq_flip, add, comp, mul, smul, sub, eq_of_add_add_eq_zero, isRefl, neg, ortho_comm, self_eq_zero, add, nonneg, smul, nondegenerate_of_not_isOrtho_basis_self, not_isOrtho_basis_self_of_separatingLeft, not_isOrtho_basis_self_of_separatingRight, separatingLeft_of_not_isOrtho_basis_self, separatingRight_iff_not_isOrtho_basis_self, add, isNonneg, isSymm, domRestrict, eq_iff, eq_zero, flip_isRefl_iff, ker_eq_bot_iff_ker_flip_eq_bot, ker_flip, ker_flip_eq_bot, nondegenerate_iff_separatingLeft, nondegenerate_iff_separatingRight, ortho_comm, add, domRestrict, eq, isRefl, nondegenerate_restrict_of_isCompl_ker, ortho_comm, ne_zero, disjoint_ker_of_nondegenerate_restrict, flip_nondegenerate, flip_separatingLeft, flip_separatingRight, isAdjointPair_id, isAdjointPair_iff_comp_eq_complā‚‚, isAdjointPair_one, isAdjointPair_zero, isAlt_iff_eq_neg_flip, isCompl_span_singleton_orthogonal, isNonneg_def, isNonneg_zero, isOrtho_def, isOrtho_flip, isOrtho_zero_left, isOrtho_zero_right, isOrthogonal_of_forall_apply_same, isOrthoįµ¢_def, isOrthoįµ¢_flip, isPairSelfAdjoint_equiv, isPosSemidef_def, isPosSemidef_zero, isSkewAdjoint_iff_neg_self_adjoint, isSymm_def, isSymm_iff_eq_flip, isSymm_zero, linearIndependent_of_isOrthoįµ¢, mem_isPairSelfAdjointSubmodule, mem_selfAdjointSubmodule, mem_skewAdjointSubmodule, nondegenerate_congr_iff, nondegenerate_restrict_of_disjoint_orthogonal, not_separatingLeft_zero, ortho_smul_left, ortho_smul_right, orthogonal_span_singleton_eq_to_lin_ker, separatingLeft_congr_iff, separatingLeft_iff_ker_eq_bot, separatingLeft_iff_linear_nontrivial, separatingRight_congr_iff, separatingRight_iff_flip_ker_eq_bot, separatingRight_iff_linear_flip_nontrivial, span_singleton_inf_orthogonal_eq_bot, span_singleton_sup_orthogonal_eq_top, le_orthogonalBilin_orthogonalBilin, mem_orthogonalBilin_iff, orthogonalBilin_le
97
Total115

LinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isAdjointPair_symm_iff šŸ“–mathematical—LinearMap.IsAdjointPair
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
RingHom.id
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
LinearMap.IsOrthogonal
—Equiv.symm_apply_apply
Equiv.apply_symm_apply

LinearMap

Definitions

NameCategoryTheorems
IsAdjointPair šŸ“–MathDef
12 mathmath: isAdjointPair_iff_comp_eq_complā‚‚, isAdjointPair_toLinearMapā‚‚, LinearEquiv.isAdjointPair_symm_iff, isAdjointPair_one, BilinForm.isAdjointPair_iff_eq_of_nondegenerate, isAdjointPair_toLinearMapā‚‚', isAdjointPair_id, isSkewAdjoint_iff_neg_self_adjoint, ContinuousLinearMap.isAdjointPair_inner, BilinForm.isAdjointPairLeftAdjointOfNondegenerate, isAdjointPair_inner, isAdjointPair_zero
IsAlt šŸ“–MathDef
3 mathmath: Polynomial.isAlt_wronskianBilin, BilinMap.toQuadraticMap_eq_zero, isAlt_iff_eq_neg_flip
IsNonneg šŸ“–CompData
5 mathmath: isPosSemidef_def, BilinForm.isNonneg_iff, IsPosSemidef.isNonneg, isNonneg_def, isNonneg_zero
IsOrtho šŸ“–MathDef
16 mathmath: ortho_smul_right, ortho_smul_left, IsSymm.ortho_comm, BilinForm.exists_bilinForm_self_ne_zero, IsOrthoįµ¢.not_isOrtho_basis_self_of_separatingRight, BilinForm.toQuadraticMap_isOrtho, IsRefl.ortho_comm, QuadraticMap.isOrtho_polarBilin, IsAlt.ortho_comm, isOrtho_flip, isOrtho_zero_left, IsOrthoįµ¢.not_isOrtho_basis_self_of_separatingLeft, Submodule.mem_orthogonalBilin_iff, QuadraticMap.associated_isOrtho, isOrtho_zero_right, isOrtho_def
IsOrthogonal šŸ“–MathDef
5 mathmath: RootPairing.RootPositiveForm.isOrthogonal_reflection, LinearEquiv.isAdjointPair_symm_iff, RootPairing.InvariantForm.isOrthogonal_reflection, IsReflective.isOrthogonal_reflection, isOrthogonal_of_forall_apply_same
IsOrthoįµ¢ šŸ“–MathDef
3 mathmath: BilinForm.exists_orthogonal_basis, isOrthoįµ¢_def, isOrthoįµ¢_flip
IsPairSelfAdjoint šŸ“–MathDef
2 mathmath: mem_isPairSelfAdjointSubmodule, isPairSelfAdjoint_equiv
IsPosSemidef šŸ“–CompData
4 mathmath: BilinForm.isPosSemidef_iff, isPosSemidef_def, isPosSemidef_iff_posSemidef_toMatrix, isPosSemidef_zero
IsRefl šŸ“–MathDef
3 mathmath: IsRefl.flip_isRefl_iff, IsSymm.isRefl, IsAlt.isRefl
IsSelfAdjoint šŸ“–MathDef
2 mathmath: mem_selfAdjointSubmodule, isSymmetric_iff_sesqForm
IsSkewAdjoint šŸ“–MathDef
2 mathmath: mem_skewAdjointSubmodule, isSkewAdjoint_iff_neg_self_adjoint
IsSymm šŸ“–CompData
16 mathmath: isSymm_zero, QuadraticMap.canLift, isPosSemidef_def, isSymm_iff_eq_flip, isSymm_dualProd, LieModule.traceForm_isSymm, RootPairing.InvariantForm.symm, isSymm_def, BilinForm.isSymm_iff, RootPairing.RootPositiveForm.symm, RootPairing.RootPositiveForm.isSymm_posForm, QuadraticForm.associated_isSymm, IsPosSemidef.isSymm, isSymm_iff_basis, RootPairing.rootForm_symmetric, isSymm_iff_isHermitian_toMatrix
SeparatingLeft šŸ“–MathDef
29 mathmath: Matrix.SeparatingLeft.toBilin', Matrix.SeparatingLeft.toLinearMapā‚‚', BilinForm.separatingLeft_toMatrix'_iff, separatingLeft_toMatrixā‚‚'_iff, Matrix.SeparatingLeft.toBilin, separatingLeft_iff_det_ne_zero, StrongDual.dualPairing_separatingLeft, BilinForm.separatingLeft_of_anisotropic, flip_separatingRight, separatingLeft_congr_iff, Matrix.separatingLeft_toLinearMapā‚‚'_iff, separatingLeft_toLinearMapā‚‚'_of_det_ne_zero', Matrix.separatingLeft_toBilin'_iff, Matrix.separatingLeft_toLinearMapā‚‚_iff, IsOrthoįµ¢.separatingLeft_of_not_isOrtho_basis_self, not_separatingLeft_zero, separatingLeft_iff_linear_nontrivial, separatingLeft_toMatrixā‚‚_iff, QuadraticMap.separatingLeft_of_anisotropic, flip_separatingLeft, Matrix.separatingLeft_toBilin_iff, separatingLeft_iff_ker_eq_bot, separatingLeft_toLinearMapā‚‚'_iff_det_ne_zero, IsRefl.nondegenerate_iff_separatingLeft, Matrix.separatingLeft_toLinearMapā‚‚'_iff_separatingLeft_toLinearMapā‚‚, BilinForm.separatingLeft_toMatrix_iff, Matrix.SeparatingLeft.toLinearMapā‚‚, separatingLeft_of_det_ne_zero, separatingLeft_dualProd
SeparatingRight šŸ“–MathDef
24 mathmath: Matrix.SeparatingRight.toLinearMapā‚‚, Matrix.separatingRight_toLinearMapā‚‚'_iff, Matrix.separatingRight_toLinearMapā‚‚_iff, Matrix.separatingRight_toBilin_iff, separatingRight_iff_det_ne_zero, separatingRight_congr_iff, separatingRight_toMatrixā‚‚'_iff, Matrix.SeparatingRight.toLinearMapā‚‚', BilinForm.separatingRight_toMatrix'_iff, separatingRight_iff_flip_ker_eq_bot, BilinForm.separatingRight_toMatrix_iff, flip_separatingRight, separatingRight_toLinearMapā‚‚'_of_det_ne_zero', IsOrthoįµ¢.separatingRight_iff_not_isOrtho_basis_self, Matrix.separatingRight_toBilin'_iff, separatingRight_iff_linear_flip_nontrivial, separatingRight_of_det_ne_zero, separatingRight_toMatrixā‚‚_iff, flip_separatingLeft, Matrix.SeparatingRight.toBilin', IsRefl.nondegenerate_iff_separatingRight, separatingRight_toLinearMapā‚‚'_iff_det_ne_zero, Matrix.SeparatingRight.toBilin, Matrix.separatingRight_toLinearMapā‚‚'_iff_separatingRight_toLinearMapā‚‚
isPairSelfAdjointSubmodule šŸ“–CompOp
1 mathmath: mem_isPairSelfAdjointSubmodule
selfAdjointSubmodule šŸ“–CompOp
1 mathmath: mem_selfAdjointSubmodule
skewAdjointSubmodule šŸ“–CompOp
1 mathmath: mem_skewAdjointSubmodule

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_ker_of_nondegenerate_restrict šŸ“–mathematicalNondegenerate
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
domRestrict₁₂
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Disjoint
Submodule.instPartialOrder
Submodule.instOrderBot
ker
LinearMap
addCommMonoid
module
—smulCommClass_self
Submodule.disjoint_def
mem_ker
flip_nondegenerate šŸ“–mathematical—Nondegenerate
flip
CommSemiring.toSemiring
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
—smulCommClass_self
flip_separatingRight
flip_separatingLeft
flip_separatingLeft šŸ“–mathematical—SeparatingLeft
flip
CommSemiring.toSemiring
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SeparatingRight
—smulCommClass_self
flip_separatingRight
SMulCommClass.symm
flip_flip
flip_separatingRight šŸ“–mathematical—SeparatingRight
flip
CommSemiring.toSemiring
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SeparatingLeft
—smulCommClass_self
isAdjointPair_id šŸ“–mathematical—IsAdjointPair—smulCommClass_self
isAdjointPair_iff_comp_eq_complā‚‚ šŸ“–mathematical—IsAdjointPair
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instFunLike
comp
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
RingHomCompTriple.ids
complā‚‚
—smulCommClass_self
RingHomCompTriple.ids
ext
comp_apply
complā‚‚_apply
isAdjointPair_one šŸ“–mathematical—IsAdjointPair
DFunLike.coe
Module.End
CommSemiring.toSemiring
instFunLike
RingHom.id
Semiring.toNonAssocSemiring
Module.End.instOne
—smulCommClass_self
isAdjointPair_id
isAdjointPair_zero šŸ“–mathematical—IsAdjointPair
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
—smulCommClass_self
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
isAlt_iff_eq_neg_flip šŸ“–mathematical—IsAlt
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
CommSemiring.toSemiring
LinearMap
addCommMonoid
module
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
instNeg
addCommGroup
Ring.toAddCommGroup
CommRing.toRing
flip
—Algebra.to_smulCommClass
SMulCommClass.symm
ext
smulCommClass_self
IsAlt.neg
congr_funā‚‚
add_self_eq_zero
isCompl_span_singleton_orthogonal šŸ“–mathematicalIsOrtho
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Semiring.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.id
Semiring.toNonAssocSemiring
IsCompl
Submodule
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
Submodule.span
Set
Set.instSingletonSet
Submodule.orthogonalBilin
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
—Algebra.to_smulCommClass
disjoint_iff
span_singleton_inf_orthogonal_eq_bot
codisjoint_iff
span_singleton_sup_orthogonal_eq_top
isNonneg_def šŸ“–mathematical—IsNonneg
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
LinearMap
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
instFunLike
addCommMonoid
module
Algebra.to_smulCommClass
Algebra.id
—Algebra.to_smulCommClass
isNonneg_zero šŸ“–mathematical—IsNonneg
Preorder.toLE
LinearMap
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
addCommMonoid
module
Algebra.to_smulCommClass
Algebra.id
instZero
—Algebra.to_smulCommClass
le_rfl
isOrtho_def šŸ“–mathematical—IsOrtho
DFunLike.coe
LinearMap
CommSemiring.toSemiring
instFunLike
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
—smulCommClass_self
isOrtho_flip šŸ“–mathematical—IsOrtho
flip
CommSemiring.toSemiring
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
—smulCommClass_self
isOrtho_zero_left šŸ“–mathematical—IsOrtho
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
—smulCommClass_self
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
zero_apply
isOrtho_zero_right šŸ“–mathematical—IsOrtho
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
—smulCommClass_self
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
isOrthogonal_of_forall_apply_same šŸ“–mathematicalIsLeftRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
IsSymm
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
LinearMap
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
instFunLike
BilinForm
addCommMonoid
module
IsOrthogonal—Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
add_assoc
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsSymm.eq
map_add
SemilinearMapClass.toAddHomClass
semilinearMapClass
isOrthoįµ¢_def šŸ“–mathematical—IsOrthoįµ¢
DFunLike.coe
LinearMap
CommSemiring.toSemiring
instFunLike
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
—smulCommClass_self
isOrthoįµ¢_flip šŸ“–mathematical—IsOrthoįµ¢
flip
CommSemiring.toSemiring
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
—smulCommClass_self
isPairSelfAdjoint_equiv šŸ“–mathematical—IsPairSelfAdjoint
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
Module.End
instFunLike
compl₁₂
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
LinearEquiv.toLinearMap
RingHomInvPair.ids
LinearEquiv
addCommMonoid
module
CommSemiring.toCommMonoid
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.conj
LinearEquiv.symm
—smulCommClass_self
RingHomInvPair.ids
RingHomCompTriple.ids
ext
LinearEquiv.apply_symm_apply
LinearEquiv.surjective
isPosSemidef_def šŸ“–mathematical—IsPosSemidef
IsSymm
IsNonneg
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
—Algebra.to_smulCommClass
IsPosSemidef.isSymm
IsPosSemidef.isNonneg
isPosSemidef_zero šŸ“–mathematical—IsPosSemidef
Preorder.toLE
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
addCommMonoid
module
Algebra.to_smulCommClass
Algebra.id
instZero
—Algebra.to_smulCommClass
isSymm_zero
isNonneg_zero
isSkewAdjoint_iff_neg_self_adjoint šŸ“–mathematical—IsSkewAdjoint
IsAdjointPair
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
LinearMap
addCommMonoid
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
instNeg
addCommGroup
—smulCommClass_self
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
isSymm_def šŸ“–mathematical—IsSymm
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
instFunLike
addCommMonoid
module
Algebra.to_smulCommClass
Algebra.id
—Algebra.to_smulCommClass
isSymm_iff_eq_flip šŸ“–mathematical—IsSymm
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
flip
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
—Algebra.to_smulCommClass
isSymm_def
BilinMap.isSymm_iff_eq_flip
isSymm_zero šŸ“–mathematical—IsSymm
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
addCommMonoid
module
Algebra.to_smulCommClass
Algebra.id
instZero
—Algebra.to_smulCommClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
linearIndependent_of_isOrthoįµ¢ šŸ“–mathematicalIsOrthoįµ¢
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
IsOrtho
LinearIndependent
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
—smulCommClass_self
linearIndependent_iff'
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
zero_apply
Finset.sum_eq_single_of_mem
isOrthoįµ¢_def
smul_zero
map_eq_zero
DivisionRing.toNontrivial
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
smul_eq_zero
DivisionSemiring.to_moduleIsTorsionFree
IsDomain.toIsCancelMulZero
Field.isDomain
Finset.sum_congr
map_smulₛₗ₂
map_sumā‚‚
mem_isPairSelfAdjointSubmodule šŸ“–mathematical—Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule
addCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
SetLike.instMembership
Submodule.setLike
isPairSelfAdjointSubmodule
IsPairSelfAdjoint
DFunLike.coe
instFunLike
—smulCommClass_self
mem_selfAdjointSubmodule šŸ“–mathematical—Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule
addCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
SetLike.instMembership
Submodule.setLike
selfAdjointSubmodule
IsSelfAdjoint
DFunLike.coe
instFunLike
—smulCommClass_self
mem_skewAdjointSubmodule šŸ“–mathematical—Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule
addCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
SetLike.instMembership
Submodule.setLike
skewAdjointSubmodule
IsSkewAdjoint
DFunLike.coe
instFunLike
—smulCommClass_self
isSkewAdjoint_iff_neg_self_adjoint
nondegenerate_congr_iff šŸ“–mathematical—Nondegenerate
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
LinearMap
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.arrowCongr
RingHomCompTriple.ids
LinearEquiv.refl
—smulCommClass_self
RingHomInvPair.ids
RingHomCompTriple.ids
separatingLeft_congr_iff
separatingRight_congr_iff
Nondegenerate.congr
nondegenerate_restrict_of_disjoint_orthogonal šŸ“–mathematicalIsRefl
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Disjoint
Submodule
Submodule.instPartialOrder
Submodule.instOrderBot
Submodule.orthogonalBilin
Nondegenerate
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
domRestrict₁₂
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
—smulCommClass_self
IsRefl.nondegenerate_iff_separatingLeft
IsRefl.domRestrict
Submodule.mk_eq_zero
Submodule.mem_bot
Disjoint.le_bot
IsRefl.ortho_comm
not_separatingLeft_zero šŸ“–mathematical—SeparatingLeft
LinearMap
CommSemiring.toSemiring
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
instZero
—smulCommClass_self
exists_ne
ortho_smul_left šŸ“–mathematical—IsOrtho
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Module.toDistribMulAction
—smulCommClass_self
map_smulₛₗ₂
smul_zero
smul_eq_zero
DivisionSemiring.to_moduleIsTorsionFree
IsDomain.toIsCancelMulZero
Field.isDomain
map_eq_zero
DivisionRing.toNontrivial
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ortho_smul_right šŸ“–mathematical—IsOrtho
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Module.toDistribMulAction
—smulCommClass_self
MulActionSemiHomClass.map_smulₛₗ
SemilinearMapClass.toMulActionSemiHomClass
semilinearMapClass
smul_zero
smul_eq_zero
DivisionSemiring.to_moduleIsTorsionFree
IsDomain.toIsCancelMulZero
Field.isDomain
DivisionRing.toNontrivial
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
orthogonal_span_singleton_eq_to_lin_ker šŸ“–mathematical—Submodule.orthogonalBilin
Field.toCommRing
RingHom.id
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Submodule.span
AddCommGroup.toAddCommMonoid
Set
Set.instSingletonSet
ker
DFunLike.coe
LinearMap
addCommMonoid
module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
instFunLike
—smulCommClass_self
Submodule.ext
one_smul
isOrtho_def
map_smulₛₗ₂
smul_eq_zero
DivisionSemiring.to_moduleIsTorsionFree
IsDomain.toIsCancelMulZero
Field.isDomain
separatingLeft_congr_iff šŸ“–mathematical—SeparatingLeft
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
LinearMap
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.arrowCongr
RingHomCompTriple.ids
LinearEquiv.refl
—smulCommClass_self
RingHomInvPair.ids
RingHomCompTriple.ids
ext
LinearEquiv.symm_apply_apply
SeparatingLeft.congr
separatingLeft_iff_ker_eq_bot šŸ“–mathematical—SeparatingLeft
ker
LinearMap
CommSemiring.toSemiring
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Bot.bot
Submodule
Submodule.instBot
—smulCommClass_self
separatingLeft_iff_linear_nontrivial
ker_eq_bot'
separatingLeft_iff_linear_nontrivial šŸ“–mathematical—SeparatingLeft
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
—smulCommClass_self
Zero.instNonempty
ext
zero_apply
separatingRight_congr_iff šŸ“–mathematical—SeparatingRight
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
LinearMap
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.arrowCongr
RingHomCompTriple.ids
LinearEquiv.refl
—smulCommClass_self
RingHomInvPair.ids
separatingLeft_congr_iff
separatingRight_iff_flip_ker_eq_bot šŸ“–mathematical—SeparatingRight
ker
LinearMap
CommSemiring.toSemiring
addCommMonoid
module
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
flip
Bot.bot
Submodule
Submodule.instBot
—smulCommClass_self
SMulCommClass.symm
flip_separatingLeft
separatingLeft_iff_ker_eq_bot
separatingRight_iff_linear_flip_nontrivial šŸ“–mathematical—SeparatingRight
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
—smulCommClass_self
SMulCommClass.symm
flip_separatingLeft
separatingLeft_iff_linear_nontrivial
span_singleton_inf_orthogonal_eq_bot šŸ“–mathematicalIsOrtho
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Submodule.instMin
Submodule.span
Set
Set.instSingletonSet
Submodule.orthogonalBilin
Field.toCommRing
Bot.bot
Submodule.instBot
—smulCommClass_self
Finset.coe_singleton
eq_bot_iff
Submodule.mem_span_finset
Finset.sum_singleton
smul_eq_zero
DivisionSemiring.to_moduleIsTorsionFree
IsDomain.toIsCancelMulZero
Field.isDomain
MulActionSemiHomClass.map_smulₛₗ
SemilinearMapClass.toMulActionSemiHomClass
semilinearMapClass
isOrtho_def
DivisionRing.toNontrivial
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
zero_smul
Submodule.mem_bot
span_singleton_sup_orthogonal_eq_top šŸ“–mathematicalIsOrtho
Semifield.toCommSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Semiring.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.id
Semiring.toNonAssocSemiring
Submodule
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Submodule.span
Set
Set.instSingletonSet
Submodule.orthogonalBilin
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Top.top
Submodule.instTop
—Algebra.to_smulCommClass
smulCommClass_self
orthogonal_span_singleton_eq_to_lin_ker
span_singleton_sup_ker_eq_top

LinearMap.BilinForm

Theorems

NameKindAssumesProvesValidatesDepends On
apply_apply_same_eq_zero_iff šŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
LinearMap.IsSymm
Submodule
SetLike.instMembership
Submodule.setLike
LinearMap.ker
—LinearMap.mem_ker
LinearMap.ext
apply_sq_le_of_symm
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
AddGroup.existsAddOfLE
le_antisymm
MulZeroClass.zero_mul
sq_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
apply_mul_apply_le_of_forall_zero_le šŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
—apply_smul_sub_smul_sub_eq
lt_or_ge
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
nonneg_of_mul_nonneg_right
IsStrictOrderedRing.toPosMulStrictMono
le_antisymm
mul_comm
eq_neg_iff_add_eq_zero
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
zero_sub
sub_zero
map_add
SemilinearMapClass.toAddHomClass
zero_add
add_zero
neg_mul
MulZeroClass.mul_zero
mul_self_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
apply_mul_apply_lt_iff_linearIndependent šŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
LinearIndependent
Matrix.vecCons
Matrix.vecEmpty
—eq_or_ne
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
LinearIndependent.pair_iff
zero_smul
zero_add
IsDomain.toIsCancelMulZero
MulZeroClass.mul_zero
add_zero
MulZeroClass.zero_mul
Algebra.to_smulCommClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
neg_smul
add_eq_zero_iff_eq_neg'
map_neg
mul_neg
neg_neg
neg_mul
IsStrictOrderedRing.noZeroDivisors
AddGroup.existsAddOfLE
le_of_eq
mul_right_injectiveā‚€
IsCancelMulZero.toIsLeftCancelMulZero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
not_linearIndependent_of_apply_mul_apply_eq
le_antisymm
apply_mul_apply_le_of_forall_zero_le
apply_smul_sub_smul_sub_eq šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
—Algebra.to_smulCommClass
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
mul_comm
mul_sub
mul_left_comm
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Abel.zero_termg
Mathlib.Tactic.Abel.const_add_termg
add_zero
apply_sq_le_of_symm šŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
LinearMap.IsSymm
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
—sq
Algebra.to_smulCommClass
LinearMap.IsSymm.eq
RingHom.id_apply
apply_mul_apply_le_of_forall_zero_le
apply_sq_lt_iff_linearIndependent_of_symm šŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
LinearMap.IsSymm
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
LinearIndependent
Matrix.vecCons
Matrix.vecEmpty
—sq
Algebra.to_smulCommClass
LinearMap.IsSymm.eq
RingHom.id_apply
apply_mul_apply_lt_iff_linearIndependent
nondegenerate_iff šŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
LinearMap.IsSymm
LinearMap.Nondegenerate
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
—LinearMap.IsRefl.nondegenerate_iff_separatingLeft
LinearMap.IsSymm.isRefl
smulCommClass_self
apply_apply_same_eq_zero_iff
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
nondegenerate_iff' šŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
LinearMap.IsSymm
LinearMap.Nondegenerate
Preorder.toLT
—nondegenerate_iff
Mathlib.Tactic.Contrapose.contrapose_iff₁
Mathlib.Tactic.Push.not_forall_eq
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
le_antisymm
nondegenerate_restrict_iff_disjoint_ker šŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
LinearMap.IsSymm
LinearMap.Nondegenerate
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
LinearMap.domRestrict₁₂
Disjoint
Submodule.instPartialOrder
Submodule.instOrderBot
LinearMap.ker
—LinearMap.disjoint_ker_of_nondegenerate_restrict
LinearMap.IsSymm.isRefl
LinearMap.IsRefl.nondegenerate_iff_separatingLeft
apply_apply_same_eq_zero_iff
Disjoint.eq_bot
not_linearIndependent_of_apply_mul_apply_eq šŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.BilinForm
LinearMap.addCommMonoid
LinearMap.module
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
LinearIndependent
Matrix.vecCons
Matrix.vecEmpty
—ne_of_lt
mul_eq_zero_of_right
sub_eq_zero_of_eq
apply_smul_sub_smul_sub_eq
LinearIndependent.ne_zero
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
sub_eq_zero
LinearIndependent.eq_zero_of_pair
add_comm
neg_smul
sub_eq_add_neg

LinearMap.BilinMap

Theorems

NameKindAssumesProvesValidatesDepends On
isSymm_iff_eq_flip šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.BilinMap
LinearMap.addCommMonoid
LinearMap.module
LinearMap.flip
——

LinearMap.IsAdjointPair

Theorems

NameKindAssumesProvesValidatesDepends On
add šŸ“–mathematicalLinearMap.IsAdjointPairPi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
—smulCommClass_self
Pi.add_apply
LinearMap.map_addā‚‚
LinearMap.map_add
comp šŸ“–ā€”LinearMap.IsAdjointPair——smulCommClass_self
mul šŸ“–mathematicalLinearMap.IsAdjointPair
DFunLike.coe
Module.End
CommSemiring.toSemiring
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
Module.End.instMul—smulCommClass_self
comp
smul šŸ“–mathematicalLinearMap.IsAdjointPair
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
—smulCommClass_self
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
sub šŸ“–mathematicalLinearMap.IsAdjointPair
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
—smulCommClass_self
Pi.sub_apply
LinearMap.map_subā‚‚
LinearMap.map_sub

LinearMap.IsAlt

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_add_add_eq_zero šŸ“–mathematicalLinearMap.IsAlt
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
LinearMap
CommSemiring.toSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Module.toDistribMulAction
—smulCommClass_self
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
add_left_cancel
IsCancelAdd.toIsLeftCancelAdd
add_comm
add_zero
zero_add
isRefl šŸ“–mathematicalLinearMap.IsAlt
AddCommGroup.toAddCommMonoid
LinearMap.IsRefl—smulCommClass_self
neg
neg_zero
neg šŸ“–mathematicalLinearMap.IsAlt
AddCommGroup.toAddCommMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
LinearMap
CommSemiring.toSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
—smulCommClass_self
self_eq_zero
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
zero_add
add_zero
ortho_comm šŸ“–mathematicalLinearMap.IsAlt
AddCommGroup.toAddCommMonoid
LinearMap.IsOrtho—smulCommClass_self
LinearMap.IsRefl.ortho_comm
isRefl
self_eq_zero šŸ“–mathematicalLinearMap.IsAltDFunLike.coe
LinearMap
CommSemiring.toSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
—smulCommClass_self

LinearMap.IsNonneg

Theorems

NameKindAssumesProvesValidatesDepends On
add šŸ“–mathematicalLinearMap.IsNonneg
Preorder.toLE
LinearMap
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
LinearMap.instAdd
—Algebra.to_smulCommClass
add_nonneg
nonneg
nonneg šŸ“–mathematicalLinearMap.IsNonnegMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
LinearMap
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
—Algebra.to_smulCommClass
smul šŸ“–mathematicalLinearMap.IsNonneg
Preorder.toLE
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
LinearMap
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
LinearMap.instDistribMulAction
Module.toDistribMulAction
LinearMap.instSMulCommClass
—Algebra.to_smulCommClass
LinearMap.instSMulCommClass
mul_nonneg
nonneg

LinearMap.IsOrthoįµ¢

Theorems

NameKindAssumesProvesValidatesDepends On
nondegenerate_of_not_isOrtho_basis_self šŸ“–mathematicalLinearMap.IsOrthoįµ¢
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
LinearMap.IsOrtho
LinearMap.Nondegenerate—smulCommClass_self
separatingLeft_of_not_isOrtho_basis_self
separatingRight_iff_not_isOrtho_basis_self
not_isOrtho_basis_self_of_separatingLeft šŸ“–mathematicalLinearMap.IsOrthoįµ¢
DFunLike.coe
Module.Basis
CommSemiring.toSemiring
Module.Basis.instFunLike
LinearMap.SeparatingLeft
LinearMap.IsOrtho—smulCommClass_self
Module.Basis.ne_zero
RingHomInvPair.ids
LinearEquiv.surjective
Module.Basis.repr_symm_apply
Finsupp.linearCombination_apply
Finsupp.sum.eq_1
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_eq_zero
MulActionSemiHomClass.map_smulₛₗ
SemilinearMapClass.toMulActionSemiHomClass
eq_or_ne
smul_zero
not_isOrtho_basis_self_of_separatingRight šŸ“–mathematicalLinearMap.IsOrthoįµ¢
DFunLike.coe
Module.Basis
CommSemiring.toSemiring
Module.Basis.instFunLike
LinearMap.SeparatingRight
LinearMap.IsOrtho—smulCommClass_self
LinearMap.isOrtho_flip
not_isOrtho_basis_self_of_separatingLeft
LinearMap.isOrthoįµ¢_flip
LinearMap.flip_separatingLeft
separatingLeft_of_not_isOrtho_basis_self šŸ“–mathematicalLinearMap.IsOrthoįµ¢
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
LinearMap.IsOrtho
LinearMap.SeparatingLeft—smulCommClass_self
RingHomInvPair.ids
LinearEquiv.surjective
LinearEquiv.map_eq_zero_iff
Finsupp.ext
Finsupp.zero_apply
smul_eq_zero
IsDomain.toIsCancelMulZero
Finset.sum_eq_single
RingHom.id_apply
smul_zero
Finsupp.notMem_support_iff
zero_smul
Finset.sum_congr
LinearMap.map_smulₛₗ₂
LinearMap.map_sumā‚‚
Module.Basis.repr_symm_apply
separatingRight_iff_not_isOrtho_basis_self šŸ“–mathematicalLinearMap.IsOrthoįµ¢
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
LinearMap.IsOrtho
LinearMap.SeparatingRight—smulCommClass_self
LinearMap.flip_separatingLeft
separatingLeft_of_not_isOrtho_basis_self
LinearMap.isOrthoįµ¢_flip
LinearMap.isOrtho_flip

LinearMap.IsPosSemidef

Theorems

NameKindAssumesProvesValidatesDepends On
add šŸ“–mathematicalLinearMap.IsPosSemidef
Preorder.toLE
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
LinearMap.instAdd
—Algebra.to_smulCommClass
LinearMap.isPosSemidef_def
LinearMap.IsSymm.add
isSymm
LinearMap.IsNonneg.add
isNonneg
isNonneg šŸ“–mathematicalLinearMap.IsPosSemidefLinearMap.IsNonneg
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
—Algebra.to_smulCommClass
isSymm šŸ“–mathematicalLinearMap.IsPosSemidefLinearMap.IsSymm—Algebra.to_smulCommClass

LinearMap.IsRefl

Theorems

NameKindAssumesProvesValidatesDepends On
domRestrict šŸ“–mathematicalLinearMap.IsReflSubmodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
LinearMap.domRestrict₁₂
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
—smulCommClass_self
eq_iff šŸ“–mathematicalLinearMap.IsReflDFunLike.coe
LinearMap
CommSemiring.toSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
—smulCommClass_self
eq_zero šŸ“–ā€”LinearMap.IsRefl
DFunLike.coe
LinearMap
CommSemiring.toSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
——smulCommClass_self
flip_isRefl_iff šŸ“–mathematical—LinearMap.IsRefl
LinearMap.flip
CommSemiring.toSemiring
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
—smulCommClass_self
ker_eq_bot_iff_ker_flip_eq_bot šŸ“–mathematicalLinearMap.IsReflLinearMap.ker
LinearMap
CommSemiring.toSemiring
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Bot.bot
Submodule
Submodule.instBot
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.flip
—smulCommClass_self
SMulCommClass.symm
ker_flip
ker_flip šŸ“–mathematicalLinearMap.IsReflLinearMap.ker
LinearMap
CommSemiring.toSemiring
LinearMap.addCommMonoid
LinearMap.module
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
LinearMap.flip
—smulCommClass_self
Submodule.ext
SMulCommClass.symm
eq_iff
ker_flip_eq_bot šŸ“–mathematicalLinearMap.IsRefl
LinearMap.ker
LinearMap
CommSemiring.toSemiring
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Bot.bot
Submodule
Submodule.instBot
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.flip
—smulCommClass_self
SMulCommClass.symm
ker_flip
nondegenerate_iff_separatingLeft šŸ“–mathematicalLinearMap.IsRefl
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
LinearMap.Nondegenerate
LinearMap.SeparatingLeft
—smulCommClass_self
SMulCommClass.symm
LinearMap.separatingRight_iff_flip_ker_eq_bot
ker_eq_bot_iff_ker_flip_eq_bot
LinearMap.separatingLeft_iff_ker_eq_bot
nondegenerate_iff_separatingRight šŸ“–mathematicalLinearMap.IsRefl
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
LinearMap.Nondegenerate
LinearMap.SeparatingRight
—smulCommClass_self
LinearMap.separatingLeft_iff_ker_eq_bot
SMulCommClass.symm
ker_eq_bot_iff_ker_flip_eq_bot
LinearMap.separatingRight_iff_flip_ker_eq_bot
ortho_comm šŸ“–mathematicalLinearMap.IsReflLinearMap.IsOrtho—smulCommClass_self
eq_zero

LinearMap.IsSymm

Theorems

NameKindAssumesProvesValidatesDepends On
add šŸ“–mathematicalLinearMap.IsSymmLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
LinearMap.instAdd
—Algebra.to_smulCommClass
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
eq
domRestrict šŸ“–mathematicalLinearMap.IsSymmSubmodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
LinearMap.domRestrict₁₂
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Algebra.to_smulCommClass
Algebra.id
RingHom.id
—Algebra.to_smulCommClass
eq
eq šŸ“–mathematicalLinearMap.IsSymmDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
—Algebra.to_smulCommClass
isRefl šŸ“–mathematicalLinearMap.IsSymmLinearMap.IsRefl
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
RingHom.id
—Algebra.to_smulCommClass
eq
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
nondegenerate_restrict_of_isCompl_ker šŸ“–mathematicalLinearMap.IsSymm
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
IsCompl
Submodule
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
LinearMap.ker
LinearMap
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
LinearMap.Nondegenerate
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
LinearMap.domRestrict₁₂
—Algebra.to_smulCommClass
isRefl
LinearMap.IsRefl.nondegenerate_iff_separatingLeft
LinearMap.ext
Submodule.mem_sup
IsCompl.sup_eq_top
Submodule.mem_top
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
eq
LinearMap.mem_ker
add_zero
IsCompl.inf_eq_bot
ortho_comm šŸ“–mathematicalLinearMap.IsSymmLinearMap.IsOrtho
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
RingHom.id
—Algebra.to_smulCommClass
LinearMap.IsRefl.ortho_comm
isRefl

LinearMap.SeparatingLeft

Theorems

NameKindAssumesProvesValidatesDepends On
ne_zero šŸ“–ā€”LinearMap.SeparatingLeft——smulCommClass_self
LinearMap.not_separatingLeft_zero

Submodule

Definitions

NameCategoryTheorems
orthogonalBilin šŸ“–CompOp
9 mathmath: orthogonalBilin_le, LinearMap.span_singleton_sup_orthogonal_eq_top, orthogonalBilin_innerā‚—, bilinFormOfRealInner_orthogonal, mem_orthogonalBilin_iff, LinearMap.span_singleton_inf_orthogonal_eq_bot, le_orthogonalBilin_orthogonalBilin, LinearMap.isCompl_span_singleton_orthogonal, LinearMap.orthogonal_span_singleton_eq_to_lin_ker

Theorems

NameKindAssumesProvesValidatesDepends On
le_orthogonalBilin_orthogonalBilin šŸ“–mathematicalLinearMap.IsRefl
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
orthogonalBilin
—smulCommClass_self
mem_orthogonalBilin_iff šŸ“–mathematical—Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
orthogonalBilin
LinearMap.IsOrtho
—smulCommClass_self
orthogonalBilin_le šŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
orthogonalBilin—smulCommClass_self

---

← Back to Index