| Name | Category | Theorems |
IsAdjointPair š | MathDef | 12 mathmath: isAdjointPair_iff_comp_eq_complā, isAdjointPair_toLinearMapā, LinearEquiv.isAdjointPair_symm_iff, isAdjointPair_one, BilinForm.isAdjointPair_iff_eq_of_nondegenerate, isAdjointPair_toLinearMapā', isAdjointPair_id, isSkewAdjoint_iff_neg_self_adjoint, ContinuousLinearMap.isAdjointPair_inner, BilinForm.isAdjointPairLeftAdjointOfNondegenerate, isAdjointPair_inner, isAdjointPair_zero
|
IsAlt š | MathDef | 3 mathmath: Polynomial.isAlt_wronskianBilin, BilinMap.toQuadraticMap_eq_zero, isAlt_iff_eq_neg_flip
|
IsNonneg š | CompData | 5 mathmath: isPosSemidef_def, BilinForm.isNonneg_iff, IsPosSemidef.isNonneg, isNonneg_def, isNonneg_zero
|
IsOrtho š | MathDef | 16 mathmath: ortho_smul_right, ortho_smul_left, IsSymm.ortho_comm, BilinForm.exists_bilinForm_self_ne_zero, IsOrthoįµ¢.not_isOrtho_basis_self_of_separatingRight, BilinForm.toQuadraticMap_isOrtho, IsRefl.ortho_comm, QuadraticMap.isOrtho_polarBilin, IsAlt.ortho_comm, isOrtho_flip, isOrtho_zero_left, IsOrthoįµ¢.not_isOrtho_basis_self_of_separatingLeft, Submodule.mem_orthogonalBilin_iff, QuadraticMap.associated_isOrtho, isOrtho_zero_right, isOrtho_def
|
IsOrthogonal š | MathDef | 5 mathmath: RootPairing.RootPositiveForm.isOrthogonal_reflection, LinearEquiv.isAdjointPair_symm_iff, RootPairing.InvariantForm.isOrthogonal_reflection, IsReflective.isOrthogonal_reflection, isOrthogonal_of_forall_apply_same
|
IsOrthoįµ¢ š | MathDef | 3 mathmath: BilinForm.exists_orthogonal_basis, isOrthoįµ¢_def, isOrthoįµ¢_flip
|
IsPairSelfAdjoint š | MathDef | 2 mathmath: mem_isPairSelfAdjointSubmodule, isPairSelfAdjoint_equiv
|
IsPosSemidef š | CompData | 4 mathmath: BilinForm.isPosSemidef_iff, isPosSemidef_def, isPosSemidef_iff_posSemidef_toMatrix, isPosSemidef_zero
|
IsRefl š | MathDef | 3 mathmath: IsRefl.flip_isRefl_iff, IsSymm.isRefl, IsAlt.isRefl
|
IsSelfAdjoint š | MathDef | 2 mathmath: mem_selfAdjointSubmodule, isSymmetric_iff_sesqForm
|
IsSkewAdjoint š | MathDef | 2 mathmath: mem_skewAdjointSubmodule, isSkewAdjoint_iff_neg_self_adjoint
|
IsSymm š | CompData | 16 mathmath: isSymm_zero, QuadraticMap.canLift, isPosSemidef_def, isSymm_iff_eq_flip, isSymm_dualProd, LieModule.traceForm_isSymm, RootPairing.InvariantForm.symm, isSymm_def, BilinForm.isSymm_iff, RootPairing.RootPositiveForm.symm, RootPairing.RootPositiveForm.isSymm_posForm, QuadraticForm.associated_isSymm, IsPosSemidef.isSymm, isSymm_iff_basis, RootPairing.rootForm_symmetric, isSymm_iff_isHermitian_toMatrix
|
SeparatingLeft š | MathDef | 29 mathmath: Matrix.SeparatingLeft.toBilin', Matrix.SeparatingLeft.toLinearMapā', BilinForm.separatingLeft_toMatrix'_iff, separatingLeft_toMatrixā'_iff, Matrix.SeparatingLeft.toBilin, separatingLeft_iff_det_ne_zero, StrongDual.dualPairing_separatingLeft, BilinForm.separatingLeft_of_anisotropic, flip_separatingRight, separatingLeft_congr_iff, Matrix.separatingLeft_toLinearMapā'_iff, separatingLeft_toLinearMapā'_of_det_ne_zero', Matrix.separatingLeft_toBilin'_iff, Matrix.separatingLeft_toLinearMapā_iff, IsOrthoįµ¢.separatingLeft_of_not_isOrtho_basis_self, not_separatingLeft_zero, separatingLeft_iff_linear_nontrivial, separatingLeft_toMatrixā_iff, QuadraticMap.separatingLeft_of_anisotropic, flip_separatingLeft, Matrix.separatingLeft_toBilin_iff, separatingLeft_iff_ker_eq_bot, separatingLeft_toLinearMapā'_iff_det_ne_zero, IsRefl.nondegenerate_iff_separatingLeft, Matrix.separatingLeft_toLinearMapā'_iff_separatingLeft_toLinearMapā, BilinForm.separatingLeft_toMatrix_iff, Matrix.SeparatingLeft.toLinearMapā, separatingLeft_of_det_ne_zero, separatingLeft_dualProd
|
SeparatingRight š | MathDef | 24 mathmath: Matrix.SeparatingRight.toLinearMapā, Matrix.separatingRight_toLinearMapā'_iff, Matrix.separatingRight_toLinearMapā_iff, Matrix.separatingRight_toBilin_iff, separatingRight_iff_det_ne_zero, separatingRight_congr_iff, separatingRight_toMatrixā'_iff, Matrix.SeparatingRight.toLinearMapā', BilinForm.separatingRight_toMatrix'_iff, separatingRight_iff_flip_ker_eq_bot, BilinForm.separatingRight_toMatrix_iff, flip_separatingRight, separatingRight_toLinearMapā'_of_det_ne_zero', IsOrthoįµ¢.separatingRight_iff_not_isOrtho_basis_self, Matrix.separatingRight_toBilin'_iff, separatingRight_iff_linear_flip_nontrivial, separatingRight_of_det_ne_zero, separatingRight_toMatrixā_iff, flip_separatingLeft, Matrix.SeparatingRight.toBilin', IsRefl.nondegenerate_iff_separatingRight, separatingRight_toLinearMapā'_iff_det_ne_zero, Matrix.SeparatingRight.toBilin, Matrix.separatingRight_toLinearMapā'_iff_separatingRight_toLinearMapā
|
isPairSelfAdjointSubmodule š | CompOp | 1 mathmath: mem_isPairSelfAdjointSubmodule
|
selfAdjointSubmodule š | CompOp | 1 mathmath: mem_selfAdjointSubmodule
|
skewAdjointSubmodule š | CompOp | 1 mathmath: mem_skewAdjointSubmodule
|