Documentation Verification Report

Basic

πŸ“ Source: Mathlib/LinearAlgebra/Span/Basic.lean

Statistics

MetricCount
Definitionscoord, toSpanNonzeroSingleton, toSpanSingleton, inclusionSpan, prod
5
TheoremstoIntSubmodule_closure, toNatSubmodule_closure, coord_apply_smul, coord_self, toSpanNonzeroSingleton_apply, toSpanNonzeroSingleton_one, toSpanNonzeroSingleton_symm_apply_smul, apply_apply_mem_of_mem_span, comp_toSpanSingleton, eqOn_span, eqOn_span', eqOn_span_iff, exists_ne_zero_of_sSup_eq, ext_on, ext_on_range, isIdempotentElem_apply_one_iff, isIdempotentElem_map_one_iff, ker_inf_lt_ker_inf_of_map_eq_of_lt, ker_toSpanSingleton, ker_toSpanSingleton_eq_bot_iff, map_eq_top_iff, map_injective, map_le_map_iff, map_le_map_iff', map_span, map_span_le, range_domRestrict_eq_range_iff, range_toSpanSingleton, smulRight_id, span_preimage_le, span_singleton_eq_range, span_singleton_sup_ker_eq_top, submoduleOf_span_singleton_of_mem, surjective_domRestrict_iff, toSpanSingleton_add, toSpanSingleton_apply, toSpanSingleton_apply_one, toSpanSingleton_eq_zero_iff, toSpanSingleton_injective, toSpanSingleton_isIdempotentElem_iff, toSpanSingleton_one, toSpanSingleton_smul, toSpanSingleton_zero, submoduleSpan, apply_mem_span_image_iff_mem_span, apply_mem_span_image_of_mem_span, biSup_comap_eq_top_of_range_eq_biSup, biSup_comap_eq_top_of_surjective, biSup_comap_subtype_eq_top, coe_scott_continuous, comap_covBy_of_surjective, comap_le_comap_iff_of_le_range, comap_map_eq, comap_map_eq_self, comap_map_sup_of_comap_le, comap_sup_of_injective, covBy_span_singleton_sup, disjoint_span_singleton, disjoint_span_singleton', disjoint_span_singleton'', disjoint_span_singleton_of_notMem, finite_span_isCompactElement, finset_span_isCompactElement, iSup_induction, iSup_induction', iSup_toAddSubmonoid, image_span_subset, image_span_subset_span, inclusionSpan_apply_coe, injective_inclusionSpan, instIsCompactlyGenerated, instIsModularLattice, isCoatom_comap_iff, isCoatom_comap_or_eq_top, isCoatom_map_of_ker_le, isCompl_comap_subtype_of_isCompl_of_le, isCompl_span_singleton_of_isCoatom_of_notMem, linearMap_eq_iff_of_eq_span, linearMap_eq_iff_of_span_eq_top, linearMap_eq_zero_iff_of_eq_span, linearMap_eq_zero_iff_of_span_eq_top, map_iInf_of_ker_le, map_lt_map_of_le_of_sup_lt_sup, map_span, map_span_le, map_strict_mono_of_ker_inf_eq, map_strict_mono_or_ker_sup_lt_ker_sup, map_subtype_span_singleton, mapsTo_span, mem_prod, notMem_span_of_apply_notMem_span_image, prod_bot, prod_coe, prod_inf_prod, prod_mono, prod_sup_prod, prod_top, singleton_span_isCompactElement, span_coe_eq_restrictScalars, span_eq_top_of_span_eq_top, span_image, span_image_linearEquiv, span_le_restrictScalars, span_neg, span_preimage_le, span_prod_le, span_range_inclusionSpan, span_range_inclusion_eq_top, span_range_inclusion_restrictScalars_eq_top, span_range_subtype_eq_top_iff, span_singleton_eq_span_singleton, span_smul_eq_of_isUnit, span_span_of_tower, span_subset_span, wcovBy_span_singleton_sup
115
Total120

AddSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
toIntSubmodule_closure πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
AddSubgroup
AddCommGroup.toAddGroup
Submodule
Int.instSemiring
AddCommGroup.toAddCommMonoid
AddCommGroup.toIntModule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderIso
toIntSubmodule
closure
Submodule.span
β€”LE.le.antisymm'
Submodule.span_le
subset_closure
closure_le
Submodule.subset_span

AddSubmonoid

Theorems

NameKindAssumesProvesValidatesDepends On
toNatSubmodule_closure πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Submodule
Nat.instSemiring
AddCommMonoid.toNatModule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderIso
toNatSubmodule
closure
Submodule.span
β€”LE.le.antisymm'
Submodule.span_le
subset_closure
closure_le
Submodule.subset_span

LinearEquiv

Definitions

NameCategoryTheorems
coord πŸ“–CompOp
2 mathmath: coord_self, coord_apply_smul
toSpanNonzeroSingleton πŸ“–CompOp
4 mathmath: toSpanNonzeroSingleton_homothety, toSpanNonzeroSingleton_apply, toSpanNonzeroSingleton_symm_apply_smul, toSpanNonzeroSingleton_one

Theorems

NameKindAssumesProvesValidatesDepends On
coord_apply_smul πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set
Set.instSingletonSet
Submodule.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submodule.module
Semiring.toModule
EquivLike.toFunLike
instEquivLike
coord
β€”RingHomInvPair.ids
apply_symm_apply
coord_self πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.span
Set
Set.instSingletonSet
Submodule.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submodule.module
Semiring.toModule
EquivLike.toFunLike
instEquivLike
coord
Submodule.mem_span_singleton_self
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”RingHomInvPair.ids
Submodule.mem_span_singleton_self
toSpanNonzeroSingleton_one
symm_apply_apply
toSpanNonzeroSingleton_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.span
Set
Set.instSingletonSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submodule.addCommMonoid
Semiring.toModule
Submodule.module
EquivLike.toFunLike
instEquivLike
toSpanNonzeroSingleton
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Submodule.smul_mem
Submodule.mem_span_singleton_self
β€”RingHomInvPair.ids
toSpanNonzeroSingleton_one πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.span
Set
Set.instSingletonSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submodule.addCommMonoid
Semiring.toModule
Submodule.module
EquivLike.toFunLike
instEquivLike
toSpanNonzeroSingleton
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Submodule.mem_span_singleton_self
β€”RingHomInvPair.ids
Submodule.mem_span_singleton_self
Submodule.smul_mem
one_smul
toSpanNonzeroSingleton_apply
toSpanNonzeroSingleton_symm_apply_smul πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set
Set.instSingletonSet
Submodule.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submodule.module
Semiring.toModule
EquivLike.toFunLike
instEquivLike
symm
toSpanNonzeroSingleton
β€”RingHomInvPair.ids
apply_symm_apply

LinearMap

Definitions

NameCategoryTheorems
toSpanSingleton πŸ“–CompOp
40 mathmath: comp_toSpanSingleton, adjoint_innerβ‚›β‚—_apply, intrinsicStar_toSpanSingleton, smulRight_id, IsIdempotentElem.ker_toSpanSingleton_eq_span, IsSimpleModule.toSpanSingleton_surjective, toSpanSingleton_one_eq_algebraLinearMap, ker_toSpanSingleton, lsmul_flip_apply, toSpanSingleton_apply_one, CharacterModule.intSpanEquivQuotAddOrderOf_symm_apply_coe, range_toSpanSingleton, CharacterModule.intSpanEquivQuotAddOrderOf_apply, ker_toSpanSingleton_eq_bot_iff, toSpanSingleton_smul, IsIdempotentElem.ker_toSpanSingleton_one_sub_eq_span, ContinuousLinearMap.toLinearMap_toSpanSingleton, adjoint_toSpanSingleton, ContinuousLinearEquiv.toSpanNonzeroSingleton_symm_apply, toSpanSingleton_apply, Submodule.annihilator_span_singleton, toSpanSingleton_eq_zero_iff, LinearIsometry.coe_toSpanSingleton, toSpanSingleton_homothety, toSpanSingleton_eq_algebra_linearMap, Submodule.annihilator_span, toSpanSingleton_convMul_toSpanSingleton, toMatrix_toSpanSingleton, Ideal.coe_torsionOf, toSpanSingleton_zero, toSpanSingleton_one, isSimpleModule_iff_toSpanSingleton_surjective, DualNumber.algHom_ext'_iff, Module.exists_ker_toSpanSingleton_eq_annihilator, span_singleton_eq_range, toSpanSingleton_injective, toSpanSingleton_isIdempotentElem_iff, IsSimpleModule.ker_toSpanSingleton_isMaximal, lsum_comp_mapRange_toSpanSingleton, toSpanSingleton_add

Theorems

NameKindAssumesProvesValidatesDepends On
comp_toSpanSingleton πŸ“–mathematicalβ€”comp
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
RingHomCompTriple.ids
toSpanSingleton
DFunLike.coe
LinearMap
instFunLike
β€”ext_ring
RingHomCompTriple.ids
one_smul
eqOn_span πŸ“–β€”Set.EqOn
DFunLike.coe
LinearMap
instFunLike
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.span
β€”β€”eqOn_span'
eqOn_span' πŸ“–mathematicalSet.EqOn
DFunLike.coe
LinearMap
instFunLike
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
β€”eqOn_span_iff
eqOn_span_iff πŸ“–mathematicalβ€”Set.EqOn
DFunLike.coe
LinearMap
instFunLike
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
β€”semilinearMapClass
le_eqLocus
Submodule.span_le
exists_ne_zero_of_sSup_eq πŸ“–β€”SupSet.sSup
Submodule
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”β€”RingHomCompTriple.ids
LE.le.trans_eq
le_sSup
exists_ne_zero_of_sSup_eq_top
sSup_image
sSup_eq_iSup
Submodule.biSup_comap_subtype_eq_top
ext
ext_on πŸ“–β€”Submodule.span
Top.top
Submodule
Submodule.instTop
Set.EqOn
DFunLike.coe
LinearMap
instFunLike
β€”β€”DFunLike.ext
eqOn_span
Submodule.eq_top_iff'
ext_on_range πŸ“–β€”Submodule.span
Set.range
Top.top
Submodule
Submodule.instTop
DFunLike.coe
LinearMap
instFunLike
β€”β€”ext_on
Set.forall_mem_range
isIdempotentElem_apply_one_iff πŸ“–mathematicalβ€”IsIdempotentElem
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
Module.End
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
instFunLike
RingHom.id
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Module.End.instMul
β€”isIdempotentElem_map_one_iff
isIdempotentElem_map_one_iff πŸ“–mathematicalβ€”IsIdempotentElem
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
Module.End
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
instFunLike
RingHom.id
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Module.End.instMul
β€”IsIdempotentElem.eq_1
smul_eq_mul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
semilinearMapClass
mul_one
ext_iff
ker_inf_lt_ker_inf_of_map_eq_of_lt πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.map
Submodule.instMin
ker
β€”Submodule.map_strict_mono_or_ker_sup_lt_ker_sup
Eq.not_lt
ker_toSpanSingleton πŸ“–mathematicalβ€”ker
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
toSpanSingleton
Bot.bot
Submodule
Submodule.instBot
β€”SetLike.ext
smul_eq_zero
IsDomain.toIsCancelMulZero
ker_toSpanSingleton_eq_bot_iff πŸ“–mathematicalβ€”ker
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
toSpanSingleton
Bot.bot
Submodule
Submodule.instBot
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsRight
β€”le_bot_iff
map_eq_top_iff πŸ“–mathematicalrange
AddCommGroup.toAddCommMonoid
Top.top
Submodule
Submodule.instTop
Submodule.map
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
ker
β€”range_eq_map
map_injective πŸ“–mathematicalker
AddCommGroup.toAddCommMonoid
Bot.bot
Submodule
Submodule.instBot
Submodule.mapβ€”le_antisymm
map_le_map_iff'
le_of_eq
ge_of_eq
map_le_map_iff πŸ“–mathematicalβ€”Submodule
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.map
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
ker
β€”Submodule.map_le_iff_le_comap
Submodule.comap_map_eq
map_le_map_iff' πŸ“–mathematicalker
AddCommGroup.toAddCommMonoid
Bot.bot
Submodule
Submodule.instBot
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.map
β€”map_le_map_iff
sup_bot_eq
map_span πŸ“–mathematicalβ€”Submodule.map
Submodule.span
Set.image
DFunLike.coe
LinearMap
instFunLike
β€”Submodule.map_span
map_span_le πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.map
Submodule.span
SetLike.instMembership
Submodule.setLike
DFunLike.coe
LinearMap
instFunLike
β€”Submodule.map_span_le
range_domRestrict_eq_range_iff πŸ“–mathematicalβ€”range
Submodule
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
domRestrict
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
ker
Top.top
Submodule.instTop
β€”eq_top_iff
mem_range_self
Submodule.add_mem_sup
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
sub_self
add_sub_cancel
le_antisymm
range_domRestrict_le_range
Submodule.mem_sup
map_add
SemilinearMapClass.toAddHomClass
mem_ker
add_zero
range_toSpanSingleton πŸ“–mathematicalβ€”range
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
RingHomSurjective.ids
toSpanSingleton
Submodule.span
Set
Set.instSingletonSet
β€”SetLike.coe_injective
RingHomSurjective.ids
Submodule.span_singleton_eq_range
smulRight_id πŸ“–mathematicalβ€”smulRight
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
id
toSpanSingleton
β€”IsScalarTower.left
span_preimage_le πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.span
Set.preimage
DFunLike.coe
LinearMap
instFunLike
Submodule.comap
β€”Submodule.span_preimage_le
span_singleton_eq_range πŸ“–mathematicalβ€”Submodule.span
Set
Set.instSingletonSet
range
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
RingHomSurjective.ids
toSpanSingleton
β€”RingHomSurjective.ids
range_toSpanSingleton
span_singleton_sup_ker_eq_top πŸ“–mathematicalβ€”Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Submodule.span
Set
Set.instSingletonSet
ker
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Semiring.toModule
RingHom.id
Semiring.toNonAssocSemiring
Top.top
Submodule.instTop
β€”top_unique
Submodule.mem_sup
Submodule.mem_span_singleton
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
inv_mul_cancel_rightβ‚€
sub_self
add_sub_cancel
submoduleOf_span_singleton_of_mem πŸ“–mathematicalSubmodule
SetLike.instMembership
Submodule.setLike
Submodule.submoduleOf
Submodule.span
Set
Set.instSingletonSet
Submodule.addCommMonoid
Submodule.module
β€”Submodule.ext
SMulMemClass.smul_mem
Submodule.smulMemClass
surjective_domRestrict_iff πŸ“–mathematicalDFunLike.coe
LinearMap
AddCommGroup.toAddCommMonoid
instFunLike
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
domRestrict
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
ker
Top.top
Submodule.instTop
β€”range_eq_top
range_domRestrict_eq_range_iff
toSpanSingleton_add πŸ“–mathematicalβ€”toSpanSingleton
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
instAdd
β€”ext_ring
smul_add
one_smul
toSpanSingleton_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
instFunLike
toSpanSingleton
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”
toSpanSingleton_apply_one πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
instFunLike
toSpanSingleton
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”one_smul
toSpanSingleton_eq_zero_iff πŸ“–mathematicalβ€”toSpanSingleton
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”toSpanSingleton_zero
toSpanSingleton_injective
toSpanSingleton_injective πŸ“–mathematicalβ€”LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
toSpanSingleton
β€”one_smul
toSpanSingleton_isIdempotentElem_iff πŸ“–mathematicalβ€”IsIdempotentElem
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Module.End.instMul
toSpanSingleton
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_assoc
one_mul
toSpanSingleton_one πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
instFunLike
toSpanSingleton
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”toSpanSingleton_apply_one
toSpanSingleton_smul πŸ“–mathematicalβ€”toSpanSingleton
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
instSMul
β€”ext_ring
one_smul
toSpanSingleton_zero πŸ“–mathematicalβ€”toSpanSingleton
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
instZero
β€”ext_ring
smul_zero

LinearMap.BilinMap

Theorems

NameKindAssumesProvesValidatesDepends On
apply_apply_mem_of_mem_span πŸ“–β€”Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.span
β€”β€”smulCommClass_self
Submodule.span_inductionβ‚‚
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
map_add
SemilinearMapClass.toAddHomClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Submodule.smul_mem

Set.MapsTo

Theorems

NameKindAssumesProvesValidatesDepends On
submoduleSpan πŸ“–mathematicalSet.MapsTo
DFunLike.coe
LinearMap
LinearMap.instFunLike
SetLike.coe
Submodule
Submodule.setLike
Submodule.span
β€”Submodule.mapsTo_span

Submodule

Definitions

NameCategoryTheorems
inclusionSpan πŸ“–CompOp
3 mathmath: injective_inclusionSpan, inclusionSpan_apply_coe, span_range_inclusionSpan
prod πŸ“–CompOp
44 mathmath: prod_inf_prod, LinearMap.prod_eq_inf_comap, LinearMap.range_prodMap, LinearMap.ker_coprod_of_disjoint_range, FG.prod, comap_fst, prod_coe, mem_prod, prod_mono, prod_comap_inr, LinearMap.prodMap_comap_prod, prod_le_iff, LinearMap.span_inl_union_inr, LinearMap.map_coprod_prod, LinearMap.ker_prodMap, prod_top, span_prod_le, LinearMap.ker_prod_ker_le_ker_coprod, prod_eq_bot_iff, LinearPMap.snd_apply, comap_snd, LinearMap.range_prod_eq, LinearPMap.fst_apply, prod_eq_top_iff, map_inr, goursatFst_prod_goursatSnd_le, LinearMap.range_prod_le, LinearMap.prodMap_map_prod, map_inl, prod_comap_inl, ContinuousLinearMap.range_eq_map_coprodSubtypeLEquivOfIsCompl, prod_bot, LinearMap.comap_prod_prod, ContinuousLinearMap.ker_prod_ker_le_ker_coprod, LinearMap.coprod_map_prod, ContinuousLinearMap.range_prod_eq, prod_map_fst, ContinuousLinearMap.ker_coprod_of_disjoint_range, le_prod_iff, Subalgebra.prod_toSubmodule, NonUnitalSubalgebra.prod_toSubmodule, prod_sup_prod, LinearMap.prod_eq_sup_map, prod_map_snd

Theorems

NameKindAssumesProvesValidatesDepends On
apply_mem_span_image_iff_mem_span πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
SetLike.instMembership
setLike
span
Set.image
β€”mem_comap
map_span
comap_map_eq_of_injective
apply_mem_span_image_of_mem_span πŸ“–mathematicalSubmodule
SetLike.instMembership
setLike
span
Set.image
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”span_image
mem_map_of_mem
biSup_comap_eq_top_of_range_eq_biSup πŸ“–mathematicalSet.Nonempty
LinearMap.range
Ring.toSemiring
AddCommGroup.toAddCommMonoid
iSup
Submodule
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Set
Set.instMembership
comap
Top.top
instTop
β€”biSup_comap_subtype_eq_top
biSup_comap_eq_top_of_surjective
LinearMap.surjective_rangeRestrict
biSup_comap_eq_top_of_surjective πŸ“–mathematicalSet.Nonempty
iSup
Submodule
AddCommGroup.toAddCommMonoid
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Set
Set.instMembership
Top.top
instTop
DFunLike.coe
LinearMap
LinearMap.instFunLike
comapβ€”iSup_subtype'
comap_map_eq
map_iSup_comap_of_surjective
comap_top
left_eq_sup
le_trans
LinearMap.ker_le_comap
le_biSup
biSup_comap_subtype_eq_top πŸ“–mathematicalβ€”iSup
Submodule
SetLike.instMembership
setLike
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Set
Set.instMembership
addCommMonoid
module
comap
RingHom.id
Semiring.toNonAssocSemiring
subtype
Top.top
instTop
β€”eq_top_iff
RingHomSurjective.ids
map_comap_eq
range_subtype
inf_eq_right
le_biSup
map_iSup
biSup_congr
mem_map
coe_scott_continuous πŸ“–mathematicalβ€”OmegaCompletePartialOrder.Ο‰ScottContinuous
Submodule
Set
CompleteLattice.instOmegaCompletePartialOrder
completeLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
SetLike.coe
setLike
β€”OmegaCompletePartialOrder.Ο‰ScottContinuous.of_monotone_map_Ο‰Sup
SetLike.coe_mono
instIsConcreteLE
coe_iSup_of_chain
comap_covBy_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
CovBy
Submodule
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
comapβ€”lt_of_le_of_ne
comap_mono
LT.lt.le
comap_injective_of_surjective
LT.lt.ne
lt_map_of_comap_lt_of_surjective
comap_lt_comap_iff_of_surjective
comap_map_eq
sup_eq_left
LE.le.trans
LinearMap.ker_le_comap
comap_le_comap_iff_of_le_range πŸ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.range
comapβ€”map_le_iff_le_comap
map_comap_eq_of_le
comap_map_eq πŸ“–mathematicalβ€”comap
AddCommGroup.toAddCommMonoid
map
Submodule
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
LinearMap.ker
β€”le_antisymm
mem_sup
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
sub_eq_zero
add_sub_cancel
sup_le
le_comap_map
comap_mono
bot_le
comap_map_eq_self πŸ“–mathematicalSubmodule
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.ker
comap
map
β€”comap_map_eq
sup_of_le_left
comap_map_sup_of_comap_le πŸ“–mathematicalSubmodule
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
map
β€”le_antisymm
mem_sup
sub_add_cancel
add_mem
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
eq_sub_iff_add_eq
add_comm
map_le_iff_le_comap
le_sup_left
comap_sup_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
LinearMap.instFunLike
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.range
comap
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”map_injective_of_injective
map_sup
map_comap_eq_self
covBy_span_singleton_sup πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
CovBy
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
span
Set
Set.instSingletonSet
β€”wcovBy_span_singleton_sup
disjoint_span_singleton πŸ“–mathematicalβ€”Disjoint
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
instPartialOrder
instOrderBot
span
Set
Set.instSingletonSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”DivisionSemiring.to_moduleIsTorsionFree
IsDomain.toIsCancelMulZero
DivisionRing.isDomain
forall_swap
smul_mem_iff
IsScalarTower.left
one_ne_zero
NeZero.one
DivisionRing.toNontrivial
disjoint_span_singleton' πŸ“–mathematicalβ€”Disjoint
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
instPartialOrder
instOrderBot
span
Set
Set.instSingletonSet
SetLike.instMembership
setLike
β€”β€”
disjoint_span_singleton'' πŸ“–mathematicalβ€”Disjoint
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instPartialOrder
instOrderBot
span
Set
Set.instSingletonSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”disjoint_comm
disjoint_span_singleton_of_notMem πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
setLike
Disjoint
instPartialOrder
instOrderBot
span
Set
Set.instSingletonSet
β€”instIsEmptyFalse
finite_span_isCompactElement πŸ“–mathematicalβ€”IsCompactElement
Submodule
instPartialOrder
span
β€”finset_span_isCompactElement
Set.Finite.coe_toFinset
finset_span_isCompactElement πŸ“–mathematicalβ€”IsCompactElement
Submodule
instPartialOrder
span
SetLike.coe
Finset
Finset.instSetLike
β€”span_eq_iSup_of_singleton_spans
iSup_congr_Prop
Finset.sup_eq_iSup
CompleteLattice.isCompactElement_finsetSup
singleton_span_isCompactElement
iSup_induction πŸ“–β€”Submodule
SetLike.instMembership
setLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”AddSubmonoid.iSup_induction
iSup_toAddSubmonoid
mem_toAddSubmonoid
iSup_induction' πŸ“–β€”mem_iSup_of_mem
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
ZeroMemClass.zero_mem
Submodule
setLike
AddSubmonoidClass.toZeroMemClass
addSubmonoidClass
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SetLike.instMembership
β€”β€”mem_iSup_of_mem
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
addSubmonoidClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
iSup_induction
iSup_toAddSubmonoid πŸ“–mathematicalβ€”toAddSubmonoid
iSup
Submodule
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
completeLattice
AddSubmonoid
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid.instCompleteLattice
β€”le_antisymm
iSup_eq_span
AddSubmonoid.iSup_eq_closure
span_induction
AddSubmonoid.subset_closure
AddSubmonoid.zero_mem
AddSubmonoid.add_mem
AddSubmonoid.closure_induction
Set.mem_iUnion
smul_mem
smul_zero
smul_add
iSup_le
toAddSubmonoid_mono
le_iSup
image_span_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.image
DFunLike.coe
LinearMap
LinearMap.instFunLike
SetLike.coe
Submodule
setLike
span
SetLike.instMembership
β€”Set.image_subset_iff
span_le
image_span_subset_span πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.image
DFunLike.coe
LinearMap
LinearMap.instFunLike
SetLike.coe
Submodule
setLike
span
β€”image_span_subset
subset_span
inclusionSpan_apply_coe πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
span
SetLike.coe
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
addCommMonoid
module
module'
LinearMap.instFunLike
inclusionSpan
β€”β€”
injective_inclusionSpan πŸ“–mathematicalβ€”Submodule
SetLike.instMembership
setLike
span
SetLike.coe
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
addCommMonoid
module
module'
LinearMap.instFunLike
inclusionSpan
β€”β€”
instIsCompactlyGenerated πŸ“–mathematicalβ€”IsCompactlyGenerated
Submodule
completeLattice
β€”Set.mem_image
singleton_span_isCompactElement
sSup_eq_iSup
iSup_image
span_eq_iSup_of_singleton_spans
span_eq
instIsModularLattice πŸ“–mathematicalβ€”IsModularLattice
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
β€”mem_sup
mem_inf
add_sub_cancel_right
add_comm
sub_mem
isCoatom_comap_iff πŸ“–mathematicalDFunLike.coe
LinearMap
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
IsCoatom
Submodule
PartialOrder.toPreorder
instPartialOrder
instOrderTop
comap
β€”comap_injective_of_surjective
IsCoatom.eq_1
comap_top
comap_strictMono_of_surjective
lt_map_of_comap_lt_of_surjective
comap_map_eq_self
LE.le.trans
comap_mono
bot_le
LT.lt.le
isCoatom_comap_or_eq_top πŸ“–mathematicalIsCoatom
Submodule
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
instPartialOrder
instOrderTop
comap
Top.top
instTop
β€”comap_map_sup_of_comap_le
LT.lt.le
LT.lt.not_ge
comap_top
isCoatom_map_of_ker_le πŸ“–mathematicalDFunLike.coe
LinearMap
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.ker
IsCoatom
instOrderTop
mapβ€”isCoatom_comap_iff
comap_map_eq_self
isCompl_comap_subtype_of_isCompl_of_le πŸ“–mathematicalIsCompl
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instPartialOrder
CompleteLattice.toBoundedOrder
completeLattice
Preorder.toLE
PartialOrder.toPreorder
SetLike.instMembership
setLike
addCommMonoid
module
comap
RingHom.id
Semiring.toNonAssocSemiring
subtype
β€”OrderIso.isCompl_iff
map_comap_subtype
inf_le_left
Set.Iic.isCompl_inf_inf_of_isCompl_of_le
instIsModularLattice
isCompl_span_singleton_of_isCoatom_of_notMem πŸ“–mathematicalIsCoatom
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
instPartialOrder
instOrderTop
SetLike.instMembership
setLike
IsCompl
CompleteLattice.toBoundedOrder
completeLattice
span
Set
Set.instSingletonSet
β€”disjoint_span_singleton_of_notMem
sup_comm
covBy_top_iff
covBy_span_singleton_sup
linearMap_eq_iff_of_eq_span πŸ“–mathematicalspanDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Submodule
SetLike.instMembership
setLike
addCommMonoid
module
LinearMap.instFunLike
Set
Set.instMembership
β€”span_induction
zero_mem
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
add_mem
LinearMap.map_add
smul_mem
LinearMap.map_smul
LinearMap.ext
linearMap_eq_iff_of_span_eq_top πŸ“–mathematicalspan
Top.top
Submodule
instTop
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Set
Set.instMembership
β€”RingHomCompTriple.ids
LinearMap.ext
DFunLike.congr_fun
linearMap_eq_iff_of_eq_span
linearMap_eq_zero_iff_of_eq_span πŸ“–mathematicalspanLinearMap
RingHom.id
Semiring.toNonAssocSemiring
Submodule
SetLike.instMembership
setLike
addCommMonoid
module
LinearMap.instZero
DFunLike.coe
LinearMap.instFunLike
Set
Set.instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”linearMap_eq_iff_of_eq_span
linearMap_eq_zero_iff_of_span_eq_top πŸ“–mathematicalspan
Top.top
Submodule
instTop
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instZero
DFunLike.coe
LinearMap.instFunLike
Set
Set.instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”linearMap_eq_iff_of_span_eq_top
map_iInf_of_ker_le πŸ“–mathematicalDFunLike.coe
LinearMap
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
LinearMap.ker
iInf
instInfSet
mapβ€”map_comap_eq_of_surjective
comap_iInf
map.congr_simp
comap_map_eq_self
le_iInf_iff
map_lt_map_of_le_of_sup_lt_sup πŸ“–mathematicalSubmodule
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Preorder.toLT
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
LinearMap.ker
mapβ€”lt_of_le_of_ne
map_mono
LT.lt.ne
map_span πŸ“–mathematicalβ€”map
span
Set.image
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”span_eq_of_le
Set.image_mono
subset_span
image_span_subset_span
map_span_le πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
span
SetLike.instMembership
setLike
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”image_span_subset
map_strict_mono_of_ker_inf_eq πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
instMin
LinearMap.ker
mapβ€”map_strict_mono_or_ker_sup_lt_ker_sup
Eq.not_lt
map_strict_mono_or_ker_sup_lt_ker_sup πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
map
instMin
LinearMap.ker
β€”strictMono_inf_prod_sup
instIsModularLattice
inf_comm
map_lt_map_of_le_of_sup_lt_sup
LT.lt.le
map_subtype_span_singleton πŸ“–mathematicalβ€”map
Submodule
SetLike.instMembership
setLike
addCommMonoid
module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
subtype
span
Set
Set.instSingletonSet
β€”RingHomSurjective.ids
Set.image_congr
Set.image_singleton
mapsTo_span πŸ“–mathematicalSet.MapsTo
DFunLike.coe
LinearMap
LinearMap.instFunLike
SetLike.coe
Submodule
setLike
span
β€”LE.le.trans
span_mono
span_preimage_le
mem_prod πŸ“–mathematicalβ€”Submodule
Prod.instAddCommMonoid
Prod.instModule
SetLike.instMembership
setLike
prod
β€”Set.mem_prod
notMem_span_of_apply_notMem_span_image πŸ“–β€”Submodule
SetLike.instMembership
setLike
span
Set.image
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”β€”apply_mem_span_image_of_mem_span
prod_bot πŸ“–mathematicalβ€”prod
Bot.bot
Submodule
instBot
Prod.instAddCommMonoid
Prod.instModule
β€”ext
prod_coe πŸ“–mathematicalβ€”SetLike.coe
Submodule
Prod.instAddCommMonoid
Prod.instModule
setLike
prod
SProd.sprod
Set
Set.instSProd
β€”β€”
prod_inf_prod πŸ“–mathematicalβ€”Submodule
Prod.instAddCommMonoid
Prod.instModule
instMin
prod
β€”SetLike.coe_injective
Set.prod_inter_prod
prod_mono πŸ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Prod.instAddCommMonoid
Prod.instModule
prod
β€”Set.prod_mono
prod_sup_prod πŸ“–mathematicalβ€”Submodule
Prod.instAddCommMonoid
Prod.instModule
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
prod
β€”le_antisymm
sup_le
prod_mono
le_sup_left
le_sup_right
instIsConcreteLE
mem_sup
prod_top πŸ“–mathematicalβ€”prod
Top.top
Submodule
instTop
Prod.instAddCommMonoid
Prod.instModule
β€”ext
singleton_span_isCompactElement πŸ“–mathematicalβ€”IsCompactElement
Submodule
instPartialOrder
span
Set
Set.instSingletonSet
β€”CompleteLattice.isCompactElement_iff_le_of_directed_sSup_le
SetLike.le_def
instIsConcreteLE
mem_span_singleton_self
mem_sSup_of_directed
span_coe_eq_restrictScalars πŸ“–mathematicalβ€”span
SetLike.coe
Submodule
setLike
restrictScalars
β€”span_eq
span_eq_top_of_span_eq_top πŸ“–β€”span
Top.top
Submodule
instTop
β€”β€”LE.le.antisymm
le_top
LE.le.trans
Eq.ge
span_le_restrictScalars
span_image πŸ“–mathematicalβ€”span
Set.image
DFunLike.coe
LinearMap
LinearMap.instFunLike
map
β€”map_span
span_image_linearEquiv πŸ“–mathematicalβ€”span
Set.image
DFunLike.coe
LinearEquiv
EquivLike.toFunLike
LinearEquiv.instEquivLike
map
RingHomSurjective.invPair
LinearEquiv.toLinearMap
β€”span_image
RingHomSurjective.invPair
span_le_restrictScalars πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
span
restrictScalars
β€”span_le
subset_span
span_neg πŸ“–mathematicalβ€”span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Set.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”RingHomSurjective.ids
Set.image_congr
Set.image_neg_eq_neg
map_span
map_neg
map_id
span_preimage_le πŸ“–mathematicalβ€”Submodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
span
Set.preimage
DFunLike.coe
LinearMap
LinearMap.instFunLike
comap
β€”span_le
comap_coe
Set.preimage_mono
subset_span
span_prod_le πŸ“–mathematicalβ€”Submodule
Prod.instAddCommMonoid
Prod.instModule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
span
SProd.sprod
Set
Set.instSProd
prod
β€”span_le
Set.prod_mono
subset_span
span_range_inclusionSpan πŸ“–mathematicalβ€”span
Submodule
SetLike.instMembership
setLike
SetLike.coe
addCommMonoid
module
Set.range
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
module'
LinearMap.instFunLike
inclusionSpan
Top.top
instTop
β€”Set.ext
Set.image_congr
subset_span
map_injective_of_injective
RingHomSurjective.ids
injective_subtype
map_subtype_top
map_span
span_range_inclusion_eq_top πŸ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrictScalars
span
SetLike.coe
setLike
SetLike.instMembership
addCommMonoid
restrictScalars.origModule
Set.range
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
module
LinearMap.instFunLike
inclusion
Top.top
instTop
β€”RingHomSurjective.ids
map_span
Set.ext
Set.image_congr
range_inclusion
le_antisymm
IsScalarTower.left
span_coe_eq_restrictScalars
restrictScalars_self
span_mono
map_injective_of_injective
injective_subtype
map_subtype_top
span_range_inclusion_restrictScalars_eq_top πŸ“–mathematicalβ€”span
Submodule
SetLike.instMembership
setLike
restrictScalars
addCommMonoid
restrictScalars.origModule
Set.range
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
module
LinearMap.instFunLike
inclusion
span_le_restrictScalars
Top.top
instTop
β€”span_range_inclusion_eq_top
span_le_restrictScalars
span_span_of_tower
span_range_subtype_eq_top_iff πŸ“–mathematicalSubmodule
SetLike.instMembership
setLike
span
addCommMonoid
module
Set.range
Top.top
instTop
β€”RingHomSurjective.ids
map_injective_of_injective
injective_subtype
map_span
Set.image_congr
map_top
range_subtype
span_singleton_eq_span_singleton πŸ“–mathematicalβ€”span
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Set
Set.instSingletonSet
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Units.instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Module.toDistribMulAction
β€”eq_or_ne
smul_zero
smul_left_injective
IsDomain.toIsCancelMulZero
SemigroupAction.mul_smul
one_smul
smul_ne_zero_iff
span_singleton_group_smul_eq
Units.instIsScalarTower
IsScalarTower.left
span_smul_eq_of_isUnit πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
span
Set
Set.smulSet
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Module.toDistribMulAction
β€”le_antisymm
span_smul_le
smul_smul
IsUnit.val_inv_mul
one_smul
span_span_of_tower πŸ“–mathematicalβ€”span
SetLike.coe
Submodule
setLike
β€”le_antisymm
span_le
span_subset_span
span_mono
subset_span
span_subset_span πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Submodule
setLike
span
β€”span_le_restrictScalars
wcovBy_span_singleton_sup πŸ“–mathematicalβ€”WCovBy
Submodule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
PartialOrder.toPreorder
instPartialOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
span
Set
Set.instSingletonSet
β€”le_sup_right
LT.lt.not_ge
SetLike.exists_of_lt
instIsConcreteLE
LT.lt.le
eq_or_ne
zero_smul
zero_add
smul_mem_iff
IsScalarTower.left
add_mem_iff_left

---

← Back to Index