Documentation Verification Report

StdBasis

πŸ“ Source: Mathlib/LinearAlgebra/StdBasis.lean

Statistics

MetricCount
DefinitionspiEquiv, basis, basisFun
3
Theoremseq_piEvalAlgHom, function, pi, piEquiv_apply_apply, range_piEquiv, surjective_piEquiv_apply_iff, basisFun_apply, basisFun_equivFun, basisFun_repr, basis_apply, basis_repr, basis_repr_single, linearIndependent_single, linearIndependent_single_of_ne_zero, linearIndependent_single_one
15
Total18

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
eq_piEvalAlgHom πŸ“–mathematicalβ€”Pi.evalAlgHom
CommSemiring.toSemiring
Algebra.id
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
algHomClass
Finset.sum_congr
Finset.sum_const_zero
NeZero.one
Finset.univ_sum_single
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
AlgHomClass.linearMapClass
NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Pi.single_eq_same
Pi.single_eq_of_ne'
MulZeroClass.mul_zero
Pi.single_eq_of_ne
MulZeroClass.zero_mul
map_zero
MonoidWithZeroHomClass.toZeroHomClass
Fintype.sum_eq_single
toLinearMap_injective
Module.Basis.ext
Pi.basisFun_apply

Module

Definitions

NameCategoryTheorems
piEquiv πŸ“–CompOp
3 mathmath: piEquiv_apply_apply, range_piEquiv, surjective_piEquiv_apply_iff

Theorems

NameKindAssumesProvesValidatesDepends On
piEquiv_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
toDistribMulAction
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
piEquiv
Finite.of_fintype
Finset.sum
Finset.univ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”RingHomInvPair.ids
smulCommClass_self
Finite.of_fintype
Basis.constr_apply_fintype
Finset.sum_congr
range_piEquiv πŸ“–mathematicalβ€”LinearMap.range
CommSemiring.toSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
RingHom.id
RingHomSurjective.ids
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
LinearMap
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
toDistribMulAction
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
piEquiv
Submodule.span
Set.range
β€”Basis.constr_range
surjective_piEquiv_apply_iff πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
toDistribMulAction
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
piEquiv
Submodule.span
Set.range
Top.top
Submodule
Submodule.instTop
β€”RingHomInvPair.ids
smulCommClass_self
RingHomSurjective.ids
LinearMap.range_eq_top
range_piEquiv

Module.Free

Theorems

NameKindAssumesProvesValidatesDepends On
function πŸ“–mathematicalβ€”Module.Free
Pi.addCommMonoid
Pi.Function.module
β€”pi
pi πŸ“–mathematicalModule.FreePi.addCommMonoid
Pi.module
β€”nonempty_fintype
of_basis

Pi

Definitions

NameCategoryTheorems
basis πŸ“–CompOp
4 mathmath: basis_repr_single, basis_apply, basis_repr, orthonormalBasis.toBasis
basisFun πŸ“–CompOp
27 mathmath: tendsto_tsum_div_pow_atTop_integral, LinearMap.BilinForm.toMatrix_basisFun, BoxIntegral.unitPartition.mem_smul_span_iff, Module.Basis.parallelepiped_basisFun, LDL.lowerInv_eq_gramSchmidtBasis, BoxIntegral.unitPartition.integralSum_eq_tsum_div, tendsto_card_div_pow_atTop_volume, basis_toMatrix_basisFun_mul, hasEigenvector_toLin'_diagonal, Matrix.toBilin_basisFun, LinearMap.toMatrixβ‚‚_basisFun, basisFun_det, Module.Basis.coePiBasisFun.toMatrix_eq_transpose, PiLp.basisFun_eq_pi_basisFun, Matrix.toLinearMapβ‚‚_basisFun, basisFun_apply, ZSpan.fundamentalDomain_pi_basisFun, BilinForm.toMatrix_basisFun, Matrix.toLin_eq_toLin', ZSpan.discreteTopology_pi_basisFun, tendsto_card_div_pow_atTop_volume', LinearMap.toMatrix_eq_toMatrix', basisFun_equivFun, PiLp.basisFun_map, basisFun_repr, basisFun_det_apply, BoxIntegral.unitPartition.tag_mem_smul_span

Theorems

NameKindAssumesProvesValidatesDepends On
basisFun_apply πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Function.module
Semiring.toModule
Module.Basis.instFunLike
basisFun
single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”RingHomInvPair.ids
Module.Basis.coe_ofEquivFun
basisFun_equivFun πŸ“–mathematicalβ€”Module.Basis.equivFun
addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Function.module
Semiring.toModule
basisFun
LinearEquiv.refl
β€”Module.Basis.equivFun_ofEquivFun
basisFun_repr πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.instAddCommMonoid
Function.module
Semiring.toModule
Finsupp.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
basisFun
β€”β€”
basis_apply πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
addCommMonoid
module
Module.Basis.instFunLike
basis
single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”RingHomInvPair.ids
Module.Basis.apply_eq_iff
basis_repr_single
Sigma.eta
basis_repr πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
addCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
basis
β€”RingHomInvPair.ids
basis_repr_single πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
addCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
basis
single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Module.Basis
Module.Basis.instFunLike
Finsupp.single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Finsupp.ext
RingHomInvPair.ids
Module.Basis.repr_symm_apply
LinearEquiv.trans.congr_simp
Finsupp.single_apply
single_eq_same
Module.Basis.repr_self
single_eq_of_ne
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Finsupp.zero_apply
Finsupp.single_eq_of_ne
linearIndependent_single πŸ“–mathematicalLinearIndependentsingle
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
addCommMonoid
module
β€”LinearIndependent.map_injOn
DFinsupp.linearIndependent_single
Function.Injective.injOn
DFinsupp.injective_pi_lapply
linearIndependent_single_of_ne_zero πŸ“–mathematicalβ€”LinearIndependent
single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toSemiring
addCommMonoid
AddCommGroup.toAddCommMonoid
Function.module
β€”linearIndependent_equiv
linearIndependent_single
linearIndependent_single_one πŸ“–mathematicalβ€”LinearIndependent
single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Function.module
Semiring.toModule
β€”linearIndependent_equiv
linearIndependent_single
Finset.sum_congr
Finset.univ_unique
mul_one
Finset.sum_singleton

---

← Back to Index