Documentation Verification Report

ToTensorPower

πŸ“ Source: Mathlib/LinearAlgebra/TensorAlgebra/ToTensorPower.lean

Statistics

MetricCount
DefinitionsequivDirectSum, ofDirectSum, toDirectSum, toTensorAlgebra
4
TheoremsequivDirectSum_apply, equivDirectSum_symm_apply, mk_reindex_cast, mk_reindex_fin_cast, ofDirectSum_comp_toDirectSum, ofDirectSum_of_tprod, ofDirectSum_toDirectSum, toDirectSum_comp_ofDirectSum, toDirectSum_ofDirectSum, toDirectSum_tensorPower_tprod, toDirectSum_ΞΉ, list_prod_gradedMonoid_mk_single, toTensorAlgebra_gMul, toTensorAlgebra_gOne, toTensorAlgebra_galgebra_toFun, toTensorAlgebra_tprod
16
Total20

TensorAlgebra

Definitions

NameCategoryTheorems
equivDirectSum πŸ“–CompOp
2 mathmath: equivDirectSum_apply, equivDirectSum_symm_apply
ofDirectSum πŸ“–CompOp
6 mathmath: ofDirectSum_of_tprod, toDirectSum_ofDirectSum, ofDirectSum_toDirectSum, toDirectSum_comp_ofDirectSum, equivDirectSum_symm_apply, ofDirectSum_comp_toDirectSum
toDirectSum πŸ“–CompOp
7 mathmath: toDirectSum_tensorPower_tprod, toDirectSum_ofDirectSum, equivDirectSum_apply, ofDirectSum_toDirectSum, toDirectSum_comp_ofDirectSum, toDirectSum_ΞΉ, ofDirectSum_comp_toDirectSum

Theorems

NameKindAssumesProvesValidatesDepends On
equivDirectSum_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
TensorAlgebra
DirectSum
TensorPower
PiTensorProduct.instAddCommMonoid
instSemiringTensorAlgebra
DirectSum.semiring
Nat.instAddMonoid
TensorPower.gsemiring
instAlgebra
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
DirectSum.instAlgebra
PiTensorProduct.instModule
TensorPower.galgebra
AlgEquiv.instFunLike
equivDirectSum
AlgHom
AlgHom.funLike
toDirectSum
β€”IsScalarTower.left
equivDirectSum_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
DirectSum
TensorPower
PiTensorProduct.instAddCommMonoid
TensorAlgebra
DirectSum.semiring
Nat.instAddMonoid
TensorPower.gsemiring
instSemiringTensorAlgebra
DirectSum.instAlgebra
PiTensorProduct.instModule
TensorPower.galgebra
instAlgebra
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
AlgEquiv.instFunLike
AlgEquiv.symm
equivDirectSum
AlgHom
AlgHom.funLike
ofDirectSum
β€”IsScalarTower.left
mk_reindex_cast πŸ“–mathematicalβ€”TensorPower
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiTensorProduct
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
PiTensorProduct.reindex
Equiv.cast
β€”RingHomInvPair.ids
PiTensorProduct.gradedMonoid_eq_of_reindex_cast
mk_reindex_fin_cast πŸ“–mathematicalβ€”TensorPower
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiTensorProduct
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
PiTensorProduct.reindex
finCongr
β€”RingHomInvPair.ids
finCongr_eq_equivCast
mk_reindex_cast
ofDirectSum_comp_toDirectSum πŸ“–mathematicalβ€”AlgHom.comp
TensorAlgebra
DirectSum
TensorPower
PiTensorProduct.instAddCommMonoid
instSemiringTensorAlgebra
DirectSum.semiring
Nat.instAddMonoid
TensorPower.gsemiring
instAlgebra
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
DirectSum.instAlgebra
PiTensorProduct.instModule
TensorPower.galgebra
ofDirectSum
toDirectSum
AlgHom.id
β€”hom_ext
IsScalarTower.left
LinearMap.ext
RingHomCompTriple.ids
toDirectSum_ΞΉ
ofDirectSum_of_tprod
mul_one
ofDirectSum_of_tprod πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
DirectSum
TensorPower
PiTensorProduct.instAddCommMonoid
TensorAlgebra
DirectSum.semiring
Nat.instAddMonoid
TensorPower.gsemiring
instSemiringTensorAlgebra
DirectSum.instAlgebra
PiTensorProduct.instModule
TensorPower.galgebra
instAlgebra
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
AlgHom.funLike
ofDirectSum
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
DirectSum.of
MultilinearMap
PiTensorProduct
MultilinearMap.instFunLikeForall
PiTensorProduct.tprod
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
tprod
β€”IsScalarTower.left
DirectSum.toAddMonoid_of
TensorPower.toTensorAlgebra_tprod
ofDirectSum_toDirectSum πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
DirectSum
TensorPower
PiTensorProduct.instAddCommMonoid
TensorAlgebra
DirectSum.semiring
Nat.instAddMonoid
TensorPower.gsemiring
instSemiringTensorAlgebra
DirectSum.instAlgebra
PiTensorProduct.instModule
TensorPower.galgebra
instAlgebra
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
AlgHom.funLike
ofDirectSum
toDirectSum
β€”AlgHom.congr_fun
IsScalarTower.left
ofDirectSum_comp_toDirectSum
toDirectSum_comp_ofDirectSum πŸ“–mathematicalβ€”AlgHom.comp
DirectSum
TensorPower
PiTensorProduct.instAddCommMonoid
TensorAlgebra
DirectSum.semiring
Nat.instAddMonoid
TensorPower.gsemiring
instSemiringTensorAlgebra
DirectSum.instAlgebra
PiTensorProduct.instModule
TensorPower.galgebra
instAlgebra
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
toDirectSum
ofDirectSum
AlgHom.id
β€”DirectSum.algHom_ext'
IsScalarTower.left
PiTensorProduct.ext
RingHomCompTriple.ids
MultilinearMap.ext
DirectSum.ext
ofDirectSum_of_tprod
toDirectSum_tensorPower_tprod
toDirectSum_ofDirectSum πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
TensorAlgebra
DirectSum
TensorPower
PiTensorProduct.instAddCommMonoid
instSemiringTensorAlgebra
DirectSum.semiring
Nat.instAddMonoid
TensorPower.gsemiring
instAlgebra
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
DirectSum.instAlgebra
PiTensorProduct.instModule
TensorPower.galgebra
AlgHom.funLike
toDirectSum
ofDirectSum
β€”AlgHom.congr_fun
IsScalarTower.left
toDirectSum_comp_ofDirectSum
toDirectSum_tensorPower_tprod πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
TensorAlgebra
DirectSum
TensorPower
PiTensorProduct.instAddCommMonoid
instSemiringTensorAlgebra
DirectSum.semiring
Nat.instAddMonoid
TensorPower.gsemiring
instAlgebra
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
DirectSum.instAlgebra
PiTensorProduct.instModule
TensorPower.galgebra
AlgHom.funLike
toDirectSum
MultilinearMap
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
MultilinearMap.instFunLikeForall
tprod
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
DirectSum.of
PiTensorProduct
PiTensorProduct.tprod
β€”IsScalarTower.left
tprod_apply
map_list_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
List.map_ofFn
toDirectSum_ΞΉ
DirectSum.list_prod_ofFn_of_eq_dProd
DirectSum.of_eq_of_gradedMonoid_eq
GradedMonoid.mk_list_dProd
TensorPower.list_prod_gradedMonoid_mk_single
toDirectSum_ΞΉ πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
TensorAlgebra
DirectSum
TensorPower
PiTensorProduct.instAddCommMonoid
instSemiringTensorAlgebra
DirectSum.semiring
Nat.instAddMonoid
TensorPower.gsemiring
instAlgebra
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
DirectSum.instAlgebra
PiTensorProduct.instModule
TensorPower.galgebra
AlgHom.funLike
toDirectSum
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
LinearMap.instFunLike
ΞΉ
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddCommMonoidDirectSum
AddMonoidHom.instFunLike
DirectSum.of
MultilinearMap
PiTensorProduct
MultilinearMap.instFunLikeForall
PiTensorProduct.tprod
β€”IsScalarTower.left
lift_ΞΉ_apply
PiTensorProduct.subsingletonEquiv_symm_apply'

TensorPower

Definitions

NameCategoryTheorems
toTensorAlgebra πŸ“–CompOp
4 mathmath: toTensorAlgebra_gMul, toTensorAlgebra_gOne, toTensorAlgebra_galgebra_toFun, toTensorAlgebra_tprod

Theorems

NameKindAssumesProvesValidatesDepends On
list_prod_gradedMonoid_mk_single πŸ“–mathematicalβ€”GradedMonoid
TensorPower
GradedMonoid.GMul.toMul
gMul
GradedMonoid.GOne.toOne
MulZeroClass.toZero
Nat.instMulZeroClass
gOne
DFunLike.coe
MultilinearMap
PiTensorProduct
CommSemiring.toSemiring
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
MultilinearMap.instFunLikeForall
PiTensorProduct.tprod
β€”Fin.cons_zero
Fin.cons_succ
tprod_mul_tprod
gradedMonoid_eq_of_cast
add_comm
RingHomInvPair.ids
cast_tprod
Fin.append_left_eq_cons
toTensorAlgebra_gMul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorPower
TensorAlgebra
PiTensorProduct.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instSemiringTensorAlgebra
PiTensorProduct.instModule
Algebra.toModule
instAlgebra
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
toTensorAlgebra
GradedMonoid.GMul.mul
gMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”IsScalarTower.left
PiTensorProduct.instSMulCommClass
TensorProduct.smulCommClass_left
smulCommClass_self
PiTensorProduct.instIsScalarTower
TensorProduct.isScalarTower
RingHomInvPair.ids
gMul_eq_coe_linearMap
instSMulCommClassTensorAlgebra
instIsScalarTowerTensorAlgebra
IsScalarTower.right
LinearMap.comprβ‚‚_apply
Algebra.to_smulCommClass
LinearMap.mul_apply'
RingHomCompTriple.ids
LinearMap.complβ‚‚_apply
LinearMap.comp_apply
LinearMap.congr_fun
PiTensorProduct.ext
MultilinearMap.ext
tprod_mul_tprod
toTensorAlgebra_tprod
List.ofFn_comp'
List.ofFn_fin_append
Semigroup.to_isLawfulIdentity
Semigroup.to_isAssociative
toTensorAlgebra_gOne πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorPower
MulZeroClass.toZero
Nat.instMulZeroClass
TensorAlgebra
PiTensorProduct.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instSemiringTensorAlgebra
PiTensorProduct.instModule
Algebra.toModule
instAlgebra
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
toTensorAlgebra
GradedMonoid.GOne.one
gOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”IsScalarTower.left
toTensorAlgebra_tprod
toTensorAlgebra_galgebra_toFun πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorPower
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
TensorAlgebra
PiTensorProduct.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instSemiringTensorAlgebra
PiTensorProduct.instModule
Algebra.toModule
instAlgebra
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
toTensorAlgebra
AddMonoidHom
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoidHom.instFunLike
DirectSum.GAlgebra.toFun
gsemiring
galgebra
RingHom
RingHom.instFunLike
algebraMap
β€”IsScalarTower.left
RingHomInvPair.ids
galgebra_toFun_def
algebraMapβ‚€_eq_smul_one
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
toTensorAlgebra_gOne
Algebra.algebraMap_eq_smul_one
toTensorAlgebra_tprod πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorPower
TensorAlgebra
PiTensorProduct.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instSemiringTensorAlgebra
PiTensorProduct.instModule
Algebra.toModule
instAlgebra
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
toTensorAlgebra
MultilinearMap
PiTensorProduct
MultilinearMap.instFunLikeForall
PiTensorProduct.tprod
TensorAlgebra.tprod
β€”PiTensorProduct.lift.tprod

---

← Back to Index