Documentation Verification Report

Basic

šŸ“ Source: Mathlib/LinearAlgebra/TensorPower/Basic.lean

Statistics

MetricCount
DefinitionsTensorPower, algebraMapā‚€, cast, gMul, gOne, galgebra, gmonoid, gsemiring, mulEquiv, Ā«term⨂[_]^_Ā»
10
TheoremsgradedMonoid_eq_of_reindex_cast, algebraMapā‚€_eq_smul_one, algebraMapā‚€_mul, algebraMapā‚€_mul_algebraMapā‚€, algebraMapā‚€_one, cast_cast, cast_eq_cast, cast_refl, cast_symm, cast_tprod, cast_trans, gMul_def, gMul_eq_coe_linearMap, gOne_def, galgebra_toFun_def, gradedMonoid_eq_of_cast, mul_algebraMapā‚€, mul_assoc, mul_one, one_mul, tprod_mul_tprod
21
Total31

PiTensorProduct

Theorems

NameKindAssumesProvesValidatesDepends On
gradedMonoid_eq_of_reindex_cast šŸ“–ā€”PiTensorProduct
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
instAddCommMonoid
instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
reindex
Equiv.cast
——RingHomInvPair.ids
reindex_refl

TensorPower

Definitions

NameCategoryTheorems
algebraMapā‚€ šŸ“–CompOp
6 mathmath: algebraMapā‚€_mul, algebraMapā‚€_one, galgebra_toFun_def, algebraMapā‚€_eq_smul_one, algebraMapā‚€_mul_algebraMapā‚€, mul_algebraMapā‚€
cast šŸ“–CompOp
12 mathmath: cast_cast, cast_trans, algebraMapā‚€_mul, cast_symm, mul_assoc, mul_one, algebraMapā‚€_mul_algebraMapā‚€, cast_refl, cast_tprod, cast_eq_cast, one_mul, mul_algebraMapā‚€
gMul šŸ“–CompOp
11 mathmath: gMul_eq_coe_linearMap, algebraMapā‚€_mul, mul_assoc, tprod_mul_tprod, mul_one, toTensorAlgebra_gMul, algebraMapā‚€_mul_algebraMapā‚€, gMul_def, list_prod_gradedMonoid_mk_single, one_mul, mul_algebraMapā‚€
gOne šŸ“–CompOp
7 mathmath: algebraMapā‚€_one, algebraMapā‚€_eq_smul_one, mul_one, toTensorAlgebra_gOne, list_prod_gradedMonoid_mk_single, gOne_def, one_mul
galgebra šŸ“–CompOp
11 mathmath: TensorAlgebra.ofDirectSum_of_tprod, TensorAlgebra.toDirectSum_tensorPower_tprod, TensorAlgebra.toDirectSum_ofDirectSum, TensorAlgebra.equivDirectSum_apply, galgebra_toFun_def, TensorAlgebra.ofDirectSum_toDirectSum, TensorAlgebra.toDirectSum_comp_ofDirectSum, TensorAlgebra.equivDirectSum_symm_apply, toTensorAlgebra_galgebra_toFun, TensorAlgebra.toDirectSum_ι, TensorAlgebra.ofDirectSum_comp_toDirectSum
gmonoid šŸ“–CompOp—
gsemiring šŸ“–CompOp
11 mathmath: TensorAlgebra.ofDirectSum_of_tprod, TensorAlgebra.toDirectSum_tensorPower_tprod, TensorAlgebra.toDirectSum_ofDirectSum, TensorAlgebra.equivDirectSum_apply, galgebra_toFun_def, TensorAlgebra.ofDirectSum_toDirectSum, TensorAlgebra.toDirectSum_comp_ofDirectSum, TensorAlgebra.equivDirectSum_symm_apply, toTensorAlgebra_galgebra_toFun, TensorAlgebra.toDirectSum_ι, TensorAlgebra.ofDirectSum_comp_toDirectSum
mulEquiv šŸ“–CompOp
2 mathmath: gMul_eq_coe_linearMap, gMul_def

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMapā‚€_eq_smul_one šŸ“–mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorPower
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PiTensorProduct.instAddCommMonoid
Semiring.toModule
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
algebraMapā‚€
MulZeroClass.toZero
Nat.instMulZeroClass
PiTensorProduct.instSMul
GradedMonoid.GOne.one
gOne
—RingHomInvPair.ids
Fin.isEmpty'
algebraMapā‚€_mul šŸ“–mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorPower
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddZero.toZero
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
cast
zero_add
GradedMonoid.GMul.mul
gMul
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
algebraMapā‚€
PiTensorProduct.instSMul
—RingHomInvPair.ids
zero_add
PiTensorProduct.instSMulCommClass
TensorProduct.smulCommClass_left
smulCommClass_self
PiTensorProduct.instIsScalarTower
TensorProduct.isScalarTower
gMul_eq_coe_linearMap
algebraMapā‚€_eq_smul_one
LinearMap.map_smulā‚‚
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
one_mul
algebraMapā‚€_mul_algebraMapā‚€ šŸ“–mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorPower
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddZero.toZero
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
cast
add_zero
GradedMonoid.GMul.mul
gMul
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
algebraMapā‚€
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
—RingHomInvPair.ids
add_zero
smul_eq_mul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
algebraMapā‚€_mul
algebraMapā‚€_one šŸ“–mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorPower
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PiTensorProduct.instAddCommMonoid
Semiring.toModule
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
algebraMapā‚€
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
GradedMonoid.GOne.one
MulZeroClass.toZero
Nat.instMulZeroClass
gOne
—RingHomInvPair.ids
algebraMapā‚€_eq_smul_one
one_smul
Algebra.to_smulCommClass
cast_cast šŸ“–mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorPower
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
cast
—PiTensorProduct.reindex_reindex
cast_eq_cast šŸ“–mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorPower
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
cast
—RingHomInvPair.ids
cast_refl
cast_refl šŸ“–mathematical—cast
LinearEquiv.refl
TensorPower
CommSemiring.toSemiring
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
—RingHomInvPair.ids
finCongr_refl
PiTensorProduct.reindex_refl
cast_symm šŸ“–mathematical—LinearEquiv.symm
TensorPower
CommSemiring.toSemiring
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
cast
—PiTensorProduct.reindex_symm
cast_tprod šŸ“–mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorPower
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
cast
MultilinearMap
PiTensorProduct
MultilinearMap.instFunLikeForall
PiTensorProduct.tprod
—PiTensorProduct.reindex_tprod
cast_trans šŸ“–mathematical—LinearEquiv.trans
TensorPower
CommSemiring.toSemiring
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
cast
—PiTensorProduct.reindex_trans
gMul_def šŸ“–mathematical—GradedMonoid.GMul.mul
TensorPower
gMul
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
TensorProduct.addCommMonoid
TensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
mulEquiv
TensorProduct.tmul
——
gMul_eq_coe_linearMap šŸ“–mathematical—GradedMonoid.GMul.mul
TensorPower
gMul
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
PiTensorProduct.instSMulCommClass
LinearMap.comprā‚‚
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Semiring.toModule
PiTensorProduct.instIsScalarTower
TensorProduct.isScalarTower
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearEquiv.toLinearMap
RingHomInvPair.ids
mulEquiv
——
gOne_def šŸ“–mathematical—GradedMonoid.GOne.one
TensorPower
MulZeroClass.toZero
Nat.instMulZeroClass
gOne
DFunLike.coe
MultilinearMap
PiTensorProduct
CommSemiring.toSemiring
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
MultilinearMap.instFunLikeForall
PiTensorProduct.tprod
——
galgebra_toFun_def šŸ“–mathematical—DFunLike.coe
AddMonoidHom
TensorPower
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
AddCommMonoid.toAddMonoid
PiTensorProduct.instAddCommMonoid
AddMonoidHom.instFunLike
DirectSum.GAlgebra.toFun
PiTensorProduct.instModule
gsemiring
galgebra
LinearEquiv
RingHom.id
RingHomInvPair.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
algebraMapā‚€
——
gradedMonoid_eq_of_cast šŸ“–ā€”PiTensorProduct
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorPower
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
cast
——RingHomInvPair.ids
PiTensorProduct.gradedMonoid_eq_of_reindex_cast
finCongr_eq_equivCast
cast.eq_1
mul_algebraMapā‚€ šŸ“–mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorPower
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddZero.toZero
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
cast
add_zero
GradedMonoid.GMul.mul
gMul
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
algebraMapā‚€
PiTensorProduct.instSMul
—RingHomInvPair.ids
add_zero
PiTensorProduct.instSMulCommClass
TensorProduct.smulCommClass_left
smulCommClass_self
PiTensorProduct.instIsScalarTower
TensorProduct.isScalarTower
gMul_eq_coe_linearMap
algebraMapā‚€_eq_smul_one
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
mul_one
mul_assoc šŸ“–mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorPower
AddSemigroup.toAdd
Nat.instAddSemigroup
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
cast
add_assoc
GradedMonoid.GMul.mul
gMul
—PiTensorProduct.instSMulCommClass
TensorProduct.smulCommClass_left
smulCommClass_self
PiTensorProduct.instIsScalarTower
TensorProduct.isScalarTower
RingHomInvPair.ids
add_assoc
LinearMap.instSMulCommClass
RingHomCompTriple.ids
SMulCommClass.symm
PiTensorProduct.ext
MultilinearMap.ext
tprod_mul_tprod
cast_tprod
Fin.append_assoc
LinearMap.congr_fun
mul_one šŸ“–mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorPower
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddZero.toZero
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
cast
add_zero
GradedMonoid.GMul.mul
gMul
GradedMonoid.GOne.one
MulZeroClass.toZero
Nat.instMulZeroClass
gOne
—RingHomInvPair.ids
add_zero
gMul_def
gOne_def
PiTensorProduct.induction_on
Algebra.to_smulCommClass
PiTensorProduct.instSMulCommClass
TensorProduct.smul_tmul'
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
tprod_mul_tprod
cast_tprod
Fin.append_elim0
TensorProduct.add_tmul
map_add
SemilinearMapClass.toAddHomClass
one_mul šŸ“–mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorPower
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddZero.toZero
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
cast
zero_add
GradedMonoid.GMul.mul
gMul
GradedMonoid.GOne.one
MulZeroClass.toZero
Nat.instMulZeroClass
gOne
—RingHomInvPair.ids
zero_add
gMul_def
gOne_def
PiTensorProduct.induction_on
Algebra.to_smulCommClass
PiTensorProduct.instSMulCommClass
TensorProduct.tmul_smul
TensorProduct.CompatibleSMul.isScalarTower
PiTensorProduct.instIsScalarTower
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
tprod_mul_tprod
cast_tprod
Fin.elim0_append
TensorProduct.tmul_add
map_add
SemilinearMapClass.toAddHomClass
tprod_mul_tprod šŸ“–mathematical—GradedMonoid.GMul.mul
TensorPower
gMul
DFunLike.coe
MultilinearMap
PiTensorProduct
CommSemiring.toSemiring
PiTensorProduct.instAddCommMonoid
PiTensorProduct.instModule
MultilinearMap.instFunLikeForall
PiTensorProduct.tprod
Fin.append
—RingHomInvPair.ids
PiTensorProduct.tmulEquiv_apply
PiTensorProduct.reindex_tprod

TensorProduct

Definitions

NameCategoryTheorems
Ā«term⨂[_]^_Ā» šŸ“–CompOp—

(root)

Definitions

NameCategoryTheorems
TensorPower šŸ“–CompOp
38 mathmath: TensorAlgebra.ofDirectSum_of_tprod, TensorPower.cast_cast, TensorPower.cast_trans, TensorAlgebra.toDirectSum_tensorPower_tprod, TensorPower.gMul_eq_coe_linearMap, TensorPower.algebraMapā‚€_mul, TensorAlgebra.toDirectSum_ofDirectSum, TensorPower.cast_symm, TensorPower.mul_assoc, TensorPower.algebraMapā‚€_one, TensorAlgebra.equivDirectSum_apply, TensorPower.galgebra_toFun_def, TensorPower.tprod_mul_tprod, TensorPower.algebraMapā‚€_eq_smul_one, TensorPower.multilinearMapToDual_apply_tprod, TensorAlgebra.ofDirectSum_toDirectSum, TensorPower.mul_one, TensorPower.toTensorAlgebra_gMul, TensorPower.toTensorAlgebra_gOne, TensorAlgebra.toDirectSum_comp_ofDirectSum, TensorPower.algebraMapā‚€_mul_algebraMapā‚€, TensorPower.gMul_def, TensorPower.list_prod_gradedMonoid_mk_single, TensorPower.cast_refl, TensorPower.cast_tprod, TensorPower.cast_eq_cast, TensorPower.gOne_def, TensorPower.one_mul, TensorAlgebra.equivDirectSum_symm_apply, TensorAlgebra.mk_reindex_fin_cast, TensorPower.mul_algebraMapā‚€, TensorAlgebra.mk_reindex_cast, TensorPower.toTensorAlgebra_galgebra_toFun, TensorAlgebra.toDirectSum_ι, TensorAlgebra.ofDirectSum_comp_toDirectSum, exteriorPower.toTensorPower_apply_ιMulti, TensorPower.toTensorAlgebra_tprod, TensorPower.pairingDual_tprod_tprod

---

← Back to Index