| Name | Category | Theorems |
assoc π | CompOp | 47 mathmath: LinearMap.lTensor_rTensor_comp_assoc, CoalgCat.MonoidalCategoryAux.associator_hom_toLinearMap, Coalgebra.coassoc_symm_apply, contractLeft_assoc_coevaluation, Matrix.kroneckerTMul_assoc', gradedMul_def, toMatrix_assoc, QuadraticForm.tensorAssoc_toLinearEquiv, map_map_assoc_symm, leftComm_def, LinearMap.rTensor_lTensor_comp_assoc_symm, map_map_comp_assoc_eq, norm_assoc, assoc_tmul, ModuleCat.hom_inv_associator, ModuleCat.MonoidalCategory.associator_def, QuadraticForm.tmul_tensorAssoc_apply, SemimoduleCat.hom_inv_associator, inner_assoc_assoc, Equiv.tensorProductAssoc_def, QuadraticForm.tensorAssoc_symm_apply, Coalgebra.coassoc, assocIsometry_apply, ModuleCat.hom_hom_associator, assoc_tensor'', enorm_assoc, SemimoduleCat.hom_hom_associator, toLinearEquiv_assocIsometry, nnnorm_assoc, Module.Invertible.rTensorEquiv_symm_apply_apply, map_map_assoc, QuadraticForm.tensorAssoc_apply, Coalgebra.coassoc_apply, Coalgebra.coassoc_symm, map_map_comp_assoc_symm_eq, Matrix.kroneckerTMul_assoc, assoc_tensor, QuadraticForm.tmul_comp_tensorAssoc, assoc_tensor', assoc_symm_tmul, LinearMap.lTensor_tensor, rightComm_def, contractLeft_assoc_coevaluation', assocIsometry_symm_apply, AlgebraTensorModule.assoc_eq, lid_tensor, LinearMap.rTensor_tensor
|
leftComm π | CompOp | 5 mathmath: AlgebraTensorModule.leftComm_eq, leftComm_tmul, leftComm_def, Algebra.TensorProduct.leftComm_toLinearEquiv, leftComm_symm_tmul
|
lid π | CompOp | 37 mathmath: enorm_lid, toLinearEquiv_lidIsometry, contractLeft_assoc_coevaluation, quotTensorEquivQuotSMul_comp_mkQ_rTensor, lidIsometry_apply, comm_trans_lid, inner_lid_lid, QuadraticForm.comp_tensorLId_eq, lid_symm_apply, lid_tmul, SemimoduleCat.hom_inv_leftUnitor, ModuleCat.hom_hom_leftUnitor, QuadraticForm.tensorLId_toLinearEquiv, CoalgCat.MonoidalCategoryAux.leftUnitor_hom_toLinearMap, QuadraticForm.tensorLId_symm_apply, QuadraticForm.tmul_tensorLId_apply, QuadraticForm.tensorLId_apply, norm_lid, lid_eq_rid, Ideal.pi_mkQ_rTensor, Coalgebra.TensorProduct.lid_toLinearEquiv, toLinearMap_symm_lid, ModuleCat.MonoidalCategory.leftUnitor_def, ModuleCat.hom_inv_leftUnitor, Submodule.map_range_rTensor_subtype_lid, equivFinsuppOfBasisLeft_apply, SemimoduleCat.hom_hom_leftUnitor, LinearMap.lid_comp_rTensor, finsuppScalarLeft_apply, PolynomialLaw.ground_apply, nnnorm_lid, Algebra.TensorProduct.lid_toLinearEquiv, comm_trans_rid, contractLeft_assoc_coevaluation', dualDistribEquivOfBasis_apply_apply, lid_tensor, includeRight_lid
|
lidOfCompatibleSMul π | CompOp | 1 mathmath: lidOfCompatibleSMul_tmul
|
rid π | CompOp | 23 mathmath: contractLeft_assoc_coevaluation, SemimoduleCat.hom_inv_rightUnitor, tensorQuotEquivQuotSMul_comp_mkQ_lTensor, comm_trans_lid, QuadraticForm.tensorRId_symm_apply, SemimoduleCat.hom_hom_rightUnitor, QuadraticForm.tensorRId_apply, ModuleCat.MonoidalCategory.rightUnitor_def, ModuleCat.hom_hom_rightUnitor, QuadraticForm.tmul_tensorRId_apply, AlgebraTensorModule.rid_eq_rid, ModuleCat.hom_inv_rightUnitor, rid_tmul, QuadraticForm.tensorRId_toLinearEquiv, QuadraticForm.comp_tensorRId_eq, equivFinsuppOfBasisRight_apply, rid_symm_apply, lid_eq_rid, LinearMap.rid_comp_lTensor, toLinearMap_symm_rid, CoalgCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap, comm_trans_rid, contractLeft_assoc_coevaluation'
|
rightComm π | CompOp | 4 mathmath: AlgebraTensorModule.rightComm_eq, rightComm_symm, rightComm_tmul, rightComm_def
|
tensorTensorTensorAssoc π | CompOp | 2 mathmath: tensorTensorTensorAssoc_symm_tmul, tensorTensorTensorAssoc_tmul
|
tensorTensorTensorComm π | CompOp | 11 mathmath: tensorTensorTensorComm_tmul, tensorTensorTensorComm_comp_map, tensorTensorTensorComm_symm, CoalgCat.MonoidalCategoryAux.tensorObj_comul, Algebra.TensorProduct.toLinearEquiv_tensorTensorTensorComm, AlgebraTensorModule.tensorTensorTensorComm_eq, ModuleCat.MonoidalCategory.tensorΞΌ_eq_tensorTensorTensorComm, SemimoduleCat.MonoidalCategory.tensorΞΌ_eq_tensorTensorTensorComm, tensorTensorTensorComm_trans_tensorTensorTensorComm, LinearMap.mul'_tensor, Algebra.mul'_comp_tensorTensorTensorComm
|