| Name | Category | Theorems |
addCommGroup π | CompOp | 166 mathmath: Representation.repOfTprodIso_inv_apply, CliffordAlgebra.toBaseChange_reverse, lTensor.inverse_comp_lTensor, AlternatingMap.domCoprod.summand_mk'', LieModule.liftLie_apply, Rep.MonoidalClosed.linearHomEquiv_symm_hom, LieSubmodule.lowerCentralSeries_tensor_eq_baseChange, LinearMap.lTensor_sub, Representation.repOfTprodIso_apply, Rep.coindToInd_of_support_subset_orbit, Representation.Coinvariants.mk_inv_tmul, Representation.ofCoinvariantsTprodLeftRegular_mk_tmul_single, lTensor.inverse_of_rightInverse_comp_lTensor, CliffordAlgebra.equivBaseChange_symm_apply, Module.FaithfullyFlat.instTensorProduct, quotientTensorQuotientEquiv_symm_apply_mk_tmul, CoalgCat.tensorObj_isAddCommGroup, Rep.finsuppToCoinvariantsTensorFree_single, Representation.Coinvariants.mk_tmul_inv, CharacterModule.curry_apply_apply, LinearMap.det_baseChange, LinearEquiv.det_baseChange, rTensor.inverse_of_rightInverse_apply, CliffordAlgebra.ofBaseChange_toBaseChange, QuadraticForm.polarBilin_baseChange, ModuleCat.ExtendRestrictScalarsAdj.Counit.map_hom_apply, tmul_sub, CliffordAlgebra.toBaseChange_comp_ofBaseChange, ModuleCat.MonoidalCategory.whiskerLeft_def, Rep.ihom_ev_app_hom, lTensor.inverse_of_rightInverse_apply, QuadraticForm.polarBilin_tmul, Module.Presentation.tensor_R, LinearMap.rTensor_sub, Module.comap_freeLocus_le, CliffordAlgebra.toBaseChange_comp_involute, ModuleCat.MonoidalCategory.tensorHom_def, quotientTensorEquiv_symm_apply_mk_tmul, QuadraticForm.tensorAssoc_toLinearEquiv, LinearMap.polyCharpoly_baseChange, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, Representation.coinvariantsTprodLeftRegularLEquiv_apply, CoalgCat.tensorHom_def, lTensor.inverse_apply, KaehlerDifferential.tensorKaehlerEquivBase_symm_apply, RingTheory.Sequence.IsWeaklyRegular.isWeaklyRegular_lTensor, Rep.coinvariantsTensorFreeLEquiv_apply, Module.rankAtStalk_baseChange, MultilinearMap.domCoprod_alternization_coe, LieModule.weight_vector_multiplication, CoalgCat.associator_def, CoalgCat.comul_def, ModuleCat.MonoidalCategory.rightUnitor_def, ModuleCat.MonoidalCategory.associator_def, Rep.indResAdjunction_counit_app_hom_hom, LinearMap.lTensor_neg, LieSubmodule.mem_baseChange_iff, QuadraticMap.associated_tmul, Rep.coindToInd_apply, MultilinearMap.domCoprod_alternization_eq, ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, LinearMap.toMvPolynomial_baseChange, CoalgCat.whiskerRight_def, Algebra.Extension.CotangentSpace.map_sub_map, QuadraticForm.tmul_tensorAssoc_apply, LieModule.map_tmul, Rep.finsuppTensorRight_hom_hom, LieModule.instIsNilpotentTensor, LieModule.coe_liftLie_eq_lift_coe, Module.Relations.Solution.IsPresentation.tensor, Module.rankAtStalk_tensorProduct, ModuleCat.MonoidalCategory.tensorΞΌ_eq_tensorTensorTensorComm, Module.rankAtStalk_tensorProduct_of_isScalarTower, CliffordAlgebra.ofBaseChange_tmul_ΞΉ, KaehlerDifferential.tensorKaehlerEquiv_left_inv, rTensor.inverse_of_rightInverse_comp_rTensor, Module.Presentation.tensor_G, CliffordAlgebra.ofBaseChangeAux_ΞΉ, quotientTensorQuotientEquiv_apply_tmul_mk_tmul_mk, LieSubmodule.lie_baseChange, tensorQuotientEquiv_apply_mk_tmul, LieModule.toModuleHom_apply, rTensor.inverse_comp_rTensor, Module.Relations.Solution.tensor_var, QuadraticForm.tensorAssoc_symm_apply, CliffordAlgebra.toBaseChange_ofBaseChange, CharacterModule.homEquiv_symm_apply_apply_apply, RingTheory.Sequence.IsWeaklyRegular.isWeaklyRegular_rTensor, LinearMap.polyCharpolyAux_baseChange, LinearMap.baseChange_sub, LieSubmodule.tmul_mem_baseChange_of_mem, groupHomology.H1AddEquivOfIsTrivial_symm_apply, LieModule.lift_apply, LieModule.lie_tmul_right, CliffordAlgebra.toBaseChange_comp_reverseOp, groupHomology.H1ToTensorOfIsTrivial_H1Ο_single, LinearMap.baseChange_neg, sub_tmul, LinearMap.polyCharpolyAux_map_aeval, ModuleCat.MonoidalCategory.tensorObj_isAddCommGroup, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul, Rep.finsuppTensorRight_inv_hom, LieModule.toEnd_baseChange, LieModule.toLinearMap_map, CharacterModule.dual_rTensor_conj_homEquiv, CoalgCat.whiskerLeft_def, MultilinearMap.domCoprod_alternization, quotientTensorEquiv_apply_tmul_mk, CliffordAlgebra.equivBaseChange_apply, Representation.coinvariantsTprodLeftRegularLEquiv_symm_apply, groupHomology.H1AddEquivOfIsTrivial_apply, Rep.finsuppTensorLeft_inv_hom, Module.Presentation.tensor_relation, LinearEquiv.dilatransvection.baseChange, Rep.leftRegularTensorTrivialIsoFree_inv_hom, rTensor.inverse_apply, Rep.linearization_Ξ΄_hom, QuadraticForm.tensorAssoc_apply, Rep.finsuppTensorLeft_hom_hom, LieSubmodule.lieIdeal_oper_eq_tensor_map_range, ModuleCat.MonoidalCategory.leftUnitor_def, CliffordAlgebra.toBaseChange_involute, Rep.coinvariantsTensorMk_apply, Rep.indMap_hom, CharacterModule.uncurry_apply, Rep.homEquiv_symm_apply_hom, Representation.ind_mk, CoalgCat.rightUnitor_def, LinearEquiv.transvection.baseChange, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, CliffordAlgebra.ofBaseChange_tmul_one, gradedCommAux_lof_tmul, CoalgCat.tensorObj_instCoalgebra, CliffordAlgebra.toBaseChange_ΞΉ, LinearMap.rTensor_neg, LieAlgebra.ExtendScalars.instLieModule, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, LieModule.lieModule, QuadraticForm.tmul_comp_tensorAssoc, QuadraticForm.associated_tmul, Representation.ind_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, LieSubmodule.coe_baseChange, SpecialLinearGroup.baseChange_apply_coe, CoalgCat.leftUnitor_def, CharacterModule.homEquiv_apply_apply, tensorQuotientEquiv_symm_apply_tmul_mk, ModuleCat.MonoidalCategory.whiskerRight_def, gradedComm_of_tmul_of, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, LieSubmodule.baseChange_top, QuadraticForm.associated_baseChange, CliffordAlgebra.ofBaseChange_comp_toBaseChange, Rep.leftRegularTensorTrivialIsoFree_hom_hom, LieAlgebra.rootSpaceProduct_tmul, LinearMap.charpoly_baseChange, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, ModuleCat.ihom_ev_app, Representation.IndV.hom_ext_iff, Rep.indResHomEquiv_symm_apply_hom, QuadraticModuleCat.hom_hom_associator, Rep.linearization_ΞΌ_hom, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, Module.Presentation.tensor_var, QuadraticModuleCat.hom_inv_associator, LieSubmodule.baseChange_bot
|
comm π | CompOp | 52 mathmath: Submodule.comm_trans_lTensorOne, LinearMap.rTensor_comm, enorm_comm, map_comp_comm_eq, LinearMap.mul'_comp_comm, dualDistrib_apply_comm, comm_comm, Submodule.mulMap_comm, QuadraticForm.tmul_comp_tensorComm, LinearEquiv.comm_trans_lTensor_trans_comm_eq, LinearMap.lTensor_comp_comm, Pi.intrinsicStar_comul_commSemiring, Coalgebra.comm_comul, comm_trans_lid, Module.Invertible.tensorProductComm_eq_refl, LinearMap.intrinsicStar_mul', comm_symm, norm_comm, leftComm_def, toLinearEquiv_commIsometry, Submodule.comm_trans_rTensorOne, QuadraticForm.tmul_tensorComm_apply, LinearMap.comm_comp_lTensor_comp_comm_eq, Coalgebra.IsCocomm.comm_comp_comul, map_comm, QuadraticForm.tensorComm_toLinearEquiv, LinearMap.lTensor_comm, QuadraticForm.tensorComm_apply, LinearMap.rTensor_comp_comm, comm_trans_comm, inner_comm_comm, Submodule.mulMap_comm_of_commute, PointedCone.minTensorProduct_comm, PointedCone.maxTensorProduct_comm, commIsometry_apply, LinearEquiv.comm_trans_rTensor_trans_comm_eq, nnnorm_comm, comm_tmul, comm_comp_comm_assoc, comm_comp_comm, Submodule.mulMap_op, lift_comp_comm_eq, LinearMap.mul'_comm, Equiv.tensorProductComm_def, toMatrix_comm, comm_symm_tmul, LinearMap.comm_comp_rTensor_comp_comm_eq, Coalgebra.comm_comp_comul, Algebra.TensorProduct.comm_toLinearEquiv, rightComm_def, comm_trans_rid, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply
|
curry π | CompOp | 9 mathmath: Rep.homEquiv_apply_hom, gradedMul_def, AlgebraTensorModule.restrictScalars_curry, Rep.MonoidalClosed.linearHomEquivComm_hom, curry_injective, Module.Invertible.bijective_curry, AlgebraTensorModule.curry_apply, curry_apply, Rep.MonoidalClosed.linearHomEquiv_hom
|
equivOfCompatibleSMul π | CompOp | β |
lcurry π | CompOp | 1 mathmath: lcurry_apply
|
liftAddHom π | CompOp | 2 mathmath: liftAddHom_tmul, CharacterModule.uncurry_apply
|
liftAux π | CompOp | 10 mathmath: liftAux_tmul, Module.Invertible.rTensorEquiv_apply_apply, LinearMap.tensorProductEnd_apply, Module.End.rTensorAlgHom_apply_apply, LinearMap.mul''_apply, Module.End.baseChangeHom_apply_apply, LinearMap.tensorProduct_apply, liftAux.smul, Module.End.lTensorAlgHom_apply_apply, liftAux.smulββ
|
mapOfCompatibleSMul π | CompOp | 2 mathmath: mapOfCompatibleSMul_surjective, mapOfCompatibleSMul_tmul
|
mapOfCompatibleSMul' π | CompOp | β |
neg π | CompOp | 4 mathmath: neg_tmul, neg_add_cancel, tmul_neg, MvPolynomial.universalFactorizationMapPresentation_jacobian
|
uncurry π | CompOp | 6 mathmath: Rep.MonoidalClosed.linearHomEquiv_symm_hom, Rep.ihom_ev_app_hom, Rep.homEquiv_symm_apply_hom, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, ModuleCat.ihom_ev_app, uncurry_apply
|