Documentation Verification Report

Basic

πŸ“ Source: Mathlib/LinearAlgebra/TensorProduct/Basic.lean

Statistics

MetricCount
Definitionsaux, addCommGroup, comm, curry, equivOfCompatibleSMul, lcurry, equiv, liftAddHom, liftAux, mapOfCompatibleSMul, mapOfCompatibleSMul', neg, uncurry
13
Theoremsint, unit, comm_comm, comm_comp_comm, comm_comp_comm_assoc, comm_symm, comm_symm_tmul, comm_tmul, comm_trans_comm, curry_apply, curry_injective, ext, ext', ext_fourfold, ext_fourfold', ext_fourfold'', ext_iff, ext_threefold, ext_threefold', lcurry_apply, equiv_apply, equiv_symm_apply, tmul, tmul', unique, liftAddHom_tmul, smul, smulβ‚›β‚—, liftAux_tmul, lift_comp_comm_eq, lift_comprβ‚‚, lift_comprβ‚‚β‚›β‚—, lift_mk, lift_mk_comprβ‚‚, lift_mk_comprβ‚‚β‚›β‚—, mapOfCompatibleSMul_surjective, mapOfCompatibleSMul_tmul, neg_add_cancel, neg_tmul, sub_tmul, tmul_neg, tmul_sub, uncurry_apply
43
Total56

TensorProduct

Definitions

NameCategoryTheorems
addCommGroup πŸ“–CompOp
166 mathmath: Representation.repOfTprodIso_inv_apply, CliffordAlgebra.toBaseChange_reverse, lTensor.inverse_comp_lTensor, AlternatingMap.domCoprod.summand_mk'', LieModule.liftLie_apply, Rep.MonoidalClosed.linearHomEquiv_symm_hom, LieSubmodule.lowerCentralSeries_tensor_eq_baseChange, LinearMap.lTensor_sub, Representation.repOfTprodIso_apply, Rep.coindToInd_of_support_subset_orbit, Representation.Coinvariants.mk_inv_tmul, Representation.ofCoinvariantsTprodLeftRegular_mk_tmul_single, lTensor.inverse_of_rightInverse_comp_lTensor, CliffordAlgebra.equivBaseChange_symm_apply, Module.FaithfullyFlat.instTensorProduct, quotientTensorQuotientEquiv_symm_apply_mk_tmul, CoalgCat.tensorObj_isAddCommGroup, Rep.finsuppToCoinvariantsTensorFree_single, Representation.Coinvariants.mk_tmul_inv, CharacterModule.curry_apply_apply, LinearMap.det_baseChange, LinearEquiv.det_baseChange, rTensor.inverse_of_rightInverse_apply, CliffordAlgebra.ofBaseChange_toBaseChange, QuadraticForm.polarBilin_baseChange, ModuleCat.ExtendRestrictScalarsAdj.Counit.map_hom_apply, tmul_sub, CliffordAlgebra.toBaseChange_comp_ofBaseChange, ModuleCat.MonoidalCategory.whiskerLeft_def, Rep.ihom_ev_app_hom, lTensor.inverse_of_rightInverse_apply, QuadraticForm.polarBilin_tmul, Module.Presentation.tensor_R, LinearMap.rTensor_sub, Module.comap_freeLocus_le, CliffordAlgebra.toBaseChange_comp_involute, ModuleCat.MonoidalCategory.tensorHom_def, quotientTensorEquiv_symm_apply_mk_tmul, QuadraticForm.tensorAssoc_toLinearEquiv, LinearMap.polyCharpoly_baseChange, LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul, Representation.coinvariantsTprodLeftRegularLEquiv_apply, CoalgCat.tensorHom_def, lTensor.inverse_apply, KaehlerDifferential.tensorKaehlerEquivBase_symm_apply, RingTheory.Sequence.IsWeaklyRegular.isWeaklyRegular_lTensor, Rep.coinvariantsTensorFreeLEquiv_apply, Module.rankAtStalk_baseChange, MultilinearMap.domCoprod_alternization_coe, LieModule.weight_vector_multiplication, CoalgCat.associator_def, CoalgCat.comul_def, ModuleCat.MonoidalCategory.rightUnitor_def, ModuleCat.MonoidalCategory.associator_def, Rep.indResAdjunction_counit_app_hom_hom, LinearMap.lTensor_neg, LieSubmodule.mem_baseChange_iff, QuadraticMap.associated_tmul, Rep.coindToInd_apply, MultilinearMap.domCoprod_alternization_eq, ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, LinearMap.toMvPolynomial_baseChange, CoalgCat.whiskerRight_def, Algebra.Extension.CotangentSpace.map_sub_map, QuadraticForm.tmul_tensorAssoc_apply, LieModule.map_tmul, Rep.finsuppTensorRight_hom_hom, LieModule.instIsNilpotentTensor, LieModule.coe_liftLie_eq_lift_coe, Module.Relations.Solution.IsPresentation.tensor, Module.rankAtStalk_tensorProduct, ModuleCat.MonoidalCategory.tensorΞΌ_eq_tensorTensorTensorComm, Module.rankAtStalk_tensorProduct_of_isScalarTower, CliffordAlgebra.ofBaseChange_tmul_ΞΉ, KaehlerDifferential.tensorKaehlerEquiv_left_inv, rTensor.inverse_of_rightInverse_comp_rTensor, Module.Presentation.tensor_G, CliffordAlgebra.ofBaseChangeAux_ΞΉ, quotientTensorQuotientEquiv_apply_tmul_mk_tmul_mk, LieSubmodule.lie_baseChange, tensorQuotientEquiv_apply_mk_tmul, LieModule.toModuleHom_apply, rTensor.inverse_comp_rTensor, Module.Relations.Solution.tensor_var, QuadraticForm.tensorAssoc_symm_apply, CliffordAlgebra.toBaseChange_ofBaseChange, CharacterModule.homEquiv_symm_apply_apply_apply, RingTheory.Sequence.IsWeaklyRegular.isWeaklyRegular_rTensor, LinearMap.polyCharpolyAux_baseChange, LinearMap.baseChange_sub, LieSubmodule.tmul_mem_baseChange_of_mem, groupHomology.H1AddEquivOfIsTrivial_symm_apply, LieModule.lift_apply, LieModule.lie_tmul_right, CliffordAlgebra.toBaseChange_comp_reverseOp, groupHomology.H1ToTensorOfIsTrivial_H1Ο€_single, LinearMap.baseChange_neg, sub_tmul, LinearMap.polyCharpolyAux_map_aeval, ModuleCat.MonoidalCategory.tensorObj_isAddCommGroup, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul, Rep.finsuppTensorRight_inv_hom, LieModule.toEnd_baseChange, LieModule.toLinearMap_map, CharacterModule.dual_rTensor_conj_homEquiv, CoalgCat.whiskerLeft_def, MultilinearMap.domCoprod_alternization, quotientTensorEquiv_apply_tmul_mk, CliffordAlgebra.equivBaseChange_apply, Representation.coinvariantsTprodLeftRegularLEquiv_symm_apply, groupHomology.H1AddEquivOfIsTrivial_apply, Rep.finsuppTensorLeft_inv_hom, Module.Presentation.tensor_relation, LinearEquiv.dilatransvection.baseChange, Rep.leftRegularTensorTrivialIsoFree_inv_hom, rTensor.inverse_apply, Rep.linearization_Ξ΄_hom, QuadraticForm.tensorAssoc_apply, Rep.finsuppTensorLeft_hom_hom, LieSubmodule.lieIdeal_oper_eq_tensor_map_range, ModuleCat.MonoidalCategory.leftUnitor_def, CliffordAlgebra.toBaseChange_involute, Rep.coinvariantsTensorMk_apply, Rep.indMap_hom, CharacterModule.uncurry_apply, Rep.homEquiv_symm_apply_hom, Representation.ind_mk, CoalgCat.rightUnitor_def, LinearEquiv.transvection.baseChange, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, CliffordAlgebra.ofBaseChange_tmul_one, gradedCommAux_lof_tmul, CoalgCat.tensorObj_instCoalgebra, CliffordAlgebra.toBaseChange_ΞΉ, LinearMap.rTensor_neg, LieAlgebra.ExtendScalars.instLieModule, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, LieModule.lieModule, QuadraticForm.tmul_comp_tensorAssoc, QuadraticForm.associated_tmul, Representation.ind_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, LieSubmodule.coe_baseChange, SpecialLinearGroup.baseChange_apply_coe, CoalgCat.leftUnitor_def, CharacterModule.homEquiv_apply_apply, tensorQuotientEquiv_symm_apply_tmul_mk, ModuleCat.MonoidalCategory.whiskerRight_def, gradedComm_of_tmul_of, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, LieSubmodule.baseChange_top, QuadraticForm.associated_baseChange, CliffordAlgebra.ofBaseChange_comp_toBaseChange, Rep.leftRegularTensorTrivialIsoFree_hom_hom, LieAlgebra.rootSpaceProduct_tmul, LinearMap.charpoly_baseChange, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, ModuleCat.ihom_ev_app, Representation.IndV.hom_ext_iff, Rep.indResHomEquiv_symm_apply_hom, QuadraticModuleCat.hom_hom_associator, Rep.linearization_ΞΌ_hom, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, Module.Presentation.tensor_var, QuadraticModuleCat.hom_inv_associator, LieSubmodule.baseChange_bot
comm πŸ“–CompOp
52 mathmath: Submodule.comm_trans_lTensorOne, LinearMap.rTensor_comm, enorm_comm, map_comp_comm_eq, LinearMap.mul'_comp_comm, dualDistrib_apply_comm, comm_comm, Submodule.mulMap_comm, QuadraticForm.tmul_comp_tensorComm, LinearEquiv.comm_trans_lTensor_trans_comm_eq, LinearMap.lTensor_comp_comm, Pi.intrinsicStar_comul_commSemiring, Coalgebra.comm_comul, comm_trans_lid, Module.Invertible.tensorProductComm_eq_refl, LinearMap.intrinsicStar_mul', comm_symm, norm_comm, leftComm_def, toLinearEquiv_commIsometry, Submodule.comm_trans_rTensorOne, QuadraticForm.tmul_tensorComm_apply, LinearMap.comm_comp_lTensor_comp_comm_eq, Coalgebra.IsCocomm.comm_comp_comul, map_comm, QuadraticForm.tensorComm_toLinearEquiv, LinearMap.lTensor_comm, QuadraticForm.tensorComm_apply, LinearMap.rTensor_comp_comm, comm_trans_comm, inner_comm_comm, Submodule.mulMap_comm_of_commute, PointedCone.minTensorProduct_comm, PointedCone.maxTensorProduct_comm, commIsometry_apply, LinearEquiv.comm_trans_rTensor_trans_comm_eq, nnnorm_comm, comm_tmul, comm_comp_comm_assoc, comm_comp_comm, Submodule.mulMap_op, lift_comp_comm_eq, LinearMap.mul'_comm, Equiv.tensorProductComm_def, toMatrix_comm, comm_symm_tmul, LinearMap.comm_comp_rTensor_comp_comm_eq, Coalgebra.comm_comp_comul, Algebra.TensorProduct.comm_toLinearEquiv, rightComm_def, comm_trans_rid, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply
curry πŸ“–CompOp
9 mathmath: Rep.homEquiv_apply_hom, gradedMul_def, AlgebraTensorModule.restrictScalars_curry, Rep.MonoidalClosed.linearHomEquivComm_hom, curry_injective, Module.Invertible.bijective_curry, AlgebraTensorModule.curry_apply, curry_apply, Rep.MonoidalClosed.linearHomEquiv_hom
equivOfCompatibleSMul πŸ“–CompOpβ€”
lcurry πŸ“–CompOp
1 mathmath: lcurry_apply
liftAddHom πŸ“–CompOp
2 mathmath: liftAddHom_tmul, CharacterModule.uncurry_apply
liftAux πŸ“–CompOp
10 mathmath: liftAux_tmul, Module.Invertible.rTensorEquiv_apply_apply, LinearMap.tensorProductEnd_apply, Module.End.rTensorAlgHom_apply_apply, LinearMap.mul''_apply, Module.End.baseChangeHom_apply_apply, LinearMap.tensorProduct_apply, liftAux.smul, Module.End.lTensorAlgHom_apply_apply, liftAux.smulβ‚›β‚—
mapOfCompatibleSMul πŸ“–CompOp
2 mathmath: mapOfCompatibleSMul_surjective, mapOfCompatibleSMul_tmul
mapOfCompatibleSMul' πŸ“–CompOpβ€”
neg πŸ“–CompOp
4 mathmath: neg_tmul, neg_add_cancel, tmul_neg, MvPolynomial.universalFactorizationMapPresentation_jacobian
uncurry πŸ“–CompOp
6 mathmath: Rep.MonoidalClosed.linearHomEquiv_symm_hom, Rep.ihom_ev_app_hom, Rep.homEquiv_symm_apply_hom, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, ModuleCat.ihom_ev_app, uncurry_apply

Theorems

NameKindAssumesProvesValidatesDepends On
comm_comm πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
addCommMonoid
instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
comm
β€”RingHomInvPair.ids
RingHomCompTriple.ids
comm_trans_comm
comm_comp_comm πŸ“–mathematicalβ€”LinearMap.comp
TensorProduct
CommSemiring.toSemiring
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
comm
LinearMap.id
β€”RingHomCompTriple.ids
RingHomInvPair.ids
comm_trans_comm
comm_comp_comm_assoc πŸ“–mathematicalβ€”LinearMap.comp
TensorProduct
CommSemiring.toSemiring
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
comm
β€”RingHomCompTriple.ids
RingHomInvPair.ids
LinearMap.comp_assoc
comm_comp_comm
RingHomCompTriple.right_ids
LinearMap.id_comp
comm_symm πŸ“–mathematicalβ€”LinearEquiv.symm
TensorProduct
CommSemiring.toSemiring
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
comm
β€”RingHomInvPair.ids
comm_symm_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
addCommMonoid
instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
comm
tmul
β€”RingHomInvPair.ids
comm_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
addCommMonoid
instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
comm
tmul
β€”RingHomInvPair.ids
comm_trans_comm πŸ“–mathematicalβ€”LinearEquiv.trans
TensorProduct
CommSemiring.toSemiring
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
comm
LinearEquiv.refl
β€”LinearEquiv.toLinearMap_injective
RingHomInvPair.ids
RingHomCompTriple.ids
ext
LinearMap.ext
smulCommClass_self
curry_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
curry
TensorProduct
addCommMonoid
instModule
tmul
β€”smulCommClass_self
curry_injective πŸ“–mathematicalβ€”LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
curry
β€”smulCommClass_self
ext
ext πŸ“–β€”LinearMap.comprβ‚‚β‚›β‚—
TensorProduct
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHomCompTriple.ids
β€”β€”smulCommClass_self
RingHomCompTriple.ids
lift_mk_comprβ‚‚β‚›β‚—
ext' πŸ“–β€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.instFunLike
tmul
β€”β€”LinearMap.ext
induction_on
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
LinearMap.map_add
ext_fourfold πŸ“–β€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.instFunLike
tmul
β€”β€”ext
smulCommClass_self
RingHomCompTriple.ids
LinearMap.ext
ext_fourfold' πŸ“–β€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.instFunLike
tmul
β€”β€”ext
smulCommClass_self
RingHomCompTriple.ids
LinearMap.ext
ext_fourfold'' πŸ“–β€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.instFunLike
tmul
β€”β€”ext
smulCommClass_self
RingHomCompTriple.ids
LinearMap.ext
ext_iff πŸ“–mathematicalβ€”LinearMap.comprβ‚‚β‚›β‚—
TensorProduct
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHomCompTriple.ids
β€”smulCommClass_self
RingHomCompTriple.ids
ext
ext_threefold πŸ“–β€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.instFunLike
tmul
β€”β€”ext
smulCommClass_self
RingHomCompTriple.ids
LinearMap.ext
ext_threefold' πŸ“–β€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.instFunLike
tmul
β€”β€”ext
LinearMap.ext
smulCommClass_self
RingHomCompTriple.ids
lcurry_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
lcurry
tmul
β€”smulCommClass_self
LinearMap.instSMulCommClass
liftAddHom_tmul πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
AddMonoidHom.instAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
TensorProduct
addZeroClass
liftAddHom
tmul
β€”β€”
liftAux_tmul πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
TensorProduct
AddZeroClass.toAddZero
addZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
liftAux
tmul
LinearMap
CommSemiring.toSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Module.toDistribMulAction
β€”smulCommClass_self
lift_comp_comm_eq πŸ“–mathematicalβ€”LinearMap.comp
TensorProduct
CommSemiring.toSemiring
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
lift
LinearEquiv.toLinearMap
RingHomInvPair.ids
comm
LinearMap.flip
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”smulCommClass_self
ext
RingHomCompTriple.ids
RingHomInvPair.ids
lift_comprβ‚‚ πŸ“–mathematicalβ€”lift
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
LinearMap.comprβ‚‚
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.comp
TensorProduct
addCommMonoid
instModule
RingHomCompTriple.ids
β€”smulCommClass_self
RingHomCompTriple.ids
IsScalarTower.left
lift.unique
lift_comprβ‚‚β‚›β‚— πŸ“–mathematicalβ€”lift
LinearMap.comprβ‚‚β‚›β‚—
LinearMap.comp
TensorProduct
CommSemiring.toSemiring
addCommMonoid
instModule
β€”smulCommClass_self
lift.unique
lift_mk πŸ“–mathematicalβ€”lift
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.id
β€”lift.unique
lift_mk_comprβ‚‚ πŸ“–mathematicalβ€”lift
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
LinearMap.comprβ‚‚
TensorProduct
addCommMonoid
instModule
smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Semiring.toModule
IsScalarTower.left
isScalarTower
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”smulCommClass_left
smulCommClass_self
IsScalarTower.left
isScalarTower
RingHomCompTriple.ids
lift_comprβ‚‚
LinearMap.comp_id
lift_mk_comprβ‚‚β‚›β‚— πŸ“–mathematicalβ€”lift
LinearMap.comprβ‚‚β‚›β‚—
TensorProduct
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHomCompTriple.ids
β€”RingHomCompTriple.ids
lift_comprβ‚‚β‚›β‚—
LinearMap.comp_id
mapOfCompatibleSMul_surjective πŸ“–mathematicalβ€”TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
addCommMonoid
instModule
leftModule
LinearMap.instFunLike
mapOfCompatibleSMul
β€”induction_on
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
mapOfCompatibleSMul_tmul
map_add
SemilinearMapClass.toAddHomClass
mapOfCompatibleSMul_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
addCommMonoid
instModule
leftModule
LinearMap.instFunLike
mapOfCompatibleSMul
tmul
β€”β€”
neg_add_cancel πŸ“–mathematicalβ€”TensorProduct
AddCommGroup.toAddCommMonoid
add
neg
zero
β€”induction_on
add_zero
LinearMap.map_zero
neg_add_cancel
zero_tmul
add_tmul
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
Mathlib.Tactic.Abel.subst_into_add
Mathlib.Tactic.Abel.term_atom
Mathlib.Tactic.Abel.term_add_const
zero_add
Mathlib.Tactic.Abel.const_add_term
neg_tmul πŸ“–mathematicalβ€”tmul
AddCommGroup.toAddCommMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
TensorProduct
neg
β€”β€”
sub_tmul πŸ“–mathematicalβ€”tmul
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
TensorProduct
addCommGroup
β€”LinearMap.map_subβ‚‚
smulCommClass_left
smulCommClass_self
tmul_neg πŸ“–mathematicalβ€”tmul
AddCommGroup.toAddCommMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
TensorProduct
neg
β€”LinearMap.map_neg
smulCommClass_left
smulCommClass_self
tmul_sub πŸ“–mathematicalβ€”tmul
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
TensorProduct
addCommGroup
β€”LinearMap.map_sub
smulCommClass_left
smulCommClass_self
uncurry_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
uncurry
tmul
β€”smulCommClass_self
LinearMap.instSMulCommClass

TensorProduct.CompatibleSMul

Theorems

NameKindAssumesProvesValidatesDepends On
int πŸ“–mathematicalβ€”TensorProduct.CompatibleSMul
Int.instMonoid
AddCommGroup.toAddCommMonoid
Module.toDistribMulAction
Int.instSemiring
AddCommGroup.toIntModule
β€”Int.induction_on
zero_smul
TensorProduct.zero_tmul
TensorProduct.tmul_zero
AddMonoid.nat_smulCommClass'
add_smul
natCast_zsmul
one_smul
TensorProduct.add_tmul
TensorProduct.tmul_add
TensorProduct.tmul_smul
isScalarTower
AddCommMonoid.nat_isScalarTower
AddRightCancelSemigroup.toIsRightCancelAdd
sub_smul
neg_smul
TensorProduct.sub_tmul
TensorProduct.tmul_sub
unit πŸ“–mathematicalβ€”TensorProduct.CompatibleSMul
Units
Units.instMonoid
AddCommGroup.toAddCommMonoid
Units.instDistribMulAction
AddCommMonoid.toAddMonoid
β€”smul_tmul

TensorProduct.Neg

Definitions

NameCategoryTheorems
aux πŸ“–CompOpβ€”

TensorProduct.lift

Definitions

NameCategoryTheorems
equiv πŸ“–CompOp
2 mathmath: equiv_symm_apply, equiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
equiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
EquivLike.toFunLike
LinearEquiv.instEquivLike
equiv
TensorProduct.tmul
β€”smulCommClass_self
TensorProduct.uncurry_apply
equiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
equiv
TensorProduct.tmul
β€”smulCommClass_self
RingHomInvPair.ids
LinearMap.instSMulCommClass
tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
TensorProduct.lift
TensorProduct.tmul
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”smulCommClass_self
tmul' πŸ“–mathematicalβ€”DFunLike.coe
AddHom
TensorProduct
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
TensorProduct.addCommMonoid
AddHom.funLike
LinearMap.toAddHom
CommSemiring.toSemiring
TensorProduct.instModule
TensorProduct.lift
TensorProduct.tmul
LinearMap
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”smulCommClass_self
unique πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
TensorProduct.tmul
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
TensorProduct.liftβ€”smulCommClass_self
TensorProduct.ext'
tmul

TensorProduct.liftAux

Theorems

NameKindAssumesProvesValidatesDepends On
smul πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
TensorProduct
AddZeroClass.toAddZero
TensorProduct.addZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
TensorProduct.liftAux
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
TensorProduct.instSMul
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”smulCommClass_self
smulβ‚›β‚—
smulβ‚›β‚— πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
TensorProduct
AddZeroClass.toAddZero
TensorProduct.addZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
TensorProduct.liftAux
TensorProduct.instSMul
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”smulCommClass_self
TensorProduct.induction_on
smul_zero
TensorProduct.CompatibleSMul.isScalarTower
IsScalarTower.left
LinearMap.map_smulβ‚›β‚—
smul_add
AddMonoidHom.map_add

---

← Back to Index