| Name | Category | Theorems |
auxEquiv π | CompOp | 6 mathmath: auxEquiv_one, auxEquiv_symm_one, auxEquiv_comm, auxEquiv_mul, mulHom_apply, auxEquiv_tmul
|
comm π | CompOp | 2 mathmath: auxEquiv_comm, comm_coe_tmul_coe
|
includeLeft π | CompOp | 2 mathmath: includeLeft_apply, algHom_ext_iff
|
includeLeftRingHom π | CompOp | 1 mathmath: includeLeftRingHom_apply
|
includeRight π | CompOp | 2 mathmath: algHom_ext_iff, includeRight_apply
|
instAddCommGroupWithOne π | CompOp | 12 mathmath: hom_ext_iff, auxEquiv_one, mul_def, auxEquiv_symm_one, auxEquiv_comm, auxEquiv_mul, mulHom_apply, auxEquiv_tmul, of_symm_of, of_one, symm_of_of, of_symm_one
|
instAlgebra π | CompOp | 15 mathmath: lift_tmul, CliffordAlgebra.toProd_comp_ofProd, CliffordAlgebra.toProd_ΞΉ_tmul_one, includeLeft_apply, auxEquiv_comm, algHom_ext_iff, includeRight_apply, algebraMap_def', CliffordAlgebra.prodEquiv_symm_apply, CliffordAlgebra.prodEquiv_apply, algebraMap_def, CliffordAlgebra.ofProd_comp_toProd, comm_coe_tmul_coe, CliffordAlgebra.toProd_one_tmul_ΞΉ, CliffordAlgebra.ofProd_ΞΉ_mk
|
instModule π | CompOp | 12 mathmath: hom_ext_iff, auxEquiv_one, mul_def, auxEquiv_symm_one, auxEquiv_comm, auxEquiv_mul, mulHom_apply, auxEquiv_tmul, of_symm_of, of_one, symm_of_of, of_symm_one
|
instMonoid π | CompOp | β |
instMul π | CompOp | 10 mathmath: tmul_zero_coe_mul_coe_tmul, tmul_coe_mul_one_tmul, tmul_coe_mul_coe_tmul, mul_def, tmul_one_mul_one_tmul, tmul_one_mul_coe_tmul, auxEquiv_mul, tmul_coe_mul_zero_coe_tmul, tmul_algebraMap_mul_coe_tmul, tmul_coe_mul_algebraMap_tmul
|
instRing π | CompOp | 17 mathmath: lift_tmul, CliffordAlgebra.toProd_comp_ofProd, CliffordAlgebra.toProd_ΞΉ_tmul_one, tmul_coe_mul_coe_tmul, includeLeft_apply, auxEquiv_comm, algHom_ext_iff, includeRight_apply, algebraMap_def', CliffordAlgebra.prodEquiv_symm_apply, includeLeftRingHom_apply, CliffordAlgebra.prodEquiv_apply, algebraMap_def, CliffordAlgebra.ofProd_comp_toProd, comm_coe_tmul_coe, CliffordAlgebra.toProd_one_tmul_ΞΉ, CliffordAlgebra.ofProd_ΞΉ_mk
|
liftEquiv π | CompOp | β |
mulHom π | CompOp | 2 mathmath: mul_def, mulHom_apply
|
of π | CompOp | 5 mathmath: hom_ext_iff, of_symm_of, of_one, symm_of_of, of_symm_one
|
tmul π | CompOp | 19 mathmath: tmul_zero_coe_mul_coe_tmul, lift_tmul, CliffordAlgebra.toProd_ΞΉ_tmul_one, tmul_coe_mul_one_tmul, tmul_coe_mul_coe_tmul, tmul_one_mul_one_tmul, includeLeft_apply, tmul_one_mul_coe_tmul, includeRight_apply, algebraMap_def', auxEquiv_tmul, includeLeftRingHom_apply, algebraMap_def, tmul_coe_mul_zero_coe_tmul, comm_coe_tmul_coe, CliffordAlgebra.toProd_one_tmul_ΞΉ, tmul_algebraMap_mul_coe_tmul, CliffordAlgebra.ofProd_ΞΉ_mk, tmul_coe_mul_algebraMap_tmul
|
Β«term_α΅ββ[_]_Β» π | CompOp | β |
Β«term_α΅ββ_Β» π | CompOp | β |