Documentation Verification Report

Map

πŸ“ Source: Mathlib/LinearAlgebra/TensorProduct/Map.lean

Statistics

MetricCount
DefinitionslTensor, rTensor, lTensor, lTensorHom, rTensor, rTensorHom, Β«term_βŠ—β‚˜_Β», homTensorHomMap, lTensorHomToHomLTensor, map, mapBilinear, mapIncl, mapβ‚‚, rTensorHomToHomRTensor
14
TheoremstensorProductComm_def, coe_lTensor, coe_lTensor_symm, coe_rTensor, coe_rTensor_symm, comm_trans_lTensor_trans_comm_eq, comm_trans_rTensor_trans_comm_eq, congr_trans_lTensor, congr_trans_rTensor, lTensor_mul, lTensor_pow, lTensor_refl, lTensor_refl_apply, lTensor_symm_tmul, lTensor_tmul, lTensor_trans, lTensor_trans_apply, lTensor_trans_congr, lTensor_trans_rTensor, lTensor_zpow, rTensor_mul, rTensor_pow, rTensor_refl, rTensor_refl_apply, rTensor_symm_tmul, rTensor_tmul, rTensor_trans, rTensor_trans_apply, rTensor_trans_congr, rTensor_trans_lTensor, rTensor_zpow, coe_lTensorHom, coe_rTensorHom, comm_comp_lTensor_comp_comm_eq, comm_comp_rTensor_comp_comm_eq, lTensor_add, lTensor_bij_iff_rTensor_bij, lTensor_comm, lTensor_comp, lTensor_comp_apply, lTensor_comp_comm, lTensor_comp_map, lTensor_comp_mk, lTensor_comp_rTensor, lTensor_def, lTensor_id, lTensor_id_apply, lTensor_inj_iff_rTensor_inj, lTensor_map, lTensor_mul, lTensor_neg, lTensor_pow, lTensor_smul, lTensor_smul_action, lTensor_sub, lTensor_surj_iff_rTensor_surj, lTensor_tmul, lTensor_zero, map_comp_lTensor, map_comp_rTensor, map_lTensor, map_rTensor, rTensor_add, rTensor_comm, rTensor_comp, rTensor_comp_apply, rTensor_comp_comm, rTensor_comp_flip_mk, rTensor_comp_lTensor, rTensor_comp_map, rTensor_def, rTensor_id, rTensor_id_apply, rTensor_map, rTensor_mul, rTensor_neg, rTensor_pow, rTensor_smul, rTensor_smul_action, rTensor_sub, rTensor_tmul, rTensor_zero, smul_lTensor, congr_congr, congr_mul, congr_pow, congr_refl_refl, congr_symm, congr_symm_tmul, congr_tmul, congr_trans, congr_zpow, homTensorHomMap_apply, instSmall, lTensorHomToHomLTensor_apply, lift_comp_map, mapBilinear_apply, map_add_left, map_add_right, map_bijective, map_comm, map_comp, map_comp_comm_eq, map_id, map_map, map_mul, map_one, map_pow, map_range_eq_span_tmul, map_smul_left, map_smul_right, map_tmul, map_zero_left, map_zero_right, mapβ‚‚_apply_tmul, mapβ‚‚_eq_range_lift_comp_mapIncl, rTensorHomToHomRTensor_apply, range_map, range_mapIncl, range_mapIncl_mono, range_map_eq_span_tmul, range_map_mono, toLinearMap_congr
123
Total137

Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
tensorProductComm_def πŸ“–mathematicalβ€”TensorProduct.comm
addCommMonoid
module
CommSemiring.toSemiring
LinearEquiv.trans
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
TensorProduct.congr
linearEquiv
LinearEquiv.symm
β€”LinearEquiv.ext
RingHomInvPair.ids
RingHomCompTriple.ids
TensorProduct.induction_on
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
LinearEquiv.symm_apply_apply
map_add
SemilinearMapClass.toAddHomClass

LinearEquiv

Definitions

NameCategoryTheorems
lTensor πŸ“–CompOp
22 mathmath: lTensor_pow, LinearIsometryEquiv.lTensor_apply, coe_lTensor, comm_trans_lTensor_trans_comm_eq, lTensor_zpow, lTensor_trans_congr, lTensor_tmul, LinearIsometryEquiv.toLinearEquiv_lTensor, lTensor_refl, TensorProduct.assoc_tensor'', coe_lTensor_symm, comm_trans_rTensor_trans_comm_eq, lTensor_trans_apply, lTensor_symm_tmul, rTensor_trans_lTensor, TensorProduct.assoc_tensor, lTensor_refl_apply, TensorProduct.assoc_tensor', lTensor_trans_rTensor, lTensor_trans, lTensor_mul, congr_trans_lTensor
rTensor πŸ“–CompOp
23 mathmath: rTensor_mul, comm_trans_lTensor_trans_comm_eq, rTensor_trans_congr, rTensor_zpow, rTensor_refl_apply, rTensor_pow, congr_trans_rTensor, rTensor_refl, rTensor_symm_tmul, LinearIsometryEquiv.rTensor_apply, TensorProduct.assoc_tensor'', coe_rTensor_symm, rTensor_trans_apply, comm_trans_rTensor_trans_comm_eq, LinearIsometryEquiv.toLinearEquiv_rTensor, rTensor_trans_lTensor, TensorProduct.assoc_tensor, rTensor_trans, TensorProduct.assoc_tensor', lTensor_trans_rTensor, rTensor_tmul, TensorProduct.lid_tensor, coe_rTensor

Theorems

NameKindAssumesProvesValidatesDepends On
coe_lTensor πŸ“–mathematicalβ€”toLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
lTensor
LinearMap.lTensor
β€”RingHomInvPair.ids
coe_lTensor_symm πŸ“–mathematicalβ€”toLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
symm
lTensor
LinearMap.lTensor
β€”RingHomInvPair.ids
coe_rTensor πŸ“–mathematicalβ€”toLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
rTensor
LinearMap.rTensor
β€”RingHomInvPair.ids
coe_rTensor_symm πŸ“–mathematicalβ€”toLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
symm
rTensor
LinearMap.rTensor
β€”RingHomInvPair.ids
comm_trans_lTensor_trans_comm_eq πŸ“–mathematicalβ€”trans
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
TensorProduct.comm
lTensor
rTensor
β€”RingHomInvPair.ids
toLinearMap_injective
RingHomCompTriple.ids
TensorProduct.ext
smulCommClass_self
comm_trans_rTensor_trans_comm_eq πŸ“–mathematicalβ€”trans
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
TensorProduct.comm
rTensor
lTensor
β€”RingHomInvPair.ids
toLinearMap_injective
RingHomCompTriple.ids
TensorProduct.ext
smulCommClass_self
congr_trans_lTensor πŸ“–mathematicalβ€”trans
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
TensorProduct.congr
lTensor
β€”RingHomInvPair.ids
toLinearMap_injective
RingHomCompTriple.ids
LinearMap.lTensor_comp_map
congr_trans_rTensor πŸ“–mathematicalβ€”trans
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
TensorProduct.congr
rTensor
β€”RingHomInvPair.ids
toLinearMap_injective
RingHomCompTriple.ids
LinearMap.rTensor_comp_map
lTensor_mul πŸ“–mathematicalβ€”lTensor
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
automorphismGroup
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”RingHomInvPair.ids
lTensor_trans
lTensor_pow πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
automorphismGroup
lTensor
β€”RingHomInvPair.ids
one_pow
TensorProduct.congr_pow
lTensor_refl πŸ“–mathematicalβ€”lTensor
refl
CommSemiring.toSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”TensorProduct.congr_refl_refl
lTensor_refl_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
EquivLike.toFunLike
instEquivLike
lTensor
refl
β€”RingHomInvPair.ids
lTensor_refl
refl_apply
lTensor_symm_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
EquivLike.toFunLike
instEquivLike
symm
lTensor
TensorProduct.tmul
β€”RingHomInvPair.ids
lTensor_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
EquivLike.toFunLike
instEquivLike
lTensor
TensorProduct.tmul
β€”RingHomInvPair.ids
lTensor_trans πŸ“–mathematicalβ€”lTensor
trans
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”RingHomInvPair.ids
toLinearMap_injective
RingHomCompTriple.ids
LinearMap.lTensor_comp
lTensor_trans_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
EquivLike.toFunLike
instEquivLike
lTensor
trans
RingHomCompTriple.ids
β€”RingHomInvPair.ids
LinearMap.lTensor_comp_apply
lTensor_trans_congr πŸ“–mathematicalβ€”trans
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
lTensor
TensorProduct.congr
β€”RingHomInvPair.ids
toLinearMap_injective
RingHomCompTriple.ids
LinearMap.map_comp_lTensor
lTensor_trans_rTensor πŸ“–mathematicalβ€”trans
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
lTensor
rTensor
TensorProduct.congr
β€”RingHomInvPair.ids
toLinearMap_injective
RingHomCompTriple.ids
LinearMap.rTensor_comp_lTensor
lTensor_zpow πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
DivInvMonoid.toZPow
Group.toDivInvMonoid
automorphismGroup
lTensor
β€”RingHomInvPair.ids
one_zpow
TensorProduct.congr_zpow
rTensor_mul πŸ“–mathematicalβ€”rTensor
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
automorphismGroup
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”RingHomInvPair.ids
rTensor_trans
rTensor_pow πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
automorphismGroup
rTensor
β€”RingHomInvPair.ids
one_pow
TensorProduct.congr_pow
rTensor_refl πŸ“–mathematicalβ€”rTensor
refl
CommSemiring.toSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”TensorProduct.congr_refl_refl
rTensor_refl_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
EquivLike.toFunLike
instEquivLike
rTensor
refl
β€”RingHomInvPair.ids
rTensor_refl
refl_apply
rTensor_symm_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
EquivLike.toFunLike
instEquivLike
symm
rTensor
TensorProduct.tmul
β€”RingHomInvPair.ids
rTensor_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
EquivLike.toFunLike
instEquivLike
rTensor
TensorProduct.tmul
β€”RingHomInvPair.ids
rTensor_trans πŸ“–mathematicalβ€”rTensor
trans
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”RingHomInvPair.ids
toLinearMap_injective
RingHomCompTriple.ids
LinearMap.rTensor_comp
rTensor_trans_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
EquivLike.toFunLike
instEquivLike
rTensor
trans
RingHomCompTriple.ids
β€”RingHomInvPair.ids
LinearMap.rTensor_comp_apply
rTensor_trans_congr πŸ“–mathematicalβ€”trans
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
rTensor
TensorProduct.congr
β€”RingHomInvPair.ids
toLinearMap_injective
RingHomCompTriple.ids
LinearMap.map_comp_rTensor
rTensor_trans_lTensor πŸ“–mathematicalβ€”trans
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
RingHomInvPair.ids
rTensor
lTensor
TensorProduct.congr
β€”RingHomInvPair.ids
toLinearMap_injective
RingHomCompTriple.ids
LinearMap.lTensor_comp_rTensor
rTensor_zpow πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
DivInvMonoid.toZPow
Group.toDivInvMonoid
automorphismGroup
rTensor
β€”RingHomInvPair.ids
one_zpow
TensorProduct.congr_zpow

LinearMap

Definitions

NameCategoryTheorems
lTensor πŸ“–CompOp
121 mathmath: TensorProduct.finsuppRight_apply, lTensor_ker_subtype_tensorKerEquiv_symm, lTensor.inverse_comp_lTensor, baseChange_eq_ltensor, Module.Flat.iff_lTensor_exact', Coalgebra.lTensor_counit_comul, Module.FaithfullyFlat.iff_exact_iff_lTensor_exact, lTensor_sub, rTensor_comm, Module.FaithfullyFlat.lTensor_injective_iff_injective, lTensor_rTensor_comp_assoc, Module.Flat.lTensor_preserves_injective_linearMap, Coalgebra.coassoc_symm_apply, lTensor.inverse_of_rightInverse_comp_lTensor, lTensor_id_apply, Module.Flat.lTensor_exact, Module.FaithfullyFlat.lTensor_exact_iff_exact, Module.FaithfullyFlat.lTensor_bijective_iff_bijective, contractLeft_assoc_coevaluation, Submodule.FG.lTensor.directedSystem, tensorKer_coe, lTensor_smul, lTensor_surj_iff_rTensor_surj, le_comap_range_lTensor, rTensor_comp_lTensor, LinearEquiv.coe_lTensor, TensorProduct.directLimitRight_tmul_of, TensorProduct.tensorQuotEquivQuotSMul_comp_mkQ_lTensor, TensorProduct.gradedMul_def, TensorProduct.AlgebraTensorModule.restrictScalars_lTensor, Finsupp.linearCombination_one_tmul, Module.FaithfullyFlat.lTensor_surjective_iff_surjective, lTensor_comp_comm, coe_lTensorHom, ModuleCat.MonoidalCategory.whiskerLeft_def, lTensor_range, Module.Flat.iff_lTensor_preserves_injective_linearMap, lTensor.inverse_of_rightInverse_apply, tensorKerEquivOfSurjective_symm_tmul, tensorEqLocus_coe, TensorProduct.finsuppScalarRight_apply, Algebra.FormallySmooth.iff_injective_lTensor_residueField, Ideal.map_includeRight_eq, lTensor_surjective, lTensor.inverse_apply, LinearIsometry.lTensor_apply, rTensor_lTensor_comp_assoc_symm, TensorProduct.exists_finite_submodule_right_of_setFinite, lTensor_exact, Module.Flat.iff_lTensor_exact, Module.Flat.iff_lTensor_preserves_injective_linearMap', lTensor_smul_action, lTensor_neg, Submodule.FG.lTensor.directLimit_apply', ModuleCat.hom_whiskerLeft, Module.FaithfullyFlat.iff_zero_iff_lTensor_zero, smul_lTensor, comm_comp_lTensor_comp_comm_eq, QuotSMulTop.equivQuotTensor_naturality, TensorProduct.exists_finite_submodule_right_of_setFinite', TensorProduct.AlgebraTensorModule.coe_lTensor, map_comp_lTensor, lTensor_mul, Submodule.mulRightMap_eq_mulMap_comp, Module.Flat.iff_lTensor_injective, lTensor_comm, lTensor_id, rTensor_comp_comm, Coalgebra.coassoc, Module.Flat.iff_lTensor_injectiveβ‚›, SemimoduleCat.hom_whiskerLeft, lTensor_comp_rTensor, lTensor_zero, adjoint_lTensor, lTensor_comp_mk, IsLocalRing.split_injective_iff_lTensor_residueField_injective, DirectedSystem.lTensor, Module.FaithfullyFlat.zero_iff_lTensor_zero, lTensor_bij_iff_rTensor_bij, lTensor_comp_apply, QuotSMulTop.equivQuotTensor_naturality_mk, Module.Flat.iff_lTensor_preserves_injective_linearMapβ‚›, Module.Invertible.lTensor_injective_iff, TensorProduct.equivFinsuppOfBasisRight_apply, lTensor_injective_of_exact_of_flat, intrinsicStar_lTensor, Submodule.FG.lTensor.directLimit_apply, map_lTensor, Submodule.mulMap_comp_lTensor, rTensor_exact_iff_lTensor_exact, LinearEquiv.coe_lTensor_symm, TensorProduct.exists_finite_submodule_right_of_finite, Rep.indMap_hom, Module.Invertible.lTensor_surjective_iff, TensorProduct.exists_finite_submodule_right_of_finite', Module.Invertible.lTensor_bijective_iff, Coalgebra.coassoc_apply, HopfAlgebra.mul_antipode_lTensor_comul_apply, Coalgebra.coassoc_symm, lTensor_comp, rid_comp_lTensor, TensorProduct.map_ker, Coalgebra.lTensor_counit_comp_comul, lTensor_pow, HopfAlgebra.mul_antipode_lTensor_comul, lTensor_map, LinearIsometry.toLinearMap_lTensor, lTensor_comp_map, TensorProduct.directLimitRight_symm_of_tmul, lTensor_add, lTensor_mkQ, lTensor_inj_iff_rTensor_inj, comm_comp_rTensor_comp_comm_eq, lTensor_tensor, TensorProduct.instDirectedSystemCoeLinearMapIdLTensor, Module.Flat.iff_lTensor_injective', contractLeft_assoc_coevaluation', lTensor_tmul, lTensor_def, lTensor_eqLocus_subtype_tensoreqLocusEquiv_symm, Module.Invertible.leftCancelEquiv_comp_lTensor_comp_symm
lTensorHom πŸ“–CompOp
1 mathmath: coe_lTensorHom
rTensor πŸ“–CompOp
143 mathmath: TensorProduct.forall_vanishesTrivially_iff_forall_fg_rTensor_injective, Submodule.FG.rTensor.directedSystem, Submodule.exists_fg_le_eq_rTensor_inclusion, rTensor_comm, Module.Flat.iff_rTensor_preserves_injective_linearMap, lTensor_rTensor_comp_assoc, rTensor_smul_action, QuotSMulTop.equivTensorQuot_naturality, Coalgebra.coassoc_symm_apply, rTensor_injective_iff_lcomp_surjective, contractLeft_assoc_coevaluation, rTensor_id, TensorProduct.quotTensorEquivQuotSMul_comp_mkQ_rTensor, lTensor_surj_iff_rTensor_surj, rTensor_id_apply, QuotSMulTop.equivTensorQuot_naturality_mk, PolynomialLaw.exists_lift', PolynomialLaw.toFun_eq_rTensor_Ο†_toFun', rTensor_comp_lTensor, rTensor_comp_map, rTensor_comp_flip_mk, Module.FaithfullyFlat.iff_zero_iff_rTensor_zero, rTensor_tmul, Module.Flat.out, TensorProduct.gradedMul_def, rTensor.inverse_of_rightInverse_apply, Module.FaithfullyFlat.zero_iff_rTensor_zero, lTensor_comp_comm, Polynomial.X_pow_smul_rTensor_monomial, rTensor_sub, Module.Flat.iff_rTensor_injective, TensorProduct.Algebra.exists_of_fg, TensorProduct.exists_finite_submodule_left_of_setFinite, TensorProduct.AlgebraTensorModule.rTensor_tensor, TensorProduct.directSumRight_comp_rTensor, TensorProduct.instDirectedSystemCoeLinearMapIdRTensor, adjoint_rTensor, rTensor_injective_iff_subtype, Module.FaithfullyFlat.rTensor_exact_iff_exact, rTensor_lTensor_comp_assoc_symm, ModuleCat.hom_whiskerRight, PolynomialLaw.exists_lift, Module.Flat.rTensor_exact, Module.FaithfullyFlat.iff_exact_iff_rTensor_exact, Submodule.FG.rTensor.directLimit_apply, TensorProduct.directLimitLeft_rTensor_of, TensorProduct.exists_finite_submodule_left_of_finite, intrinsicStar_rTensor, Submodule.exists_fg_le_subset_range_rTensor_subtype, TensorProduct.rTensor_injective_of_forall_vanishesTrivially, map_comp_rTensor, TensorProduct.finsuppLeft_apply, comm_comp_lTensor_comp_comm_eq, Module.Invertible.rTensor_injective_iff, Coalgebra.rTensor_counit_comp_comul, rTensor.inverse_of_rightInverse_comp_rTensor, TensorProduct.exists_finite_submodule_left_of_finite', lTensor_comm, HopfAlgebra.mul_antipode_rTensor_comul, rTensor.inverse_comp_rTensor, Module.Invertible.rTensor_bijective_iff, map_rTensor, Module.Flat.iff_rTensor_exact', rTensor_comp_comm, TensorProduct.AlgebraTensorModule.restrictScalars_rTensor, rTensor_baseChange, rTensor_mkQ, Coalgebra.coassoc, lTensor_comp_rTensor, TensorProduct.forall_vanishesTrivially_iff_forall_rTensor_injective, PolynomialLaw.isCompat, coe_rTensorHom, HopfAlgebra.mul_antipode_rTensor_comul_apply, Module.Flat.iff_rTensor_exact, rTensor_exact, rTensor_surjective, LinearIsometry.toLinearMap_rTensor, DirectedSystem.rTensor, lTensor_bij_iff_rTensor_bij, CharacterModule.dual_rTensor_conj_homEquiv, Submodule.mulLeftMap_eq_mulMap_comp, Submodule.exists_fg_of_baseChange_eq_zero, SemimoduleCat.hom_whiskerRight, LinearEquiv.coe_rTensor_symm, rTensor_map, Module.Invertible.rTensor_surjective_iff, rTensor_comp, rTensor_zero, rTensor_def, Ideal.pi_mkQ_rTensor, rTensor.inverse_apply, Module.Invertible.rTensorEquiv_symm_apply_apply, Coalgebra.rTensor_counit_comul, rTensor_exact_iff_lTensor_exact, Module.Flat.iff_rTensor_preserves_injective_linearMapβ‚›, rTensor_comp_apply, Submodule.exists_fg_le_subset_range_rTensor_inclusion, rTensor_range, PolynomialLaw.isCompat_apply', Coalgebra.coassoc_apply, TensorProduct.directLimitLeft_tmul_of, Module.Flat.iff_rTensor_injectiveβ‚›, Coalgebra.coassoc_symm, Module.flat_iff, TensorProduct.map_ker, Submodule.exists_fg_le_eq_rTensor_subtype, TensorProduct.exists_finite_submodule_left_of_setFinite', TensorProduct.directLimitLeft_symm_of_tmul, Submodule.map_range_rTensor_subtype_lid, rTensor_neg, PolynomialLaw.isCompat_apply, TensorProduct.equivFinsuppOfBasisLeft_apply, lid_comp_rTensor, MvPolynomial.rTensor_apply, LinearIsometry.rTensor_apply, TensorProduct.finsuppScalarLeft_apply, TensorProduct.fromDirectLimit_of_tmul, rTensor_add, Module.Invertible.rightCancelEquiv_comp_rTensor_comp_symm, TensorProduct.AlgebraTensorModule.smul_eq_lsmul_rTensor, rTensor_pow, Representation.ind_apply, Module.Flat.iff_rTensor_preserves_injective_linearMap', rTensor_smul, TensorProduct.AlgebraTensorModule.coe_rTensor, ModuleCat.MonoidalCategory.whiskerRight_def, Module.Flat.iff_rTensor_injective', Submodule.FG.rTensor.directLimit_apply', Module.Flat.injective_characterModule_iff_rTensor_preserves_injective_linearMap, lTensor_inj_iff_rTensor_inj, comm_comp_rTensor_comp_comm_eq, le_comap_range_rTensor, Ideal.map_includeLeft_eq, Submodule.mulMap_comp_rTensor, TensorProduct.exists_of_fg, rTensor_mul, contractLeft_assoc_coevaluation', LinearEquiv.coe_rTensor, PolynomialLaw.isCompat', Module.Flat.rTensor_preserves_injective_linearMap, TensorProduct.toDirectLimit_tmul_of, rTensor_tensor, TensorProduct.includeRight_lid
rTensorHom πŸ“–CompOp
2 mathmath: Module.Invertible.rTensorInv_leftInverse, coe_rTensorHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_lTensorHom πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instFunLike
lTensorHom
lTensor
β€”smulCommClass_self
TensorProduct.smulCommClass_left
coe_rTensorHom πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instFunLike
rTensorHom
rTensor
β€”smulCommClass_self
TensorProduct.smulCommClass_left
comm_comp_lTensor_comp_comm_eq πŸ“–mathematicalβ€”comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
TensorProduct.comm
lTensor
rTensor
β€”TensorProduct.ext
RingHomCompTriple.ids
RingHomInvPair.ids
smulCommClass_self
comm_comp_rTensor_comp_comm_eq πŸ“–mathematicalβ€”comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
TensorProduct.comm
rTensor
lTensor
β€”TensorProduct.ext
RingHomCompTriple.ids
RingHomInvPair.ids
smulCommClass_self
lTensor_add πŸ“–mathematicalβ€”lTensor
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instAdd
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”map_add
smulCommClass_self
TensorProduct.smulCommClass_left
lTensor_bij_iff_rTensor_bij πŸ“–mathematicalβ€”Function.Bijective
TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
lTensor
rTensor
β€”RingHomInvPair.ids
RingHomCompTriple.ids
lTensor_comm πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
lTensor
LinearEquiv
RingHomInvPair.ids
EquivLike.toFunLike
LinearEquiv.instEquivLike
TensorProduct.comm
rTensor
β€”RingHomInvPair.ids
RingHomCompTriple.ids
lTensor_comp_comm
lTensor_comp πŸ“–mathematicalβ€”lTensor
comp
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”TensorProduct.ext
RingHomCompTriple.ids
ext
smulCommClass_self
lTensor_comp_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
lTensor
comp
RingHomCompTriple.ids
β€”RingHomCompTriple.ids
lTensor_comp
coe_comp
lTensor_comp_comm πŸ“–mathematicalβ€”comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
lTensor
LinearEquiv.toLinearMap
RingHomInvPair.ids
TensorProduct.comm
rTensor
β€”TensorProduct.map_comp_comm_eq
lTensor_comp_map πŸ“–mathematicalβ€”comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
lTensor
TensorProduct.map
β€”RingHomCompTriple.ids
lTensor_comp_mk πŸ“–mathematicalβ€”comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
lTensor
DFunLike.coe
LinearMap
addCommMonoid
module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
instFunLike
β€”RingHomCompTriple.ids
TensorProduct.smulCommClass_left
smulCommClass_self
lTensor_comp_rTensor πŸ“–mathematicalβ€”comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
lTensor
rTensor
TensorProduct.map
β€”RingHomCompTriple.ids
lTensor_def πŸ“–mathematicalβ€”lTensor
TensorProduct.map
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
id
β€”β€”
lTensor_id πŸ“–mathematicalβ€”lTensor
id
CommSemiring.toSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”TensorProduct.map_id
lTensor_id_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
lTensor
id
β€”lTensor_id
id_coe
lTensor_inj_iff_rTensor_inj πŸ“–mathematicalβ€”TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
lTensor
rTensor
β€”RingHomInvPair.ids
RingHomCompTriple.ids
EquivLike.toEmbeddingLike
lTensor_map πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
lTensor
TensorProduct.map
comp
RingHomCompTriple.ids
β€”congr_fun
RingHomCompTriple.ids
lTensor_comp_map
lTensor_mul πŸ“–mathematicalβ€”lTensor
Module.End
CommSemiring.toSemiring
Module.End.instMul
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”lTensor_comp
lTensor_neg πŸ“–mathematicalβ€”lTensor
AddCommGroup.toAddCommMonoid
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instNeg
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.addCommGroup
β€”map_neg
smulCommClass_self
TensorProduct.smulCommClass_left
lTensor_pow πŸ“–mathematicalβ€”LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
Monoid.toNatPow
Module.End.instMonoid
lTensor
β€”TensorProduct.map_pow
Module.End.id_pow
lTensor_smul πŸ“–mathematicalβ€”lTensor
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.instDistribMulAction
TensorProduct.smulCommClass_left
β€”map_smul
smulCommClass_self
TensorProduct.smulCommClass_left
lTensor_smul_action πŸ“–mathematicalβ€”lTensor
DistribSMul.toLinearMap
CommSemiring.toSemiring
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.instDistribMulAction
TensorProduct.smulCommClass_left
β€”smulCommClass_self
TensorProduct.smulCommClass_left
lTensor_smul
lTensor_id
lTensor_sub πŸ“–mathematicalβ€”lTensor
AddCommGroup.toAddCommMonoid
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instSub
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.addCommGroup
β€”map_sub
smulCommClass_self
TensorProduct.smulCommClass_left
lTensor_surj_iff_rTensor_surj πŸ“–mathematicalβ€”TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
lTensor
rTensor
β€”RingHomInvPair.ids
RingHomCompTriple.ids
lTensor_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
lTensor
TensorProduct.tmul
β€”β€”
lTensor_zero πŸ“–mathematicalβ€”lTensor
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instZero
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”map_zero
smulCommClass_self
TensorProduct.smulCommClass_left
map_comp_lTensor πŸ“–mathematicalβ€”comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
TensorProduct.map
lTensor
β€”RingHomCompTriple.ids
map_comp_rTensor πŸ“–mathematicalβ€”comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
TensorProduct.map
rTensor
β€”RingHomCompTriple.ids
map_lTensor πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
TensorProduct.map
lTensor
comp
RingHomCompTriple.ids
β€”congr_fun
RingHomCompTriple.ids
map_comp_lTensor
map_rTensor πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
TensorProduct.map
rTensor
comp
RingHomCompTriple.ids
β€”congr_fun
RingHomCompTriple.ids
map_comp_rTensor
rTensor_add πŸ“–mathematicalβ€”rTensor
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instAdd
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”map_add
smulCommClass_self
TensorProduct.smulCommClass_left
rTensor_comm πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
rTensor
LinearEquiv
RingHomInvPair.ids
EquivLike.toFunLike
LinearEquiv.instEquivLike
TensorProduct.comm
lTensor
β€”RingHomInvPair.ids
RingHomCompTriple.ids
rTensor_comp_comm
rTensor_comp πŸ“–mathematicalβ€”rTensor
comp
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”TensorProduct.ext
RingHomCompTriple.ids
ext
smulCommClass_self
rTensor_comp_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
rTensor
comp
RingHomCompTriple.ids
β€”RingHomCompTriple.ids
rTensor_comp
coe_comp
rTensor_comp_comm πŸ“–mathematicalβ€”comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
rTensor
LinearEquiv.toLinearMap
RingHomInvPair.ids
TensorProduct.comm
lTensor
β€”TensorProduct.map_comp_comm_eq
rTensor_comp_flip_mk πŸ“–mathematicalβ€”comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
rTensor
DFunLike.coe
LinearMap
addCommMonoid
module
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
TensorProduct.smulCommClass_left
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
instFunLike
flip
β€”RingHomCompTriple.ids
SMulCommClass.symm
TensorProduct.smulCommClass_left
smulCommClass_self
rTensor_comp_lTensor πŸ“–mathematicalβ€”comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
rTensor
lTensor
TensorProduct.map
β€”RingHomCompTriple.ids
rTensor_comp_map πŸ“–mathematicalβ€”comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
rTensor
TensorProduct.map
β€”RingHomCompTriple.ids
rTensor_def πŸ“–mathematicalβ€”rTensor
TensorProduct.map
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
id
β€”β€”
rTensor_id πŸ“–mathematicalβ€”rTensor
id
CommSemiring.toSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”TensorProduct.map_id
rTensor_id_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
rTensor
id
β€”rTensor_id
id_coe
rTensor_map πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
rTensor
TensorProduct.map
comp
RingHomCompTriple.ids
β€”congr_fun
RingHomCompTriple.ids
rTensor_comp_map
rTensor_mul πŸ“–mathematicalβ€”rTensor
Module.End
CommSemiring.toSemiring
Module.End.instMul
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”rTensor_comp
rTensor_neg πŸ“–mathematicalβ€”rTensor
AddCommGroup.toAddCommMonoid
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instNeg
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.addCommGroup
β€”map_neg
smulCommClass_self
TensorProduct.smulCommClass_left
rTensor_pow πŸ“–mathematicalβ€”LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
Monoid.toNatPow
Module.End.instMonoid
rTensor
β€”TensorProduct.map_pow
Module.End.id_pow
rTensor_smul πŸ“–mathematicalβ€”rTensor
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.instDistribMulAction
TensorProduct.smulCommClass_left
β€”map_smul
smulCommClass_self
TensorProduct.smulCommClass_left
rTensor_smul_action πŸ“–mathematicalβ€”rTensor
DistribSMul.toLinearMap
CommSemiring.toSemiring
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.instDistribMulAction
TensorProduct.smulCommClass_left
β€”smulCommClass_self
TensorProduct.smulCommClass_left
rTensor_smul
rTensor_id
rTensor_sub πŸ“–mathematicalβ€”rTensor
AddCommGroup.toAddCommMonoid
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instSub
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.addCommGroup
β€”map_sub
smulCommClass_self
TensorProduct.smulCommClass_left
rTensor_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
rTensor
TensorProduct.tmul
β€”β€”
rTensor_zero πŸ“–mathematicalβ€”rTensor
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
instZero
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”map_zero
smulCommClass_self
TensorProduct.smulCommClass_left
smul_lTensor πŸ“–mathematicalβ€”TensorProduct
TensorProduct.leftHasSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
lTensor
β€”TensorProduct.smulCommClass_left
RingHomCompTriple.ids
IsScalarTower.compatibleSMul
TensorProduct.isScalarTower_left
smulCommClass_self
TensorProduct.ext

RingTheory.LinearMap

Definitions

NameCategoryTheorems
Β«term_βŠ—β‚˜_Β» πŸ“–CompOpβ€”

TensorProduct

Definitions

NameCategoryTheorems
homTensorHomMap πŸ“–CompOp
4 mathmath: homTensorHomEquiv_apply, homTensorHomEquiv_toLinearMap, homTensorHomMap_apply, dualDistribEquivOfBasis_apply_apply
lTensorHomToHomLTensor πŸ“–CompOp
3 mathmath: lTensorHomEquivHomLTensor_apply, lTensorHomEquivHomLTensor_toLinearMap, lTensorHomToHomLTensor_apply
map πŸ“–CompOp
127 mathmath: Pi.comul_eq_adjoint, DFinsupp.comul_single, CliffordAlgebra.toBaseChange_reverse, Matrix.toLin_kronecker, LinearMap.convMul_def, CoalgCat.MonoidalCategoryAux.tensorHom_toLinearMap, AddMonoidAlgebra.comul_single, Pi.comul_comp_dFinsuppCoeFnLinearMap, tensorTensorTensorComm_comp_map, range_map, map_injective_of_flat_flat_of_isDomain, map_comp_comm_eq, map_add_right, map_map, IsLocalization.instIsLocalizedModuleTensorProductMap, quotientTensorQuotientEquiv_symm_apply_mk_tmul, Pi.comul_comp_single, ModuleCat.hom_tensorHom, adjoint_map, LinearMap.rTensor_comp_lTensor, LinearMap.rTensor_comp_map, exists_finite_submodule_of_finite', QuadraticForm.tmul_tensorMap_apply, map_injective_of_flat_flat', gradedMul_def, CoalgHom.map_comp_comul, Algebra.TensorProduct.linearEquivIncludeRange_toLinearMap, ModuleCat.MonoidalCategory.tensorHom_def, Representation.tprod_apply, AlgHom.comp_mul', quotientTensorEquiv_symm_apply_mk_tmul, map_add_left, map_map_assoc_symm, mapβ‚‚_apply_tmul, Finsupp.comul_comp_lapply, map_map_comp_assoc_eq, Algebra.TensorProduct.opAlgEquiv_apply, CoalgCat.MonoidalCategoryAux.tensorObj_comul, nnnorm_map, SemimoduleCat.hom_tensorHom, LinearMap.mulRight_tmul, intrinsicStar_map, LinearMap.map_comp_rTensor, DFinsupp.comul_comp_lapply, mapBilinear_apply, range_map_mono, Prod.comul_apply, map_comm, LinearMap.map_comp_lTensor, CoalgHomClass.map_comp_comul, map_smul_right, AlgebraTensorModule.map_eq, Submodule.coe_mulMap_comp_eq, quotientTensorQuotientEquiv_apply_tmul_mk_tmul_mk, tensorQuotientEquiv_apply_mk_tmul, map_one, LinearMap.map_rTensor, QuadraticForm.tmul_comp_tensorMap, lift_comp_map, Algebra.linearMap_comp_mul', map_injective_of_flat_flat, toLinearMap_congr, LinearMap.lTensor_comp_rTensor, DFinsupp.comul_comp_lsingle, Algebra.TensorProduct.opAlgEquiv_symm_apply, map_mul, LaurentPolynomial.comul_C, Finsupp.comul_single, map_bijective, map_comp, exists_finite_submodule_of_setFinite', LinearMap.trace_tensorProduct', LieModule.toLinearMap_map, range_map_eq_span_tmul, LinearMap.mulLeft_tmul, MonoidAlgebra.comul_single, Pi.comul_coe_finsupp, NonUnitalAlgHom.comp_mul', quotientTensorEquiv_apply_tmul_mk, map_zero_left, LinearMap.rTensor_map, LinearMap.rTensor_def, Prod.comul_comp_fst, Submodule.mulMap_map_comp_eq, map_tmul, mapIsometry_apply, toLinearMap_mapIsometry, LinearMap.map_lTensor, enorm_map, Prod.comul_comp_snd, Pi.comul_comp_proj, map_map_assoc, map_convMul_map, homTensorHomMap_apply, map_dualTensorHom, CliffordAlgebra.toBaseChange_involute, Pi.comul_single, Submodule.mulMap_comp_map_inclusion, MulOpposite.comul_def, LaurentPolynomial.comul_C_mul_T, Prod.comul_comp_inl, map_ker, norm_map, QuadraticMap.Isometry.tmul_apply, LinearMap.mul'_tensor, Pi.comul_coe_dFinsupp, map_smul_left, LinearMap.lTensor_map, map_map_comp_assoc_symm_eq, LinearMap.convMul_apply, Prod.comul_comp_inr, Finsupp.comul_comp_lsingle, map_range_eq_span_tmul, CoalgHomClass.map_comp_comul_apply, LinearMap.lTensor_comp_map, Representation.dualTensorHom_comm, star_map_apply_eq_map_intrinsicStar, map_pow, tensorQuotientEquiv_symm_apply_tmul_mk, map_surjective, map_id, map_zero_right, toMatrix_map, inner_map_map, LinearMap.lTensor_def, Pi.comul_comp_finsuppLcoeFun, Algebra.mul'_comp_tensorTensorTensorComm
mapBilinear πŸ“–CompOp
2 mathmath: mapBilinear_apply, LinearMap.trace_tensorProduct
mapIncl πŸ“–CompOp
12 mathmath: mapInclIsometry_apply, range_mapIncl, mapβ‚‚_eq_range_lift_comp_mapIncl, LieModule.weight_vector_multiplication, inner_mapIncl_mapIncl, exists_finite_submodule_of_finite, Module.Flat.tensorProduct_mapIncl_injective_of_left, Submodule.mulMap_eq_mul'_comp_mapIncl, exists_finite_submodule_of_setFinite, Module.Flat.tensorProduct_mapIncl_injective_of_right, toLinearMap_mapInclIsometry, range_mapIncl_mono
mapβ‚‚ πŸ“–CompOp
1 mathmath: mapβ‚‚_apply_tmul
rTensorHomToHomRTensor πŸ“–CompOp
3 mathmath: rTensorHomEquivHomRTensor_apply, rTensorHomEquivHomRTensor_toLinearMap, rTensorHomToHomRTensor_apply

Theorems

NameKindAssumesProvesValidatesDepends On
congr_congr πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
congr
LinearEquiv.trans
β€”DFunLike.congr_fun
congr_trans
congr_mul πŸ“–mathematicalβ€”congr
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHomInvPair.ids
LinearEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
TensorProduct
addCommMonoid
instModule
β€”RingHomInvPair.ids
congr_trans
congr_pow πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
addCommMonoid
instModule
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
congr
β€”RingHomInvPair.ids
congr_refl_refl
pow_succ
congr_mul
congr_refl_refl πŸ“–mathematicalβ€”congr
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHomInvPair.ids
LinearEquiv.refl
TensorProduct
addCommMonoid
instModule
β€”LinearEquiv.toLinearMap_injective
RingHomInvPair.ids
ext'
congr_symm πŸ“–mathematicalβ€”LinearEquiv.symm
TensorProduct
CommSemiring.toSemiring
addCommMonoid
instModule
congr
β€”β€”
congr_symm_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
congr
tmul
β€”β€”
congr_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
congr
tmul
β€”β€”
congr_trans πŸ“–mathematicalβ€”congr
LinearEquiv.trans
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
β€”LinearEquiv.toLinearMap_injective
map_comp
congr_zpow πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
addCommMonoid
instModule
DivInvMonoid.toZPow
Group.toDivInvMonoid
LinearEquiv.automorphismGroup
congr
β€”RingHomInvPair.ids
congr_pow
zpow_negSucc
congr_symm
homTensorHomMap_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
addCommMonoid
instModule
smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.instFunLike
homTensorHomMap
tmul
map
β€”smulCommClass_self
smulCommClass_left
instSmall πŸ“–mathematicalβ€”Small
TensorProduct
β€”RingHomInvPair.ids
lTensorHomToHomLTensor_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
lTensorHomToHomLTensor
tmul
β€”smulCommClass_self
smulCommClass_left
lift_comp_map πŸ“–mathematicalβ€”LinearMap.comp
TensorProduct
CommSemiring.toSemiring
addCommMonoid
instModule
lift
map
LinearMap.complβ‚‚
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap
LinearMap.addCommMonoid
LinearMap.module
β€”smulCommClass_self
ext'
mapBilinear_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.instFunLike
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
mapBilinear
map
β€”smulCommClass_self
smulCommClass_left
LinearMap.instSMulCommClass
map_add_left πŸ“–mathematicalβ€”map
LinearMap
CommSemiring.toSemiring
LinearMap.instAdd
TensorProduct
addCommMonoid
instModule
β€”ext
LinearMap.ext
smulCommClass_self
RingHomCompTriple.ids
add_tmul
map_add_right πŸ“–mathematicalβ€”map
LinearMap
CommSemiring.toSemiring
LinearMap.instAdd
TensorProduct
addCommMonoid
instModule
β€”ext
LinearMap.ext
smulCommClass_self
RingHomCompTriple.ids
tmul_add
map_bijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
TensorProduct
addCommMonoid
instModule
map
β€”LinearEquiv.bijective
RingHomInvPair.ids
map_comm πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.instFunLike
map
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
LinearEquiv.instEquivLike
comm
β€”DFunLike.congr_fun
RingHomCompTriple.ids
RingHomInvPair.ids
RingHomCompTriple.right_ids
map_comp_comm_eq
map_comp πŸ“–mathematicalβ€”map
LinearMap.comp
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
β€”ext'
map_comp_comm_eq πŸ“–mathematicalβ€”LinearMap.comp
TensorProduct
CommSemiring.toSemiring
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
map
LinearEquiv.toLinearMap
RingHomInvPair.ids
comm
RingHomCompTriple.right_ids
β€”ext
RingHomCompTriple.ids
RingHomInvPair.ids
RingHomCompTriple.right_ids
smulCommClass_self
map_id πŸ“–mathematicalβ€”map
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
LinearMap.id
TensorProduct
addCommMonoid
instModule
β€”ext
LinearMap.ext
smulCommClass_self
RingHomCompTriple.ids
map_map πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.instFunLike
map
LinearMap.comp
β€”DFunLike.congr_fun
map_comp
map_mul πŸ“–mathematicalβ€”map
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
LinearMap
Module.End.instMul
TensorProduct
addCommMonoid
instModule
β€”map_comp
map_one πŸ“–mathematicalβ€”map
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
LinearMap
Module.End.instOne
TensorProduct
addCommMonoid
instModule
β€”map_id
map_pow πŸ“–mathematicalβ€”LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
addCommMonoid
instModule
Monoid.toNatPow
Module.End.instMonoid
map
β€”pow_zero
map_one
pow_succ'
map_mul
map_range_eq_span_tmul πŸ“–mathematicalβ€”LinearMap.range
TensorProduct
CommSemiring.toSemiring
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
map
Submodule.span
setOf
tmul
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”range_map_eq_span_tmul
map_smul_left πŸ“–mathematicalβ€”map
LinearMap
CommSemiring.toSemiring
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
TensorProduct
addCommMonoid
instModule
instDistribMulAction
smulCommClass_left
β€”ext
smulCommClass_self
smulCommClass_left
LinearMap.ext
RingHomCompTriple.ids
smul_tmul
CompatibleSMul.isScalarTower
IsScalarTower.left
tmul_smul
map_smul_right πŸ“–mathematicalβ€”map
LinearMap
CommSemiring.toSemiring
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
TensorProduct
addCommMonoid
instModule
instDistribMulAction
smulCommClass_left
β€”ext
smulCommClass_self
smulCommClass_left
LinearMap.ext
RingHomCompTriple.ids
tmul_smul
CompatibleSMul.isScalarTower
IsScalarTower.left
map_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.instFunLike
map
tmul
β€”β€”
map_zero_left πŸ“–mathematicalβ€”map
LinearMap
CommSemiring.toSemiring
LinearMap.instZero
TensorProduct
addCommMonoid
instModule
β€”LinearMap.map_zeroβ‚‚
smulCommClass_self
smulCommClass_left
LinearMap.instSMulCommClass
map_zero_right πŸ“–mathematicalβ€”map
LinearMap
CommSemiring.toSemiring
LinearMap.instZero
TensorProduct
addCommMonoid
instModule
β€”LinearMap.map_zero
smulCommClass_self
smulCommClass_left
LinearMap.instSMulCommClass
mapβ‚‚_apply_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
LinearMap.instFunLike
mapβ‚‚
tmul
map
β€”smulCommClass_self
smulCommClass_left
mapβ‚‚_eq_range_lift_comp_mapIncl πŸ“–mathematicalβ€”Submodule.mapβ‚‚
LinearMap.range
TensorProduct
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.comp
RingHomCompTriple.ids
lift
mapIncl
β€”smulCommClass_self
RingHomSurjective.ids
RingHomCompTriple.ids
LinearMap.range_comp
Submodule.map.congr_simp
range_mapIncl
IsScalarTower.left
Submodule.map_mapβ‚‚
rTensorHomToHomRTensor_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
rTensorHomToHomRTensor
tmul
β€”smulCommClass_self
smulCommClass_left
range_map πŸ“–mathematicalβ€”LinearMap.range
TensorProduct
CommSemiring.toSemiring
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
map
Submodule.mapβ‚‚
β€”RingHomSurjective.ids
smulCommClass_self
Submodule.mapβ‚‚_map_map
Submodule.map.congr_simp
IsScalarTower.left
Submodule.map_mapβ‚‚
range_mapIncl πŸ“–mathematicalβ€”LinearMap.range
TensorProduct
Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
mapIncl
Submodule.mapβ‚‚
β€”RingHomSurjective.ids
range_map
Submodule.range_subtype
range_mapIncl_mono πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
TensorProduct
addCommMonoid
instModule
LinearMap.range
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
mapIncl
β€”range_map_mono
RingHomSurjective.ids
Submodule.range_subtype
range_map_eq_span_tmul πŸ“–mathematicalβ€”LinearMap.range
TensorProduct
CommSemiring.toSemiring
addCommMonoid
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
map
Submodule.span
setOf
tmul
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”RingHomSurjective.ids
Submodule.map.congr_simp
Submodule.map_span
Set.ext
range_map_mono πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
TensorProduct
addCommMonoid
instModule
map
β€”RingHomSurjective.ids
range_map
Submodule.mapβ‚‚_le_mapβ‚‚
toLinearMap_congr πŸ“–mathematicalβ€”LinearEquiv.toLinearMap
CommSemiring.toSemiring
TensorProduct
addCommMonoid
instModule
congr
map
β€”β€”

---

← Back to Index