π Source: Mathlib/LinearAlgebra/Vandermonde.lean
projVandermonde
rectVandermonde
vandermonde
det_eval_matrixOfPolynomials_eq_det_vandermonde
det_projVandermonde
det_vandermonde
det_vandermonde_add
det_vandermonde_eq_zero_iff
det_vandermonde_id_eq_superFactorial
det_vandermonde_ne_zero_iff
det_vandermonde_sub
eq_zero_of_forall_index_sum_mul_pow_eq_zero
eq_zero_of_forall_index_sum_pow_mul_eq_zero
eq_zero_of_forall_pow_sum_mul_pow_eq_zero
eval_matrixOfPolynomials_eq_vandermonde_mul_matrixOfPolynomials
projVandermonde_apply
projVandermonde_apply_of_ne_zero
projVandermonde_apply_zero_right
projVandermonde_comp
projVandermonde_map
rectVandermonde_apply
rectVandermonde_apply_zero_right
superFactorial_dvd_vandermonde_det
vandermonde_apply
vandermonde_cons
vandermonde_eq_projVandermonde
vandermonde_mul_vandermonde_transpose
vandermonde_succ
vandermonde_transpose_mul_vandermonde
Algebra.embeddingsMatrixReindex_eq_vandermonde
Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.Monic
det
Fin.fintype
DFunLike.coe
Equiv
Matrix
EquivLike.toFunLike
Equiv.instEquivLike
of
Polynomial.eval
det_mul
det_matrixOfPolynomials
mul_one
Finset.prod
CommRing.toCommMonoid
Finset.univ
Finset.Ioi
PartialOrder.toPreorder
Fin.instPartialOrder
Fin.instLocallyFiniteOrderTop
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instIsDomainOfIsCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Int.instIsDomain
MvPolynomial.evalβ_mul
MvPolynomial.evalβ_pow
MvPolynomial.evalβ_X
map_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Finset.prod_congr
MvPolynomial.evalβ_sub
RingHom.map_det
Localization.isLocalization
det.congr_simp
Distrib.toAdd
add_sub_add_right_eq_sub
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
LT.lt.ne'
Finset.mem_Ioi
det_zero_of_row_eq
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Nat.superFactorial
Nat.cast_zero
det_unique
pow_zero
Nat.cast_one
Nat.superFactorial.eq_2
Fin.prod_univ_succAbove
Nat.cast_mul
sub_zero
Finset.prod_natCast
Fin.Ioi_zero_eq_map
Finset.prod_map
Fin.prod_univ_eq_prod_range
Finset.prod_range_add_one_eq_factorial
Nat.cast_add
Fin.prod_Ioi_succ
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Pi.instZero
Finset.sum_congr
mul_comm
eq_zero_of_mulVec_eq_zero
eq_zero_of_vecMul_eq_zero
instHMulOfFintypeOfMulOfAddCommMonoid
Polynomial.coeff
ext
Polynomial.evalβ_def
Polynomial.supp_subset_range
Fin.prop
Polynomial.sum_eq_of_subset
MulZeroClass.zero_mul
Fin.sum_univ_eq_sum_range
of_apply
RingHom.id_apply
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
eq_div_iff
isReduced_of_noZeroDivisors
instIsDomain
EuclideanDomain.toNontrivial
mul_assoc
pow_add
Fin.rev_add_cast
Pi.single
LE.le.eq_or_lt
Pi.single_eq_same
Pi.single_eq_of_ne
LT.lt.ne
zero_pow
MulZeroClass.mul_zero
submatrix
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
nonAssocSemiring
RingHom.mapMatrix
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_pow
Int.instCommRing
Finset.mem_univ
Finset.inf'_le
descPochhammer_natDegree
IsStrictOrderedRing.noZeroDivisors
AddGroup.existsAddOfLE
Int.instNontrivial
monic_descPochhammer
Nat.prod_range_succ_factorial
Fin.cons
AddMonoidWithOne.toOne
Fin.cons_zero
Fin.cons_succ
pow_succ'
Pi.instOne
one_pow
transpose
mul_pow
Fin.tail
Fin.cons_self_tail
---
β Back to Index