Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Logic/Embedding/Basic.lean

Statistics

MetricCount
DefinitionscoeEmbedding, asEmbedding, coeEmbedding, embeddingCongr, subtypeInjectiveEquivEmbedding, toEmbedding, arrowCongrLeft, arrowCongrRight, equivOfSurjective, inl, inr, instTrans, instUniqueOfIsEmpty, ofIsEmpty, ofSurjective, oneEmbeddingEquiv, optionMap, piCongrRight, pprodMap, prodMap, punit, quotientOut, refl, sectL, sectR, setValue, sigmaMap, sigmaMk, some, subtype, subtypeMap, sumMap, toFun, trans, instFunLikeEmbedding, Β«term_β†ͺ_Β», impEmbedding, subtypeOrLeftEmbedding
38
TheoremsasEmbedding_apply, coe_toEmbedding, embeddingCongr_apply, embeddingCongr_apply_trans, embeddingCongr_refl, embeddingCongr_symm, embeddingCongr_trans, refl_toEmbedding, toEmbedding_apply, toEmbedding_injective, trans_toEmbedding, apply_eq_iff_eq, arrowCongrLeft_apply, arrowCongrLeft_refl, arrowCongrRight_apply, coeFn_mk, coe_injective, coe_prodMap, coe_quotientOut, coe_refl, coe_subtype, coe_sumMap, coe_trans, congr_apply, equiv_symm_toEmbedding_trans_toEmbedding, equiv_toEmbedding_trans_symm_toEmbedding, ext, ext_iff, inj', injective, inl_apply, inr_apply, mk_coe, mk_id, mk_trans_mk, optionMap_apply, piCongrRight_apply, refl_apply, sectL_apply, sectR_apply, setValue_eq, setValue_eq_iff, setValue_eq_of_ne, setValue_right_apply_eq, sigmaMap_apply, sigmaMk_apply, some_apply, subtype_apply, subtype_injective, swap_apply, swap_comp, toFun_eq_coe, trans_apply, trans_arrowCongrLeft, exists_surjective_iff, instCanLiftForallEmbeddingCoeInjective, instEmbeddingLikeEmbedding, impEmbedding_apply_coe, subtypeOrLeftEmbedding_apply, subtypeOrLeftEmbedding_apply_left, subtypeOrLeftEmbedding_apply_right
61
Total99

Equiv

Definitions

NameCategoryTheorems
asEmbedding πŸ“–CompOp
3 mathmath: asEmbedding_apply, Perm.support_extend_domain, asEmbedding_range
coeEmbedding πŸ“–CompOpβ€”
embeddingCongr πŸ“–CompOp
5 mathmath: embeddingCongr_trans, embeddingCongr_symm, embeddingCongr_refl, embeddingCongr_apply, embeddingCongr_apply_trans
subtypeInjectiveEquivEmbedding πŸ“–CompOpβ€”
toEmbedding πŸ“–CompOp
152 mathmath: SkewMonoidAlgebra.domCongr_support, Finset.map_op_one, Finset.toLeft_map_sumComm, Sum.Lex.Icc_inr_inr, Fin.map_revPerm_Ioc, Finset.uIcc_toDual, Finset.map_filter, Finset.Ioi_toDual, Sum.Lex.Ico_inl_inl, Sum.Lex.Ico_inr_inr, Sum.Lex.Ioo_inl_inr, Finset.map_truncatedInf, Multiset.Icc_eq, Finset.map_op_inv, Finset.dens_map_equiv, Finset.map_consEquiv_filter_piFinset, coe_toEmbedding, Affine.Simplex.excenterWeightsUnnorm_reindex, Sum.Lex.Iic_inr, Nat.map_swap_divisorsAntidiagonal, Finset.map_snocEquiv_filter_piFinset, Finset.Ioc_ofDual, Function.Embedding.equiv_toEmbedding_trans_symm_toEmbedding, Affine.Simplex.excenterExists_reindex, Sum.Lex.Ioo_inr_inr, Finset.map_symm_subset, SimpleGraph.Iso.map_symm_apply, Fin.map_finCongr_Ioo, Finpartition.parts_map, Finset.Ioo_orderDual_def, SimpleGraph.cliqueSet_map_of_equiv, Finset.toRight_map_sumComm, Int.map_prodComm_divisorsAntidiag, Fin.map_finCongr_Iic, FormalMultilinearSeries.changeOriginIndexEquiv_symm_apply_snd_snd_coe, Fin.map_revPerm_Ico, Finset.Nat.antidiagonalTuple_two, Sum.Lex.Icc_inl_inl, Finset.Ioo_ofDual, RelIso.coe_toEmbedding, toEmbedding_injective, Finset.map_op_nsmul, Affine.Simplex.excenterWeights_reindex, Sum.Lex.Ioi_inr, Iio_orderDual_def, toEmbedding_apply, Int.divisorsAntidiag_natCast, finsetCongr_toEmbedding, Finset.map_univ_equiv, Fin.map_revPerm_Ici, Sum.Lex.Ici_inl, Affine.Simplex.exsphere_reindex, Finset.univ_map_equiv_to_embedding, Sum.Lex.Ioc_inl_inl, SimpleGraph.comap_symm, Finset.univ_perm_option, Finset.mapRange_finsuppAntidiag_eq, Fin.map_revPerm_Icc, Finset.filter_piFinset_eq_map_consEquiv, SimpleGraph.cliqueFinset_map_of_equiv, Function.Embedding.equiv_symm_toEmbedding_trans_toEmbedding, Fin.map_finCongr_uIcc, Finset.map_op_add, Sum.Lex.Ioc_inl_inr, Sum.Lex.Iio_inl, Fin.map_revPerm_Ioi, Function.Embedding.congr_apply, Affine.Simplex.exradius_reindex, Ioi_orderDual_def, Fin.map_finCongr_Ici, Finset.Icc_orderDual_def, Finset.Ioo_toDual, Finset.filter_piFinset_eq_map_insertNthEquiv, Multiset.uIcc_eq, Affine.Simplex.touchpointWeights_reindex, Finset.map_op_zero, Finset.map_op_neg, Sum.Lex.Ioc_inr_inr, Function.Embedding.smul_def, Iic_orderDual_def, SimpleGraph.map_symm, Sum.Lex.Ioi_inl, Finset.mapRange_finsuppAntidiag_subset, Sum.Lex.Ioo_inl_inl, Finset.Ico_ofDual, Finset.Ioc_orderDual_def, finsetCongr_apply, Finset.Ioc_toDual, Sum.Lex.Iic_inl, Finset.mem_map_equiv, Finset.Icc_toDual, Multiset.toEmbedding_coeEquiv_trans, Sum.Lex.Ici_inr, Fin.equivSubtype_symm_trans_valEmbedding, SimpleGraph.Iso.comap_apply, Finset.Ioi_ofDual, Finset.map_truncatedSup, Fin.map_revPerm_Ioo, Fin.map_revPerm_uIcc, Finset.univ_perm_fin_succ, Finset.Ici_toDual, embeddingEquivOfFinite_symm_apply, Finset.map_op_mul, Sum.Lex.Ico_inl_inr, SimpleGraph.coe_recolorOfEquiv, Sum.Lex.Iio_inr, Affine.Simplex.touchpoint_reindex, Finset.map_insertNthEquiv_filter_piFinset, Finset.Icc_ofDual, Finset.Iio_toDual, Affine.Simplex.range_face_reindex, AddMonoidAlgebra.domCongr_support, Perm.support_conj, Finset.Iic_ofDual, Fin.map_revPerm_Iio, Finset.sum_map_equiv, Finset.filter_piFinset_eq_map_snocEquiv, trans_toEmbedding, Fin.map_finCongr_Ioi, Finset.Ico_orderDual_def, Int.divisorsAntidiag_neg, Perm.cycleFactorsFinset_conj, Int.divisorsAntidiag_ofNat, Finset.subset_map_symm, Finset.Iic_toDual, MonoidAlgebra.domCongr_support, Ici_orderDual_def, Fin.map_finCongr_Iio, Finset.map_cast_heq, refl_toEmbedding, SimpleGraph.Iso.toEmbedding_completeGraph, Fin.map_finCongr_Ioc, Finset.prod_map_equiv, Sum.Lex.Icc_inl_inr, Affine.Simplex.excenter_reindex, Finset.prod_comp_equiv, Finset.map_op_pow, Fin.map_revPerm_Iic, Function.Embedding.toEmbedding_equivOfFiniteSelfEmbedding, Fin.map_finCongr_Icc, Finset.sum_comp_equiv, Function.Embedding.vadd_def, Finset.Ico_toDual, Int.divisorsAntidiag_neg_natCast, Fin.map_finCongr_Ico, SimpleGraph.Iso.map_apply, SimpleGraph.Iso.comap_symm_apply, Finset.Iio_ofDual, Finset.Ici_ofDual, Int.map_neg_divisorsAntidiag, Finset.map_perm, Finset.map_prodComm_antidiagonal

Theorems

NameKindAssumesProvesValidatesDepends On
asEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
asEmbedding
Equiv
EquivLike.toFunLike
instEquivLike
β€”β€”
coe_toEmbedding πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
toEmbedding
Equiv
EquivLike.toFunLike
instEquivLike
β€”β€”
embeddingCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Function.Embedding
EquivLike.toFunLike
instEquivLike
embeddingCongr
Function.Embedding.congr
β€”β€”
embeddingCongr_apply_trans πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Function.Embedding
EquivLike.toFunLike
instEquivLike
embeddingCongr
Function.Embedding.trans
β€”Function.Embedding.ext
symm_apply_apply
embeddingCongr_refl πŸ“–mathematicalβ€”embeddingCongr
refl
Function.Embedding
β€”β€”
embeddingCongr_symm πŸ“–mathematicalβ€”symm
Function.Embedding
embeddingCongr
β€”β€”
embeddingCongr_trans πŸ“–mathematicalβ€”embeddingCongr
trans
Function.Embedding
β€”β€”
refl_toEmbedding πŸ“–mathematicalβ€”toEmbedding
refl
Function.Embedding.refl
β€”β€”
toEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
toEmbedding
Equiv
EquivLike.toFunLike
instEquivLike
β€”β€”
toEmbedding_injective πŸ“–mathematicalβ€”Equiv
Function.Embedding
toEmbedding
β€”DFunLike.ext'_iff
trans_toEmbedding πŸ“–mathematicalβ€”toEmbedding
trans
Function.Embedding.trans
β€”β€”

Equiv.Perm

Definitions

NameCategoryTheorems
coeEmbedding πŸ“–CompOpβ€”

Function

Definitions

NameCategoryTheorems
instFunLikeEmbedding πŸ“–CompOp
467 mathmath: instEmbeddingLikeEmbedding, RootPairing.rootForm_self_smul_coroot, SimpleGraph.UnitDistEmbedding.iso_p_apply, RootPairing.RootPositiveForm.algebraMap_rootLength, Finset.weightedVSubOfPoint_map, Fin.univ_map_def, RootPairing.posRootForm_posForm_apply_apply, RootPairing.four_nsmul_coPolarization_compl_polarization_apply_root, Fin.coe_succEmb, Finset.sum_map', Finsupp.embDomain_apply, RootPairing.linearIndepOn_root_baseOf', AddSubgroup.quotientiInfAddSubgroupOfEmbedding_apply_mk, RootPairing.Polarization_apply, HahnSeries.SummableFamily.embDomain_apply, RootPairing.coroot_eq_polarizationEquiv_apply_root, Finset.prod_map', Finset.map_filter', Finset.map_zero, RootPairing.instIsRootSystemSubtypeMemSubmoduleSpanRangeCoeEmbeddingRootCorootRestrictScalars', RootPairing.Base.span_coroot_support, Embedding.coeWithTop_apply, Fin.natAddEmb_apply, Embedding.coe_refl, SimpleGraph.isClique_map_image_iff, RootPairing.reflectionPerm_eq_iff_smul_root, RootPairing.Hom.root_weightMap, Cardinal.extend_function_finite, Embedding.sigmaMk_apply, RootPairing.root_coroot_two, Embedding.coe_smul, RootPairing.restrictScalars_coe_coroot, SimpleGraph.leftInverse_comap_map, Embedding.smul_apply, ODE.FunSpace.isUniformInducing_toContinuousMap, RootPairing.Base.sub_notMem_range_coroot, Embedding.subtype_injective, RootPairing.coreflection_image_eq, BoxIntegral.IntegrationParams.tendsto_embedBox_toFilteriUnion_top, Embedding.setValue_eq, RootPairing.Base.root_mem_span_int, SimpleGraph.TripartiteFromTriangles.toTriangle_surjOn, LieAlgebra.IsKilling.rootSystem_coroot_apply, Embedding.embFinTwo_apply_zero, RootPairing.zero_notMem_range_root, Embedding.sumSet_apply, RootPairing.InvariantForm.pairing_mul_eq_pairing_mul_swap, ODE.FunSpace.range_toContinuousMap, RootPairing.root_sub_root_mem_of_pairingIn_pos, Finset.forall_mem_map, Embedding.image_apply, RootPairing.span_orbit_eq_top, Embedding.sectR_apply, Embedding.sumSet_range, RootPairing.Hom.root_weightMap_apply, SimpleGraph.map_edgeFinset_induce_of_support_subset, RootPairing.invtRootSubmodule.eq_top_iff, Multiset.coeEquiv_apply_coe, LTSeries.exists_relSeries_covBy_and_head_eq_bot_and_last_eq_bot, Embedding.exists_of_card_le_finset, RootPairing.coxeterWeightIn_eq_four_iff_not_linearIndependent, RootPairing.Base.cartanMatrix_apply_eq_zero_iff, RootPairing.root_coroot_eq_pairing, SymOptionSuccEquiv.decode_inr, Equiv.coe_toEmbedding, Finset.inf_map, Set.Definable.image_comp_embedding, RootPairing.RootPositiveForm.zero_lt_posForm_iff, RootPairing.Base.linearIndependent_pair_of_ne, RootPairing.Base.linearIndepOn_coroot, Finset.weightedVSub_map, RootPairing.coroot_eq_smul_coroot_iff, RootPairing.toPerfPair_comp_root, Matroid.Indep.exists_eq_image_of_mapSetEmbedding, Cardinal.mk_image_embedding, RootPairing.mapsTo_reflection_root, SimpleGraph.card_edgeFinset_map, RootPairing.root'_coroot_eq_pairing, RootPairing.injOn_dualMap_subtype_span_root_coroot, Injective.mulActionHom_embedding_apply, RootPairing.restrictScalars_pairing, RootPairing.zero_notMem_range_coroot, addRightEmbedding_apply, RelEmbedding.preimage_apply, Embedding.arrowCongrLeft_apply, RootPairing.Base.exists_root_eq_sum_nat_or_neg, RootPairing.reflection_apply_root', finprod_emb_domain, Fin.natAdd_castLEEmb_apply_val, AffineIndependent.comp_embedding, Subgroup.quotientCentralizerEmbedding_apply, Embedding.vadd_apply, Set.Finite.preimage_embedding, RootPairing.IsOrthogonal.reflection_apply_left, RootPairing.pairing_one_four_iff', Embedding.sigmaSet_apply, Equiv.asEmbedding_apply, Multiset.coeEmbedding_apply, Cardinal.mk_image_embedding_lift, RootPairing.IsReduced.linearIndependent_iff, Finsupp.embDomain_single, Finset.inf'_map, Embedding.setValue_eq_iff, Finset.centroid_map, RootPairing.exist_set_root_not_disjoint_and_le_ker_coroot'_of_invtSubmodule, Fin.Embedding.exists_embedding_disjoint_range_of_add_le_Nat_card, Polynomial.revAt_zero, RootPairing.Base.coroot_mem_span_int, RootPairing.IsOrthogonal.coreflection_apply_right, SimpleGraph.edgeFinset_map, RootPairing.neg_mem_range_coroot_iff, Subgroup.quotientSubgroupOfEmbeddingOfLE_apply_mk, IndexedPartition.proj_out, Polynomial.revAt_eq_self_of_lt, SimpleGraph.Embedding.mapNeighborSet_apply_coe, SummationFilter.support_map, ConvexIndependent.comp_embedding, Finset.sum_map, RootPairing.linearIndependent_iff_coxeterWeightIn_ne_four, RootPairing.weylGroup_apply_root, RelEmbedding.coe_toEmbedding, Sym2.mkEmbedding_apply, Fin.succAboveEmb_apply, SubAddAction.ofFixingAddSubgroup.append_left, RootPairing.Equiv.root_indexEquiv_eq_smul, Matroid.mapEmbedding_isBase_iff, Matroid.Indep.mapEmbedding, RootPairing.RootPositiveForm.exists_eq, RelIso.coe_toEmbedding, Module.Basis.SmithNormalForm.repr_apply_embedding_eq_repr_smul, RootPairing.rootForm_root_self, RootPairing.EmbeddedG2.indexEquivAllRoots_symm_apply, Set.ncard_map, finsum_emb_domain, Embedding.optionEmbeddingEquiv_apply_snd_coe, RootPairing.root_add_root_mem_of_pairingIn_neg, MvPolynomial.coeff_rename_embDomain, RootPairing.InvariantForm.exists_apply_eq_or, MulAction.toFun_apply, Finset.map_one, Equiv.toEmbedding_apply, RootPairing.reflectionPerm_coroot, Embedding.coe_subtype, Embedding.arrowCongrRight_apply, Embedding.optionMap_apply, addLeftEmbedding_apply, Matroid.mapEmbedding_ground_eq, Embedding.sumSet_preimage_inr, Equiv.embeddingFinSucc_snd, mulRightEmbedding_apply, Embedding.swap_apply, Polynomial.rootsExpandPowToRoots_apply, Embedding.coe_sigmaSet, Cardinal.extend_function_of_lt, Polynomial.reflect_monomial, Matroid.mapEmbedding_indep_iff, AddSubgroup.quotientiInfEmbedding_apply_mk, Equiv.Perm.viaFintypeEmbedding_apply_image, Fin.Embedding.coe_tail, SimpleGraph.comap_symm, Set.powersetCard.coe_ofFinEmb, Finset.map_insert, Matroid.mapSetEmbedding_indep_iff', Module.Basis.SmithNormalForm.snf, RootPairing.pairing_neg_one_neg_four_iff, SimpleGraph.cliqueFinset_map_of_equiv, SimpleGraph.map_adj, Finsupp.prod_embDomain, SimpleGraph.comap_surjective, Fin.valEmbedding_apply, SimpleGraph.TripartiteFromTriangles.is3Clique_iff, Embedding.trans_apply, RootPairing.bijOn_reflection_root, RootPairing.chainTopCoeff_eq_zero_iff, RootPairing.posRootForm_posForm_pos_of_ne_zero, Fin.Embedding.exists_embedding_disjoint_range_of_add_le_ENat_card, Nat.castEmbedding_apply, Finsupp.sum_embDomain, SummationFilter.comap_filter, Embedding.congr_apply, Set.powersetCard.coe_map, ODE.FunSpace.toContinuousMap_apply_eq_apply, RootPairing.isReduced_iff', RootPairing.prod_rootForm_smul_coroot_mem_range_domRestrict, Embedding.sym2Map_apply, RootPairing.Hom.coroot_coweightMap, SimpleGraph.map_neighborFinset_induce_of_neighborSet_subset, SimpleGraph.degree_induce_support, SimpleGraph.UnitDistEmbedding.unit_dist, Finset.affineCombination_map, Set.powersetCard.mem_ofFinEmb_iff_mem_range, RootPairing.IsG2.span_eq_rootSpan_int, Finset.sup'_comp_eq_map, Finsupp.mapDomainEmbedding_apply, Set.embeddingOfSubset_apply_coe, SimpleGraph.map_adj_apply, RootPairing.toPerfPair_flip_comp_coroot, Finset.map_toFinset, Polynomial.reflect_support, RootPairing.reflectionPerm_root, Polynomial.coeff_reflect, RootPairing.invtRootSubmodule.eq_bot_iff, Embedding.coeWithBot_apply, RootPairing.coreflection_apply_self, Embedding.setValue_right_apply_eq, RootPairing.linearIndepOn_root_baseOf, Polynomial.revAt_le, RootPairing.linearIndependent_iff_coxeterWeight_ne_four, SimpleGraph.TripartiteFromTriangles.cliqueSet_eq_image, RootPairing.bijOn_coreflection_coroot, Fin.coe_castSuccEmb, SimpleGraph.cliqueFinset_map, Finsupp.linearCombination_embDomain, RootPairing.IsRootSystem.span_root_eq_top, RootPairing.zero_le_posForm, SimpleGraph.map_symm, RootPairing.coroot_eq_neg_iff, SimpleGraph.TripartiteFromTriangles.cliqueFinset_eq_image, RootPairing.IsReduced.linearIndependent, RootPairing.root_eq_neg_iff, Subgroup.quotientiInfSubgroupOfEmbedding_apply_mk, RootPairing.Base.linearIndepOn_root, RootPairing.Base.toCoweightBasis_apply, RootPairing.IsOrthogonal.reflection_apply_right, Embedding.refl_apply, SimpleGraph.TripartiteFromTriangles.toTriangle_is3Clique, Matroid.IsBasis.mapEmbedding, Finsupp.embDomain_apply_self, RootPairing.Base.span_int_root_support, RootPairing.PolarizationIn_apply, subtypeOrLeftEmbedding_apply_left, RootPairing.Base.toCoweightBasis_repr_coroot, Fin.castAddEmb_apply, Subtype.impEmbedding_apply_coe, AddSubgroup.quotientiInfEmbedding_apply, Embedding.right_inv_of_invOfMemRange, RootPairing.coroot_root_two, Equiv.asEmbedding_range, AddAction.toFun_apply, SimpleGraph.IsAcyclic.of_comap, Matroid.mapSetEmbedding_indep_iff, Embedding.toFun_eq_coe, RootPairing.CoPolarization_apply, SimpleGraph.UnitDistEmbedding.embed_p_apply, Embedding.sigmaSet_range, Set.Finite.fin_embedding, RootPairing.RootPositiveForm.two_mul_apply_root_root, Embedding.piCongrRight_apply, RootPairing.prod_rootFormIn_smul_coroot_mem_range_PolarizationIn, SubAddAction.ofStabilizer.snoc_last, SimpleGraph.coe_recolorOfEmbedding, SimpleGraph.Iso.comap_apply, Finset.sup_map, Embedding.coe_quotientOut, SimpleGraph.map_neighborFinset_induce, RootPairing.algebraMap_posRootForm_posForm, Finset.sup'_map, SubMulAction.ofStabilizer.snoc_last, IndexedPartition.out_proj, Finset.fold_map, SubMulAction.ofStabilizer.snoc_castSucc, Subgroup.quotientiInfEmbedding_apply_mk, RootPairing.restrictScalars_coe_root, Embedding.sumSet_preimage_inl, Equiv.Perm.viaEmbedding_apply, SimpleGraph.UnitDistEmbedding.subsingleton_p_apply, Subgroup.quotientiInfEmbedding_apply, RootPairing.reflection_apply_self, RootPairing.InvariantForm.apply_eq_or_aux, Finset.supIndep_map, Finset.map_cons, Embedding.invFun_restrict, SubMulAction.ofFixingSubgroup.append_left, RootPairing.pairingIn_one_four_iff, Matrix.submatrix_one_embedding, RootPairing.pairingIn_neg_one_neg_four_iff, RootPairing.neg_root_mem, Finset.map_eq_image, SimpleGraph.isClique_map_iff_of_nontrivial, RootPairing.RootPositiveForm.isSymm_posForm, Embedding.coe_trans, OrthogonalIdempotents.embedding, Embedding.coe_vadd, SimpleGraph.degree_induce_of_neighborSet_subset, Polynomial.reflect_C_mul_X_pow, RootPairing.coroot_root_eq_pairing, SubMulAction.ofFixingSubgroup.append_right, Embedding.toEquivRange_eq_ofInjective, Equiv.embeddingFinSucc_fst, RootPairing.polarizationEquiv_symm_apply_coroot, RootPairing.Base.exists_root_eq_sum_int, RootPairing.linearIndepOn_coroot_iff, BoxIntegral.Box.splitCenterBoxEmb_apply, SubAddAction.ofStabilizer.snoc_castSucc, Polynomial.rootsExpandToRoots_apply, RootPairing.Base.root_mem_or_neg_mem, FixedPoints.linearIndependent_smul_of_linearIndependent, RootPairing.Base.toWeightBasis_apply, Finsupp.single_of_embDomain_single, Embedding.optionEmbeddingEquiv_symm_apply, Multiset.mapEmbedding_apply, Embedding.subtype_apply, Equiv.coe_embeddingFinSucc_symm, RootPairing.coreflection_apply, RootPairing.RootPositiveForm.exists_pos_eq, Finset.map_val, Finset.preimage_subset, LTSeries.exists_relSeries_covBy, SimpleGraph.TripartiteFromTriangles.exists_mem_toTriangle, Finset.map_singleton, RootPairing.EmbeddedG2.indexEquivAllRoots_apply_coe, BoundedContinuousFunction.dist_extend_extend, RootPairing.pairing_neg_one_neg_four_iff', Subgroup.quotientCenterEmbedding_apply, RootPairing.posRootForm_posForm_nondegenerate, Finsupp.embDomain_eq_mapDomain, SimpleGraph.Embedding.map_apply, Matrix.submatrix_diagonal_embedding, RootPairing.coxeterWeight_eq_four_iff_not_linearIndependent, Embedding.toEquivRange_symm_apply_self, Cardinal.extend_function, Encodable.instTotalPreimageNatCoeEmbeddingEncode'Le, Embedding.coeFn_mk, Embedding.injective, Embedding.setValue_eq_of_ne, AddSubgroup.quotientiInfAddSubgroupOfEmbedding_apply, Polynomial.revAtFun_eq, RootPairing.ext_iff, RootPairing.rootFormIn_self_smul_coroot, RootPairing.corootForm_self_smul_root, RootPairing.exists_form_eq_form_and_form_ne_zero, RootPairing.neg_coroot_mem, SimpleGraph.UnitDistEmbedding.copy_p_apply, RootPairing.Base.toWeightBasis_repr_root, SimpleGraph.mk'_apply_adj, Subgroup.quotientiInfSubgroupOfEmbedding_apply, RootPairing.Base.coroot_mem_or_neg_mem, RootPairing.InvariantForm.apply_root_root_zero_iff, Embedding.coe_prodMap, Finset.inf'_comp_eq_map, SimpleGraph.Embedding.comap_apply, RootPairing.pairing_smul_coroot_eq, Injective.addActionHom_embedding_apply, SimpleGraph.edgeSet_map, RootPairing.RootPositiveForm.algebraMap_apply_eq_form_iff, Embedding.sectL_apply, Module.Basis.SmithNormalForm.repr_comp_embedding_eq_smul, RootPairing.restrictScalars_toLinearMap_apply_apply, Finset.mem_map', RootPairing.pairing_smul_root_eq, Embedding.apply_eq_iff_eq, Embedding.invOfMemRange_surjective, RootPairing.InvariantForm.apply_eq_or, Finset.map_subset_iff_subset_preimage, Embedding.coe_sumMap, RootPairing.Hom.coroot_coweightMap_apply, SimpleGraph.Embedding.coe_completeGraph, Finset.map_erase, Polynomial.coeff_mirror, Embedding.coe_injective, RootPairing.Base.span_root_support, SimpleGraph.support_map, SubAddAction.ofFixingAddSubgroup.append_right, RootPairing.pairingIn_neg_two_neg_two_iff, RootPairing.posRootForm_posForm_anisotropic, Embedding.ext_iff, Encodable.instAntisymmPreimageNatCoeEmbeddingEncode'Le, Matroid.mapEmbedding_isBasis_iff, Finset.coe_map, SimpleGraph.card_edgeFinset_induce_support, Embedding.some_apply, RootPairing.span_root_image_eq_top_of_forall_orthogonal, Finset.prod_map, RootPairing.four_smul_rootForm_sq_eq_coxeterWeight_smul, Embedding.coe_sumSet, subtypeOrLeftEmbedding_apply_right, Finset.preimage_map, SimpleGraph.degree_induce_of_support_subset, SimpleGraph.Embedding.mapEdgeSet_apply, Fin.castSuccEmb_apply, ClassGroup.mem_finsetApprox, RootPairing.Base.sub_notMem_range_root, Finset.mem_map, RootPairing.neg_mem_range_root_iff, RootPairing.Base.cartanMatrixIn_mul_diagonal_eq, RootPairing.chainBotCoeff_eq_zero_iff, HahnSeries.SummableFamily.embDomain_image, RootPairing.pairing_one_four_iff, RootPairing.IsOrthogonal.coreflection_apply_left, RootPairing.nsmul_notMem_range_root, RootPairing.Base.exists_eq_sum_and_forall_sum_mem_of_isPos, Fin.coe_castLEEmb, SummationFilter.support_comap, Embedding.sigmaSet_preimage, Polynomial.revAt_add, mulLeftEmbedding_apply, Finset.mem_map_of_mem, Matroid.mapSetEmbedding_ground, subtypeOrEquiv_apply, Module.Basis.SmithNormalForm.toMatrix_restrict_eq_toMatrix, Fin.cycleIcc_def_le, RootPairing.RootPositiveForm.algebraMap_posForm, RootPairing.EmbeddedG2.allRoots_subset_range_root, RootPairing.reflection_apply, AddSubgroup.quotientAddSubgroupOfEmbeddingOfLE_apply_mk, BoundedContinuousFunction.extend_comp, Polynomial.revAt_invol, Fin.coe_castAddEmb, RootPairing.IsRootSystem.span_coroot_eq_top, Polynomial.coeff_reverse, RootPairing.root_chainTopIdx, Embedding.toEquivRange_apply, SimpleGraph.comap_map_eq, RootPairing.Base.span_int_coroot_support, RootPairing.CoPolarizationIn_apply, Embedding.inr_apply, RootPairing.coroot_reflectionPerm, Digraph.mk'_apply_Adj, RelEmbedding.map_rel_iff', RootPairing.root_coroot'_eq_pairing, IndexedPartition.index_out, Matroid.IsBase.mapEmbedding, SimpleGraph.card_edgeFinset_induce_of_support_subset, RootPairing.InvariantForm.apply_eq_or_of_apply_ne, RootPairing.InvariantForm.two_mul_apply_root_root, SimpleGraph.TripartiteFromTriangles.toTriangle_apply, RootPairing.coreflection_apply_coroot, Fin.coe_succAboveEmb, Fin.castLEEmb_apply, Finset.apply_coe_mem_map, Set.powersetCard.mem_map_iff_mem_range, SimpleGraph.coe_recolorOfCardLE, SimpleGraph.map_le_iff_le_comap, Finset.map_disjiUnion, Fin.addNatEmb_apply, SimpleGraph.isClique_map_iff, Finset.filter_map, RootPairing.isReduced_iff, Module.Basis.SmithNormalForm.coord_apply_embedding_eq_smul_coord, SimpleGraph.map_edgeFinset_induce, RootPairing.root_chainBotIdx, SimpleGraph.map_comap_le, RootPairing.mapsTo_coreflection_coroot, LieAlgebra.IsKilling.rootSystem_root_apply, Embedding.sigmaMap_apply, RootPairing.root_reflectionPerm, Embedding.left_inv_of_invOfMemRange, instCanLiftForallEmbeddingCoeInjective, SimpleGraph.Iso.comap_symm_apply, RootPairing.EmbeddedG2.mem_allRoots, Embedding.inl_apply, Embedding.swap_comp, Embedding.embFinTwo_apply_one, Matroid.mapEmbedding_isLoop_iff, RootPairing.reflection_image_eq, SimpleGraph.comap_monotone, Fin.range_natAdd_castLEEmb, BoundedContinuousFunction.extend_apply, Finset.coe_map_subset_range, RootPairing.baseOf_pairwise_pairing_le_zero, Embedding.optionEmbeddingEquiv_apply_fst, SimpleGraph.card_edgeFinset_induce_compl_singleton, subtypeOrLeftEmbedding_apply, RootPairing.reflection_apply_root, RootPairing.reflectionPerm_eq_iff_smul_coroot, RootPairing.pairing_neg_two_neg_two_iff, SimpleGraph.IsClique.map
Β«term_β†ͺ_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_surjective_iff πŸ“–mathematicalβ€”Embeddingβ€”injective_surjInv
nonempty_fun
invFun_surjective
Embedding.inj'
instCanLiftForallEmbeddingCoeInjective πŸ“–mathematicalβ€”CanLift
Embedding
DFunLike.coe
instFunLikeEmbedding
β€”β€”
instEmbeddingLikeEmbedding πŸ“–mathematicalβ€”EmbeddingLike
Embedding
instFunLikeEmbedding
β€”Embedding.inj'

Function.Embedding

Definitions

NameCategoryTheorems
arrowCongrLeft πŸ“–CompOp
3 mathmath: arrowCongrLeft_apply, trans_arrowCongrLeft, arrowCongrLeft_refl
arrowCongrRight πŸ“–CompOp
1 mathmath: arrowCongrRight_apply
equivOfSurjective πŸ“–CompOpβ€”
inl πŸ“–CompOp
25 mathmath: Finset.toLeft_eq_univ, Sum.Lex.Ico_inl_inl, Sum.Ico_inl_inl, Finset.disjSum_empty, Finset.subset_map_inl, Sum.Lex.Icc_inl_inl, Finset.sumLexLift_inl_inl, Sum.Iio_inl, Sum.Lex.Ioc_inl_inl, Finset.map_inl_disjUnion_map_inr, Sum.Lex.Iio_inl, Finset.disjoint_map_inl_map_inr, Sum.Lex.Ioo_inl_inl, Sum.Lex.Iic_inl, Sum.Ioo_inl_inl, Sum.Ici_inl, Finset.map_inl_subset_iff_subset_toLeft, Sum.Iic_inl, Finset.toRight_eq_empty, Finset.map_disjSum, Sum.Ioi_inl, Sum.Ioc_inl_inl, Finset.gc_map_inl_toLeft, inl_apply, Sum.Icc_inl_inl
inr πŸ“–CompOp
24 mathmath: Sum.Lex.Icc_inr_inr, Sum.Lex.Ico_inr_inr, Sum.Iio_inr, Sum.Lex.Ioo_inr_inr, Sum.Ici_inr, Sum.Icc_inr_inr, Sum.Ioc_inr_inr, Sum.Lex.Ioi_inr, Sum.Ioi_inr, Finset.gc_map_inr_toRight, Finset.map_inl_disjUnion_map_inr, Sum.Ioo_inr_inr, Finset.toLeft_eq_empty, Finset.disjoint_map_inl_map_inr, Sum.Lex.Ioc_inr_inr, Finset.toRight_eq_univ, Sum.Lex.Ici_inr, Finset.map_inr_subset_iff_subset_toRight, Sum.Ico_inr_inr, Sum.Iic_inr, Finset.map_disjSum, Finset.subset_map_inr, Finset.empty_disjSum, inr_apply
instTrans πŸ“–CompOpβ€”
instUniqueOfIsEmpty πŸ“–CompOpβ€”
ofIsEmpty πŸ“–CompOpβ€”
ofSurjective πŸ“–CompOpβ€”
oneEmbeddingEquiv πŸ“–CompOpβ€”
optionMap πŸ“–CompOp
1 mathmath: optionMap_apply
piCongrRight πŸ“–CompOp
1 mathmath: piCongrRight_apply
pprodMap πŸ“–CompOpβ€”
prodMap πŸ“–CompOp
14 mathmath: Finset.Nat.antidiagonal_succ_succ', Finset.Nat.antidiagonal_succ, Finsupp.antidiagonal_single, Int.divisorsAntidiag_natCast, Finset.prodMap_map_product, Finset.Nat.antidiagonal_filter_le_fst_of_le, coe_prodMap, Finset.Nat.antidiagonal_filter_snd_le_of_le, Int.divisorsAntidiag_neg, Int.divisorsAntidiag_ofNat, Finset.Nat.antidiagonal_filter_fst_le_of_le, Finset.Nat.antidiagonal_filter_le_snd_of_le, Int.divisorsAntidiag_neg_natCast, Finset.Nat.antidiagonal_succ'
punit πŸ“–CompOpβ€”
quotientOut πŸ“–CompOp
1 mathmath: coe_quotientOut
refl πŸ“–CompOp
17 mathmath: coe_refl, mk_id, Finset.Nat.antidiagonal_succ, equiv_toEmbedding_trans_symm_toEmbedding, equiv_symm_toEmbedding_trans_toEmbedding, refl_apply, SimpleGraph.map_id, Finset.map_refl, arrowCongrLeft_refl, Finset.Nat.antidiagonal_filter_le_fst_of_le, Finset.Nat.antidiagonal_filter_snd_le_of_le, Int.divisorsAntidiag_neg, Equiv.refl_toEmbedding, Finset.filter_attach, Finset.Nat.antidiagonal_filter_fst_le_of_le, Finset.Nat.antidiagonal_filter_le_snd_of_le, Finset.Nat.antidiagonal_succ'
sectL πŸ“–CompOp
8 mathmath: Finset.Icc_map_sectL, Finset.Ioc_map_sectL, Finset.uIcc_map_sectL, Finset.Ioo_map_sectL, Module.Presentation.tensor_relation, sectL_apply, Finset.Ico_map_sectL, Module.Relations.tensor_relation
sectR πŸ“–CompOp
8 mathmath: Finset.Ioo_map_sectR, Finset.uIcc_map_sectR, sectR_apply, Finset.Ioc_map_sectR, Module.Presentation.tensor_relation, Finset.Ico_map_sectR, Module.Relations.tensor_relation, Finset.Icc_map_sectR
setValue πŸ“–CompOp
4 mathmath: setValue_eq, setValue_eq_iff, setValue_right_apply_eq, setValue_eq_of_ne
sigmaMap πŸ“–CompOp
1 mathmath: sigmaMap_apply
sigmaMk πŸ“–CompOp
16 mathmath: Sigma.Ici_mk, sigmaMk_apply, Sigma.Iic_mk, Module.Presentation.directSum_relation, Sigma.Ico_mk_mk, Sigma.Icc_mk_mk, Finsupp.support_embSigma, Sigma.Iio_mk, Finset.pairwiseDisjoint_map_sigmaMk, Module.Presentation.finsupp_relation, Sigma.Ioc_mk_mk, Sigma.Ioi_mk, Module.Relations.directSum_relation, Finset.sigma_eq_biUnion, Sigma.Ioo_mk_mk, Finset.disjiUnion_map_sigma_mk
some πŸ“–CompOp
23 mathmath: Finsupp.embDomain_some_some, WithTop.Ico_coe_coe, WithTop.Ioc_coe_coe, WithTop.Ico_coe_top, SymOptionSuccEquiv.decode_inr, WithTop.Ioo_coe_top, Finsupp.some_embDomain_some, Finsupp.eq_option_embedding_update_none_iff, WithBot.Ioc_bot_coe, WithTop.Icc_coe_coe, WithTop.Ioo_coe_coe, optionEmbeddingEquiv_apply_snd_coe, Finset.eraseNone_map_some, WithBot.Ico_coe_coe, WithBot.Ioo_coe_coe, some_apply, WithBot.Ioo_bot_coe, Finsupp.optionEquiv_symm_apply, WithBot.Ioc_coe_coe, Finsupp.embDomain_some_none, WithBot.Icc_coe_coe, Finset.map_some_eraseNone, optionEmbeddingEquiv_apply_fst
subtype πŸ“–CompOp
48 mathmath: Finset.subtype_map_of_mem, PNat.map_subtype_embedding_Ico, subtype_injective, SimpleGraph.map_edgeFinset_induce_of_support_subset, Finset.subtype_map, Finset.hasSum_support, Finset.map_subtype_subset, coe_subtype, PNat.map_subtype_embedding_Icc, Finset.map_subtype_embedding_Ioi, SimpleGraph.map_neighborFinset_induce_of_neighborSet_subset, Equiv.Perm.support_ofSubtype, SimpleGraph.degree_induce_support, PNat.map_subtype_embedding_Ioo, Finset.map_subtype_embedding_Ioc, Multiset.toEmbedding_coeEquiv_trans, Finset.hasProd_support, Fin.equivSubtype_symm_trans_valEmbedding, PNat.map_subtype_embedding_uIcc, SimpleGraph.map_neighborFinset_induce, Finset.sum_subtype_map_embedding, Finsupp.extendDomain_eq_embDomain_subtype, Finset.map_subtype_embedding_Iio, SimpleGraph.degree_induce_of_neighborSet_subset, FirstOrder.Language.distinctConstantsTheory_eq_iUnion, Finset.map_subtype_embedding_Ici, subtype_apply, Finset.prod_subtype_map_embedding, Finsupp.extendDomain_support, Finsupp.piecewise_support, Finset.map_subtype_embedding_Ico, SimpleGraph.card_edgeFinset_induce_support, algebraicIndependent_finset_map_embedding_subtype, linearIndependent_finset_map_embedding_subtype, SimpleGraph.degree_induce_of_support_subset, hasProd_subtype_comap_iff_of_mulSupport_subset, Finset.attach_map_val, Finset.map_subtype_embedding_Ioo, AlternatingGroup.map_subtype_of_cycleType, PNat.map_subtype_embedding_Ioc, SimpleGraph.card_edgeFinset_induce_of_support_subset, hasSum_subtype_comap_iff_of_support_subset, SimpleGraph.map_edgeFinset_induce, Finset.notMem_map_subtype_of_not_property, Finset.map_subtype_embedding_Iic, Finset.map_subtype_embedding_Icc, Finset.univ_map_subtype, SimpleGraph.card_edgeFinset_induce_compl_singleton
subtypeMap πŸ“–CompOp
1 mathmath: Finset.filter_attach
sumMap πŸ“–CompOp
1 mathmath: coe_sumMap
toFun πŸ“–CompOp
6 mathmath: FirstOrder.Language.Embedding.map_fun', inj', toFun_eq_coe, Set.principalSegIio_toFun, FirstOrder.Language.Embedding.map_rel', PrincipalSeg.ofElement_toFun
trans πŸ“–CompOp
42 mathmath: Sum.Lex.Icc_inr_inr, Sum.Lex.Ico_inl_inl, Sum.Lex.Ico_inr_inr, equiv_toEmbedding_trans_symm_toEmbedding, Sum.Lex.Ioo_inr_inr, Fin.Embedding.restrictSurjective_of_le_natCard, Fin.Embedding.restrictSurjective_of_le_ENatCard, Sum.Lex.Icc_inl_inl, optionEmbeddingEquiv_apply_snd_coe, Sum.Lex.Ioi_inr, Int.divisorsAntidiag_natCast, Int.Ioo_eq_finset_map, Sum.Lex.Ioc_inl_inl, equiv_symm_toEmbedding_trans_toEmbedding, trans_apply, Sum.Lex.Iio_inl, congr_apply, Sum.Lex.Ioc_inr_inr, Int.Icc_eq_finset_map, smul_def, Fin.Embedding.restrictSurjective_of_add_le_ENatCard, Int.Ioc_eq_finset_map, Sum.Lex.Ioo_inl_inl, Sum.Lex.Iic_inl, Multiset.toEmbedding_coeEquiv_trans, Sum.Lex.Ici_inr, Fin.equivSubtype_symm_trans_valEmbedding, Int.uIcc_eq_finset_map, trans_arrowCongrLeft, Fin.Embedding.restrictSurjective_of_add_le_natCard, coe_trans, Equiv.trans_toEmbedding, mk_trans_mk, Finset.map_disjSum, Int.Ico_eq_finset_map, SimpleGraph.map_map, Int.divisorsAntidiag_ofNat, Equiv.embeddingCongr_apply_trans, Finset.map_map, vadd_def, Int.divisorsAntidiag_neg_natCast, optionEmbeddingEquiv_apply_fst

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq_iff_eq πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”EmbeddingLike.apply_eq_iff_eq
Function.instEmbeddingLikeEmbedding
arrowCongrLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
arrowCongrLeft
Function.extend
β€”β€”
arrowCongrLeft_refl πŸ“–mathematicalβ€”arrowCongrLeft
refl
β€”ext
Function.extend_id
arrowCongrRight_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
arrowCongrRight
β€”β€”
coeFn_mk πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”β€”
coe_injective πŸ“–mathematicalβ€”Function.Embedding
DFunLike.coe
Function.instFunLikeEmbedding
β€”DFunLike.coe_injective
coe_prodMap πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
prodMap
β€”β€”
coe_quotientOut πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
quotientOut
Quotient.out
β€”β€”
coe_refl πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
refl
β€”β€”
coe_subtype πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
subtype
β€”β€”
coe_sumMap πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
sumMap
β€”β€”
coe_trans πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
trans
β€”β€”
congr_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
congr
trans
Equiv.toEmbedding
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”β€”
equiv_symm_toEmbedding_trans_toEmbedding πŸ“–mathematicalβ€”trans
Equiv.toEmbedding
Equiv.symm
refl
β€”ext
Equiv.apply_symm_apply
equiv_toEmbedding_trans_symm_toEmbedding πŸ“–mathematicalβ€”trans
Equiv.toEmbedding
Equiv.symm
refl
β€”ext
Equiv.symm_apply_apply
ext πŸ“–β€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”ext
inj' πŸ“–mathematicalβ€”toFunβ€”β€”
injective πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”EmbeddingLike.injective
Function.instEmbeddingLikeEmbedding
inl_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
inl
β€”β€”
inr_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
inr
β€”β€”
mk_coe πŸ“–β€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”β€”β€”
mk_id πŸ“–mathematicalβ€”reflβ€”β€”
mk_trans_mk πŸ“–mathematicalβ€”transβ€”β€”
optionMap_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
optionMap
β€”β€”
piCongrRight_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
piCongrRight
β€”β€”
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
refl
β€”β€”
sectL_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
sectL
β€”β€”
sectR_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
sectR
β€”β€”
setValue_eq πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
setValue
β€”β€”
setValue_eq_iff πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
setValue
β€”injective
setValue_eq
setValue_eq_of_ne πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
setValue
β€”β€”
setValue_right_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
setValue
β€”Function.instEmbeddingLikeEmbedding
sigmaMap_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
sigmaMap
Sigma.map
β€”β€”
sigmaMk_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
sigmaMk
β€”β€”
some_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
some
β€”β€”
subtype_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
subtype
β€”β€”
subtype_injective πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
subtype
β€”Subtype.coe_injective
swap_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.swap
Function.Embedding
Function.instFunLikeEmbedding
β€”Function.Injective.swap_apply
injective
swap_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.swap
Function.Embedding
Function.instFunLikeEmbedding
β€”Function.Injective.swap_comp
injective
toFun_eq_coe πŸ“–mathematicalβ€”toFun
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”β€”
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
trans
β€”β€”
trans_arrowCongrLeft πŸ“–mathematicalβ€”trans
arrowCongrLeft
β€”ext
Function.Injective.extend_comp
injective

Subtype

Definitions

NameCategoryTheorems
impEmbedding πŸ“–CompOp
2 mathmath: impEmbedding_apply_coe, Equiv.finsetSubtypeComm_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
impEmbedding_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
impEmbedding
β€”β€”

(root)

Definitions

NameCategoryTheorems
subtypeOrLeftEmbedding πŸ“–CompOp
4 mathmath: subtypeOrLeftEmbedding_apply_left, subtypeOrLeftEmbedding_apply_right, subtypeOrEquiv_apply, subtypeOrLeftEmbedding_apply

Theorems

NameKindAssumesProvesValidatesDepends On
subtypeOrLeftEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
subtypeOrLeftEmbedding
Subtype.prop
β€”β€”
subtypeOrLeftEmbedding_apply_left πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
subtypeOrLeftEmbedding
β€”β€”
subtypeOrLeftEmbedding_apply_right πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
subtypeOrLeftEmbedding
Subtype.prop
β€”β€”

---

← Back to Index