Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Logic/Equiv/Basic.lean

Statistics

MetricCount
DefinitionsextendDomain, subtypeCongr, intEquivNatSumNat, natEquivNatSumPUnit, natSumPUnitEquivNat, ofFiberEquiv, piComm, piCongr, piCongr', piCongrFiberwise, piCongrLeft, piCongrLeft', piCongrRight, piCongrSet, piCongrSigmaFiber, piCurry, piEquivSubtypeSigma, piOptionEquivProd, punitOfNonemptyOfSubsingleton, setValue, sigmaAssocProd, sigmaNatSucc, sigmaOptionEquivOfSome, sigmaSigmaSubtype, sigmaSigmaSubtypeEq, sigmaSubtype, sigmaSubtypeEquivOfSubset, sigmaSubtypeFiberEquiv, sigmaSubtypeFiberEquivSubtype, subtypeCongr, subtypeEquiv, subtypeEquivCodomain, subtypeEquivOfSubtype, subtypeEquivOfSubtype', subtypeEquivProp, subtypeEquivRight, subtypePiEquivPi, subtypePreimage, subtypeQuotientEquivQuotientSubtype, subtypeSigmaEquiv, subtypeSubtypeEquivSubtype, subtypeSubtypeEquivSubtypeExists, subtypeSubtypeEquivSubtypeInter, subtypeUnivEquiv, swap, swapCore, uniqueCongr, toPerm, equivOfSubsingletonOfSubsingleton, uniqueEquivEquivUnique, uniqueUniqueEquiv
51
TheoremsextendDomain_apply_image, extendDomain_apply_not_subtype, extendDomain_apply_subtype, extendDomain_refl, extendDomain_symm, extendDomain_trans, apply, left_apply, left_apply_subtype, refl, right_apply, right_apply_subtype, trans, sumCongr_refl_swap, sumCongr_swap_refl, apply_swap_eq_self, coe_piCongr', coe_piCongr_symm, coe_subtypeEquivCodomain, coe_subtypeEquivCodomain_symm, coe_subtypeEquiv_eq_map, comp_swap_eq_update, eq_conj, eq_or_eq_of_swap_apply_ne_self, image_swap_of_mem_of_notMem, instAssociativeCoeForallForallArrowCongr, instCanLiftForallCoeBijective, instIdempotentOpCoeForallForallArrowCongr, instNontrivialPerm, isEmpty, isEmpty_congr, ofFiberEquiv_apply, ofFiberEquiv_map, ofFiberEquiv_symm_apply, piComm_apply, piComm_symm, piCongr'_apply, piCongr'_symm_apply_symm_apply, piCongrFiberwise_apply, piCongrFiberwise_symm_apply, piCongrLeft'_apply, piCongrLeft'_refl, piCongrLeft'_symm, piCongrLeft'_symm_apply, piCongrLeft'_symm_apply_apply, piCongrLeft_apply, piCongrLeft_apply_apply, piCongrLeft_apply_eq_cast, piCongrLeft_refl, piCongrLeft_sumInl, piCongrLeft_sumInr, piCongrLeft_symm_apply, piCongrRight_apply, piCongrRight_refl, piCongrRight_symm_apply, piCongrSet_apply, piCongrSet_symm_apply, piCongrSigmaFiber_apply, piCongrSigmaFiber_symm_apply, piCongr_apply_apply, piCongr_symm_apply, piCurry_apply, piCurry_symm_apply, piOptionEquivProd_apply, piOptionEquivProd_symm_apply, semiconj_conj, semiconjβ‚‚_conj, setValue_eq, sigmaAssocProd_apply_fst, sigmaAssocProd_apply_snd_fst, sigmaAssocProd_apply_snd_snd, sigmaAssocProd_symm_apply_fst, sigmaAssocProd_symm_apply_snd, sigmaSigmaSubtypeEq_apply, sigmaSigmaSubtypeEq_symm_apply, sigmaSigmaSubtype_apply, sigmaSigmaSubtype_symm_apply, sigmaSubtype_apply, sigmaSubtype_symm_apply_coe_fst, sigmaSubtype_symm_apply_coe_snd, subtypeEquivCodomain_apply, subtypeEquivCodomain_symm_apply, subtypeEquivCodomain_symm_apply_eq, subtypeEquivCodomain_symm_apply_ne, subtypeEquivRight_apply, subtypeEquivRight_apply_coe, subtypeEquivRight_symm_apply, subtypeEquivRight_symm_apply_coe, subtypeEquiv_apply, subtypeEquiv_refl, subtypeEquiv_symm, subtypeEquiv_trans, subtypePreimage_apply, subtypePreimage_symm_apply_coe, subtypePreimage_symm_apply_coe_neg, subtypePreimage_symm_apply_coe_pos, subtypeQuotientEquivQuotientSubtype_mk, subtypeQuotientEquivQuotientSubtype_symm_mk, subtypeSubtypeEquivSubtypeExists_apply_coe, subtypeSubtypeEquivSubtypeExists_symm_apply_coe_coe, subtypeSubtypeEquivSubtypeInter_apply_coe, subtypeSubtypeEquivSubtypeInter_symm_apply_coe_coe, subtypeSubtypeEquivSubtype_apply_coe, subtypeSubtypeEquivSubtype_symm_apply_coe_coe, subtypeUnivEquiv_apply, subtypeUnivEquiv_symm_apply, swapCore_comm, swapCore_self, swapCore_swapCore, swap_apply_def, swap_apply_eq_iff, swap_apply_left, swap_apply_ne_self_iff, swap_apply_of_ne_of_ne, swap_apply_right, swap_apply_self, swap_comm, swap_comp_apply, swap_eq_refl_iff, swap_eq_update, swap_injective_of_left, swap_injective_of_right, swap_self, swap_swap, symm_swap, symm_trans_swap_trans, trans_swap_trans_symm, ulift_symm_down, map_swap, swap_apply, swap_comp, coe_toPerm, symm_eq_self_of_involutive, toPerm_involutive, toPerm_symm, piCongrLeft'_symm_update, piCongrLeft'_update, update_apply_equiv_apply, update_comp_equiv, eq_up_iff_down_eq
140
Total191

Equiv

Definitions

NameCategoryTheorems
intEquivNatSumNat πŸ“–CompOpβ€”
natEquivNatSumPUnit πŸ“–CompOpβ€”
natSumPUnitEquivNat πŸ“–CompOpβ€”
ofFiberEquiv πŸ“–CompOp
3 mathmath: ofFiberEquiv_map, ofFiberEquiv_apply, ofFiberEquiv_symm_apply
piComm πŸ“–CompOp
2 mathmath: piComm_apply, piComm_symm
piCongr πŸ“–CompOp
3 mathmath: piCongr_apply_apply, piCongr_symm_apply, coe_piCongr_symm
piCongr' πŸ“–CompOp
3 mathmath: piCongr'_symm_apply_symm_apply, coe_piCongr', piCongr'_apply
piCongrFiberwise πŸ“–CompOp
2 mathmath: piCongrFiberwise_apply, piCongrFiberwise_symm_apply
piCongrLeft πŸ“–CompOp
26 mathmath: Homeomorph.piCongr_apply, piCongrLeft_apply, Homeomorph.toEquiv_piCongr, Homeomorph.toEquiv_piCongrLeft, piCongrLeft_preimage_univ_pi, piCongrLeft_symm_apply, Finset.piCongrLeft_comp_restrict, piCongrLeft_preimage_pi, piCongrLeft_symm_preimage_univ_pi, piCongrLeft_symm_preimage_pi, AlgEquiv.piCongrLeft_apply, piCongrLeft_sumInl, MeasurableEquiv.coe_piCongrLeft, UniformEquiv.piCongrLeft_toEquiv, UniformEquiv.piCongr_toEquiv, piCongrLeft_apply_eq_cast, Set.piCongrLeft_comp_restrict, piCongrLeft_sumInr, AlgEquiv.piCongrLeft_symm_apply, piCongrLeft_apply_apply, UniformEquiv.piCongr_apply, Finset.restrict_comp_piCongrLeft, Preorder.piCongrLeft_comp_restrictLe, piCongrLeft_refl, Preorder.piCongrLeft_comp_frestrictLe, measurable_piCongrLeft
piCongrLeft' πŸ“–CompOp
15 mathmath: MultilinearMap.domDomCongrLinearEquiv'_symm_apply, Function.piCongrLeft'_symm_update, LinearIsometryEquiv.piLpCongrLeft_apply, AlgEquiv.piCongrLeft'_apply, Homeomorph.piCongrLeft_apply, Function.piCongrLeft'_update, LinearEquiv.piCongrLeft'_symm_apply, MultilinearMap.domDomCongrLinearEquiv'_apply, piCongrLeft'_symm, piCongrLeft'_symm_apply, piCongrLeft'_symm_apply_apply, piCongrLeft'_refl, UniformEquiv.piCongrLeft_apply, AlgEquiv.piCongrLeft'_symm_apply, piCongrLeft'_apply
piCongrRight πŸ“–CompOp
9 mathmath: Homeomorph.piCongr_apply, Homeomorph.toEquiv_piCongr, piCongrRight_symm_apply, Homeomorph.toEquiv_piCongrRight, UniformEquiv.piCongr_toEquiv, piCongrRight_apply, UniformEquiv.piCongr_apply, piCongrRight_refl, UniformEquiv.piCongrRight_toEquiv
piCongrSet πŸ“–CompOp
2 mathmath: piCongrSet_apply, piCongrSet_symm_apply
piCongrSigmaFiber πŸ“–CompOp
2 mathmath: piCongrSigmaFiber_symm_apply, piCongrSigmaFiber_apply
piCurry πŸ“–CompOp
4 mathmath: measurable_piCurry_symm, piCurry_apply, piCurry_symm_apply, measurable_piCurry
piEquivSubtypeSigma πŸ“–CompOpβ€”
piOptionEquivProd πŸ“–CompOp
2 mathmath: piOptionEquivProd_symm_apply, piOptionEquivProd_apply
punitOfNonemptyOfSubsingleton πŸ“–CompOpβ€”
setValue πŸ“–CompOp
1 mathmath: setValue_eq
sigmaAssocProd πŸ“–CompOp
5 mathmath: sigmaAssocProd_apply_fst, sigmaAssocProd_apply_snd_snd, sigmaAssocProd_apply_snd_fst, sigmaAssocProd_symm_apply_snd, sigmaAssocProd_symm_apply_fst
sigmaNatSucc πŸ“–CompOpβ€”
sigmaOptionEquivOfSome πŸ“–CompOpβ€”
sigmaSigmaSubtype πŸ“–CompOp
2 mathmath: sigmaSigmaSubtype_symm_apply, sigmaSigmaSubtype_apply
sigmaSigmaSubtypeEq πŸ“–CompOp
2 mathmath: sigmaSigmaSubtypeEq_apply, sigmaSigmaSubtypeEq_symm_apply
sigmaSubtype πŸ“–CompOp
3 mathmath: sigmaSubtype_symm_apply_coe_snd, sigmaSubtype_apply, sigmaSubtype_symm_apply_coe_fst
sigmaSubtypeEquivOfSubset πŸ“–CompOpβ€”
sigmaSubtypeFiberEquiv πŸ“–CompOpβ€”
sigmaSubtypeFiberEquivSubtype πŸ“–CompOpβ€”
subtypeCongr πŸ“–CompOpβ€”
subtypeEquiv πŸ“–CompOp
8 mathmath: subtypeEquiv_trans, subtypeEquiv_apply, AffineBasis.basisOf_reindex, sigmaSigmaSubtype_apply, Homeomorph.subtype_toEquiv, subtypeEquiv_refl, coe_subtypeEquiv_eq_map, subtypeEquiv_symm
subtypeEquivCodomain πŸ“–CompOp
6 mathmath: subtypeEquivCodomain_symm_apply, coe_subtypeEquivCodomain_symm, subtypeEquivCodomain_apply, subtypeEquivCodomain_symm_apply_eq, subtypeEquivCodomain_symm_apply_ne, coe_subtypeEquivCodomain
subtypeEquivOfSubtype πŸ“–CompOpβ€”
subtypeEquivOfSubtype' πŸ“–CompOpβ€”
subtypeEquivProp πŸ“–CompOp
2 mathmath: AlgebraicGeometry.coe_opensRestrict_symm_apply, Homeomorph.ofEqSubtypes_toEquiv
subtypeEquivRight πŸ“–CompOp
4 mathmath: subtypeEquivRight_apply_coe, subtypeEquivRight_apply, subtypeEquivRight_symm_apply, subtypeEquivRight_symm_apply_coe
subtypePiEquivPi πŸ“–CompOpβ€”
subtypePreimage πŸ“–CompOp
4 mathmath: subtypePreimage_apply, subtypePreimage_symm_apply_coe_pos, subtypePreimage_symm_apply_coe_neg, subtypePreimage_symm_apply_coe
subtypeQuotientEquivQuotientSubtype πŸ“–CompOp
2 mathmath: subtypeQuotientEquivQuotientSubtype_mk, subtypeQuotientEquivQuotientSubtype_symm_mk
subtypeSigmaEquiv πŸ“–CompOpβ€”
subtypeSubtypeEquivSubtype πŸ“–CompOp
2 mathmath: subtypeSubtypeEquivSubtype_apply_coe, subtypeSubtypeEquivSubtype_symm_apply_coe_coe
subtypeSubtypeEquivSubtypeExists πŸ“–CompOp
2 mathmath: subtypeSubtypeEquivSubtypeExists_apply_coe, subtypeSubtypeEquivSubtypeExists_symm_apply_coe_coe
subtypeSubtypeEquivSubtypeInter πŸ“–CompOp
2 mathmath: subtypeSubtypeEquivSubtypeInter_apply_coe, subtypeSubtypeEquivSubtypeInter_symm_apply_coe_coe
subtypeUnivEquiv πŸ“–CompOp
2 mathmath: subtypeUnivEquiv_apply, subtypeUnivEquiv_symm_apply
swap πŸ“–CompOp
103 mathmath: Perm.decomposeFin_symm_of_refl, image_swap_of_mem_of_notMem, Perm.sumCongr_swap_refl, Perm.card_support_swap_mul, apply_swap_eq_self, map_equiv_removeNone, Pi.colex_asc, swap_apply_apply, comp_swap_eq_update, swap_apply_self, Perm.signAux_swap, swap_mul_self, swap_smul_involutive, Perm.mclosure_swap_castSucc_succ, Perm.IsCycle.eq_swap_of_apply_apply_eq_self, swap_comm, Perm.decomposeFin_symm_apply_one, alternatingGroup.normalClosure_swap_mul_swap_five, Perm.support_swap_mul_eq, Perm.support_swap_mul_swap, Perm.cycleType_swap_mul_swap_of_nodup, Perm.disjoint_swap_swap, swap_eq_one_iff, Perm.isCycle_swap_mul_aux₁, finite_compl_fixedBy_swap, Function.Injective.map_swap, swap_comp_apply, Perm.support_swap_iff, Function.Embedding.swap_apply, Perm.swap_mem_stabilizer, swap_mul_involutive, Perm.closure_cycle_coprime_swap, symm_swap, List.formPerm_pair, Pi.lex_desc, swap_apply_def, mul_swap_eq_swap_mul, swap_mul_eq_iff, optionCongr_swap, Perm.isConj_swap, Fin.succAbove_cycleRange, swap_mem_closure_isSwap, mul_swap_involutive, Perm.sumCongr_swap_one, swap_mul_eq_mul_swap, swap_apply_of_ne_of_ne, Perm.IsThreeCycle.eq_swap_mul_swap_iff_mem_support, Perm.signAux3_mul_and_swap, Perm.decomposeFin_symm_apply_succ, swap_inv, List.zipWith_swap_prod_support', Perm.isCycle_swap_mul_auxβ‚‚, Perm.sumCongr_one_swap, Perm.support_swap_mul_ge_support_diff, Perm.card_support_swap, symm_trans_swap_trans, mul_swap_mul_self, swap_mem_stabilizer, trans_swap_trans_symm, swap_apply_eq_iff, mul_swap_eq_iff, swap_eq_update, bijOn_swap, swap_mul_swap_mul_swap, Perm.swap_mul_swap_same_mem_closure_three_cycles, Perm.isCycleOn_swap, Matrix.swap_mulVec, Perm.decomposeFin_symm_of_one, swap_self, Function.Injective.swap_apply, Perm.isCycle_swap, Perm.ofSubtype_swap_eq, swap_mul_self_mul, Perm.swap_isSwap_iff, Perm.IsCycle.swap_mul, Perm.closure_cycle_adjacent_swap, swap_injective_of_left, swap_smul_self_smul, Perm.support_swap, List.formPerm_cons_cons, AlternatingMap.map_swap, Perm.sumCongr_refl_swap, alternatingGroup.isConj_swap_mul_swap_of_cycleType_two, AlternatingMap.map_swap_add, Perm.decomposeOption_symm_apply, swap_bijOn_exchange, AlternatingMap.map_add_swap, List.zipWith_swap_prod_support, swap_apply_right, PEquiv.toMatrix_swap, swap_apply_left, swap_bijOn_self, Perm.sign_swap', swap_swap, Function.Injective.swap_comp, Perm.sign_swap, swap_injective_of_right, Perm.isThreeCycle_swap_mul_swap_same, Matrix.vecMul_swap, List.formPerm_append_pair, Function.Embedding.swap_comp, swap_eq_refl_iff, AlternatingMap.domCoprod.summand_add_swap_smul_eq_zero
swapCore πŸ“–CompOp
3 mathmath: swapCore_comm, swapCore_self, swapCore_swapCore
uniqueCongr πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply_swap_eq_self πŸ“–mathematicalβ€”DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
swap
β€”β€”
coe_piCongr' πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCongr'
symm
β€”β€”
coe_piCongr_symm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piCongr
β€”β€”
coe_subtypeEquivCodomain πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
subtypeEquivCodomain
β€”β€”
coe_subtypeEquivCodomain_symm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypeEquivCodomain
β€”β€”
coe_subtypeEquiv_eq_map πŸ“–mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
subtypeEquiv
Subtype.map
β€”β€”
comp_swap_eq_update πŸ“–mathematicalβ€”DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
swap
Function.update
β€”β€”
eq_conj πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
β€”symm_comp_eq
comp_symm_eq
Function.comp_assoc
eq_or_eq_of_swap_apply_ne_self πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
swap_apply_of_ne_of_ne
image_swap_of_mem_of_notMem πŸ“–mathematicalSet
Set.instMembership
Set.image
DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
swap
Set.instSDiff
Set.instInsert
Set.instSingletonSet
β€”Set.ext
eq_or_ne
swap_apply_left
swap_apply_of_ne_of_ne
instAssociativeCoeForallForallArrowCongr πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
arrowCongr
β€”Function.Semiconjβ‚‚.isAssociative_right
semiconjβ‚‚_conj
surjective
instCanLiftForallCoeBijective πŸ“–mathematicalβ€”CanLift
Equiv
DFunLike.coe
EquivLike.toFunLike
instEquivLike
Function.Bijective
β€”β€”
instIdempotentOpCoeForallForallArrowCongr πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
arrowCongr
β€”Function.Semiconjβ‚‚.isIdempotent_right
semiconjβ‚‚_conj
surjective
instNontrivialPerm πŸ“–mathematicalβ€”Nontrivial
Perm
β€”Nontrivial.to_nonempty
Function.Injective.nontrivial
swap_injective_of_left
isEmpty πŸ“–mathematicalβ€”IsEmptyβ€”isEmpty_congr
isEmpty_congr πŸ“–mathematicalβ€”IsEmptyβ€”Function.isEmpty
ofFiberEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
ofFiberEquiv
symm
sigmaFiberEquiv
β€”β€”
ofFiberEquiv_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
ofFiberEquiv
β€”β€”
ofFiberEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
ofFiberEquiv
sigmaCongrRight
sigmaFiberEquiv
β€”β€”
piComm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piComm
Function.swap
β€”β€”
piComm_symm πŸ“–mathematicalβ€”symm
piComm
Function.swap
β€”β€”
piCongr'_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCongr'
symm
β€”β€”
piCongr'_symm_apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piCongr'
β€”piCongr_apply_apply
piCongrFiberwise_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCongrFiberwise
β€”β€”
piCongrFiberwise_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piCongrFiberwise
β€”β€”
piCongrLeft'_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCongrLeft'
symm
β€”β€”
piCongrLeft'_refl πŸ“–mathematicalβ€”piCongrLeft'
refl
β€”β€”
piCongrLeft'_symm πŸ“–mathematicalβ€”symm
piCongrLeft'
β€”ext
symm_apply_apply
piCongrLeft'_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piCongrLeft'
symm_apply_apply
β€”β€”
piCongrLeft'_symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piCongrLeft'
β€”symm_apply_apply
piCongrLeft'_symm_apply
congr_arg_heq
apply_symm_apply
piCongrLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCongrLeft
symm
apply_symm_apply
β€”β€”
piCongrLeft_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCongrLeft
β€”piCongrLeft'_symm_apply_apply
piCongrLeft_apply_eq_cast πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCongrLeft
symm
apply_symm_apply
β€”symm_apply_apply
piCongrLeft_refl πŸ“–mathematicalβ€”piCongrLeft
refl
β€”β€”
piCongrLeft_sumInl πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCongrLeft
symm
sumPiEquivProdPi
β€”β€”
piCongrLeft_sumInr πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCongrLeft
symm
sumPiEquivProdPi
β€”β€”
piCongrLeft_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piCongrLeft
β€”piCongrLeft'_apply
piCongrRight_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCongrRight
Pi.map
β€”β€”
piCongrRight_refl πŸ“–mathematicalβ€”piCongrRight
refl
β€”β€”
piCongrRight_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piCongrRight
Pi.map
β€”β€”
piCongrSet_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCongrSet
Set
Set.instMembership
β€”β€”
piCongrSet_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piCongrSet
Set
Set.instMembership
β€”β€”
piCongrSigmaFiber_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCongrSigmaFiber
β€”β€”
piCongrSigmaFiber_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piCongrSigmaFiber
β€”β€”
piCongr_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCongr
β€”piCongr.eq_1
trans_apply
piCongrLeft_apply_apply
piCongrRight_apply
Pi.map_apply
piCongr_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piCongr
β€”β€”
piCurry_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piCurry
Sigma.curry
β€”β€”
piCurry_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piCurry
Sigma.uncurry
β€”β€”
piOptionEquivProd_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piOptionEquivProd
β€”β€”
piOptionEquivProd_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piOptionEquivProd
β€”β€”
semiconj_conj πŸ“–mathematicalβ€”Function.Semiconj
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
conj
β€”symm_apply_apply
semiconjβ‚‚_conj πŸ“–mathematicalβ€”Function.Semiconjβ‚‚
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
arrowCongr
conj
β€”symm_apply_apply
setValue_eq πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
setValue
β€”swap_apply_left
apply_symm_apply
sigmaAssocProd_apply_fst πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
sigmaAssocProd
sigmaCongrLeft'
symm
sigmaEquivProd
β€”β€”
sigmaAssocProd_apply_snd_fst πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sigmaEquivProd
sigmaCongrLeft'
sigmaAssocProd
β€”β€”
sigmaAssocProd_apply_snd_snd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sigmaEquivProd
sigmaCongrLeft'
sigmaAssocProd
β€”β€”
sigmaAssocProd_symm_apply_fst πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sigmaAssocProd
sigmaAssoc
β€”β€”
sigmaAssocProd_symm_apply_snd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sigmaAssocProd
sigmaAssoc
β€”β€”
sigmaSigmaSubtypeEq_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
sigmaSigmaSubtypeEq
β€”sigmaSigmaSubtype_apply
sigmaSigmaSubtypeEq_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sigmaSigmaSubtypeEq
β€”sigmaSigmaSubtype_symm_apply
sigmaSigmaSubtype_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
sigmaSigmaSubtype
Unique.instInhabited
subtypeEquiv
symm
β€”β€”
sigmaSigmaSubtype_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sigmaSigmaSubtype
β€”symm_apply_eq
sigmaSigmaSubtype_apply
sigmaSubtype_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
sigmaSubtype
β€”β€”
sigmaSubtype_symm_apply_coe_fst πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sigmaSubtype
β€”β€”
sigmaSubtype_symm_apply_coe_snd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sigmaSubtype
β€”β€”
subtypeEquivCodomain_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
subtypeEquivCodomain
β€”β€”
subtypeEquivCodomain_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypeEquivCodomain
β€”β€”
subtypeEquivCodomain_symm_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypeEquivCodomain
β€”β€”
subtypeEquivCodomain_symm_apply_ne πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypeEquivCodomain
β€”β€”
subtypeEquivRight_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
subtypeEquivRight
β€”β€”
subtypeEquivRight_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
subtypeEquivRight
β€”β€”
subtypeEquivRight_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypeEquivRight
β€”β€”
subtypeEquivRight_symm_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypeEquivRight
β€”β€”
subtypeEquiv_apply πŸ“–mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
subtypeEquivβ€”β€”
subtypeEquiv_refl πŸ“–mathematicalβ€”subtypeEquiv
refl
β€”Perm.ext
subtypeEquiv_symm πŸ“–mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypeEquiv
β€”β€”
subtypeEquiv_trans πŸ“–mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
trans
subtypeEquiv
β€”β€”
subtypePreimage_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
subtypePreimage
β€”β€”
subtypePreimage_symm_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypePreimage
β€”β€”
subtypePreimage_symm_apply_coe_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypePreimage
β€”β€”
subtypePreimage_symm_apply_coe_pos πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypePreimage
β€”β€”
subtypeQuotientEquivQuotientSubtype_mk πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
subtypeQuotientEquivQuotientSubtype
β€”β€”
subtypeQuotientEquivQuotientSubtype_symm_mk πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypeQuotientEquivQuotientSubtype
β€”β€”
subtypeSubtypeEquivSubtypeExists_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
subtypeSubtypeEquivSubtypeExists
β€”β€”
subtypeSubtypeEquivSubtypeExists_symm_apply_coe_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypeSubtypeEquivSubtypeExists
β€”β€”
subtypeSubtypeEquivSubtypeInter_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
subtypeSubtypeEquivSubtypeInter
β€”β€”
subtypeSubtypeEquivSubtypeInter_symm_apply_coe_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypeSubtypeEquivSubtypeInter
β€”β€”
subtypeSubtypeEquivSubtype_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
subtypeSubtypeEquivSubtype
β€”β€”
subtypeSubtypeEquivSubtype_symm_apply_coe_coe πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypeSubtypeEquivSubtype
β€”β€”
subtypeUnivEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
subtypeUnivEquiv
β€”β€”
subtypeUnivEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
subtypeUnivEquiv
β€”β€”
swapCore_comm πŸ“–mathematicalβ€”swapCoreβ€”β€”
swapCore_self πŸ“–mathematicalβ€”swapCoreβ€”β€”
swapCore_swapCore πŸ“–mathematicalβ€”swapCoreβ€”β€”
swap_apply_def πŸ“–mathematicalβ€”DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
swap
β€”β€”
swap_apply_eq_iff πŸ“–mathematicalβ€”DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
swap
β€”β€”
swap_apply_left πŸ“–mathematicalβ€”DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
swap
β€”β€”
swap_apply_ne_self_iff πŸ“–β€”β€”β€”β€”β€”
swap_apply_of_ne_of_ne πŸ“–mathematicalβ€”DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
swap
β€”β€”
swap_apply_right πŸ“–mathematicalβ€”DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
swap
β€”β€”
swap_apply_self πŸ“–mathematicalβ€”DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
swap
β€”β€”
swap_comm πŸ“–mathematicalβ€”swapβ€”ext
swapCore_comm
swap_comp_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
trans
swap
Perm
β€”β€”
swap_eq_refl_iff πŸ“–mathematicalβ€”swap
refl
β€”injective
swap_eq_update πŸ“–mathematicalβ€”DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
swap
Function.update
β€”β€”
swap_injective_of_left πŸ“–mathematicalβ€”Perm
swap
β€”swap_apply_left
swap_injective_of_right πŸ“–mathematicalβ€”Perm
swap
β€”swap_comm
swap_injective_of_left
swap_self πŸ“–mathematicalβ€”swap
refl
β€”ext
swapCore_self
swap_swap πŸ“–mathematicalβ€”trans
swap
refl
β€”ext
swapCore_swapCore
symm_swap πŸ“–mathematicalβ€”symm
swap
β€”β€”
symm_trans_swap_trans πŸ“–mathematicalβ€”trans
symm
swap
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
β€”β€”
trans_swap_trans_symm πŸ“–mathematicalβ€”trans
swap
symm
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
β€”symm_trans_swap_trans
ulift_symm_down πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
ulift
β€”β€”

Equiv.Perm

Definitions

NameCategoryTheorems
extendDomain πŸ“–CompOp
29 mathmath: IsCycle.extendDomain, extendDomain_apply_subtype, extendDomain_inv, extendDomain_apply_image, extendDomain_mul, extendDomain_pow, Set.LeftInvOn.extendDomain, support_extend_domain, extendDomain_trans, card_support_extend_domain, Set.SurjOn.extendDomain, extendDomain_apply_not_subtype, Set.BijOn.extendDomain, extendDomain_symm, Set.InvOn.extendDomain, extendDomain_one, Set.MapsTo.extendDomain, cycleType_extendDomain, sign_extendDomain, extendDomain_eq_one_iff, extendDomain_zpow, extendDomainHom_apply, sameCycle_extendDomain, Set.RightInvOn.extendDomain, Fin.cycleIcc_def_le, SameCycle.extendDomain, IsCycleOn.extendDomain, Disjoint.extendDomain, extendDomain_refl
subtypeCongr πŸ“–CompOp
10 mathmath: subtypeCongr.apply, subtypeCongr.symm, subtypeCongr.right_apply_subtype, subtypeCongr.left_apply_subtype, subtypeCongr.refl, subtypeCongr.trans, subtypeCongrHom_apply, subtypeCongr.left_apply, subtypeCongr.right_apply, sign_subtypeCongr

Theorems

NameKindAssumesProvesValidatesDepends On
extendDomain_apply_image πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
extendDomain
Equiv
β€”subtypeCongr.left_apply_subtype
Equiv.symm_apply_apply
extendDomain_apply_not_subtype πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
extendDomain
β€”subtypeCongr.right_apply
extendDomain_apply_subtype πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
extendDomain
Equiv
Equiv.symm
β€”subtypeCongr.left_apply
extendDomain_refl πŸ“–mathematicalβ€”extendDomain
Equiv.refl
β€”subtypeCongr.congr_simp
Equiv.permCongr_refl
subtypeCongr.refl
extendDomain_symm πŸ“–mathematicalβ€”Equiv.symm
extendDomain
β€”β€”
extendDomain_trans πŸ“–mathematicalβ€”Equiv.trans
extendDomain
β€”subtypeCongr.trans
subtypeCongr.congr_simp
Equiv.permCongr_trans
Equiv.trans_refl
sumCongr_refl_swap πŸ“–mathematicalβ€”sumCongr
Equiv.refl
Equiv.swap
β€”ext
sumCongr_swap_refl πŸ“–mathematicalβ€”sumCongr
Equiv.swap
Equiv.refl
β€”ext

Equiv.Perm.subtypeCongr

Theorems

NameKindAssumesProvesValidatesDepends On
apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.Perm.subtypeCongr
β€”Equiv.sumCompl_symm_apply_of_pos
Equiv.sumCompl_symm_apply_of_neg
left_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.Perm.subtypeCongr
β€”apply
left_apply_subtype πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.Perm.subtypeCongr
β€”left_apply
refl πŸ“–mathematicalβ€”Equiv.Perm.subtypeCongr
Equiv.refl
β€”Equiv.Perm.ext
left_apply
right_apply
right_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.Perm.subtypeCongr
β€”apply
right_apply_subtype πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.Perm.subtypeCongr
β€”right_apply
trans πŸ“–mathematicalβ€”Equiv.trans
Equiv.Perm.subtypeCongr
β€”β€”

Function

Theorems

NameKindAssumesProvesValidatesDepends On
piCongrLeft'_symm_update πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.piCongrLeft'
update
β€”Equiv.symm_apply_eq
piCongrLeft'_update
Equiv.apply_symm_apply
piCongrLeft'_update πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.piCongrLeft'
update
Equiv.symm
β€”eq_or_ne
update_self
update_of_ne
EquivLike.toEmbeddingLike
update_apply_equiv_apply πŸ“–mathematicalβ€”update
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”update_comp_equiv
update_comp_equiv πŸ“–mathematicalβ€”update
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”update_comp_eq_of_injective
Equiv.injective
Equiv.apply_symm_apply

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
map_swap πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.swap
β€”β€”
swap_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.swap
β€”map_swap
swap_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.swap
β€”swap_apply

Function.Involutive

Definitions

NameCategoryTheorems
toPerm πŸ“–CompOp
6 mathmath: toPerm_symm, MeasurableEquiv.ofInvolutive_toEquiv, NumberField.InfinitePlace.ComplexEmbedding.conjugate_sign, NumberField.conj_basisMatrix, toPerm_involutive, coe_toPerm

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toPerm πŸ“–mathematicalFunction.InvolutiveDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
toPerm
β€”β€”
symm_eq_self_of_involutive πŸ“–mathematicalFunction.Involutive
DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symmβ€”DFunLike.coe_injective
leftInverse_iff
Equiv.left_inv
toPerm_involutive πŸ“–mathematicalFunction.InvolutiveDFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
toPerm
β€”β€”
toPerm_symm πŸ“–mathematicalFunction.InvolutiveEquiv.symm
toPerm
β€”β€”

PLift

Theorems

NameKindAssumesProvesValidatesDepends On
eq_up_iff_down_eq πŸ“–β€”β€”β€”β€”Equiv.eq_symm_apply

(root)

Definitions

NameCategoryTheorems
equivOfSubsingletonOfSubsingleton πŸ“–CompOpβ€”
uniqueEquivEquivUnique πŸ“–CompOpβ€”
uniqueUniqueEquiv πŸ“–CompOpβ€”

---

← Back to Index