Documentation Verification Report

Prod

πŸ“ Source: Mathlib/Logic/Equiv/Prod.lean

Statistics

MetricCount
DefinitionsprodExtendRight, arrowProdEquivProdArrow, boolArrowEquivProd, boolProdEquivSum, curry, emptyProd, funSplitAt, pemptyProd, piEquivPiSubtypeProd, piSplitAt, pprodCongr, pprodEquivProd, pprodEquivProdPLift, pprodProd, prodAssoc, prodComm, prodCongr, prodCongrLeft, prodCongrRight, prodEmpty, prodPEmpty, prodPProd, prodPUnit, prodPiEquivSumPi, prodProdProdComm, prodShear, prodSubtypeFstEquivSubtypeProd, prodUnique, punitProd, sigmaPUnit, sigmaProdDistrib, sigmaUnique, subtypeProdEquivProd, subtypeProdEquivSigmaSubtype, sumArrowEquivProdArrow, sumPiEquivProdPi, sumProdDistrib, uniqueProd, uniqueSigma, optionProdEquiv, subsingletonProdSelfEquiv
41
Theoremseq_of_prodExtendRight_ne, fst_prodExtendRight, prodExtendRight_apply_eq, prodExtendRight_apply_ne, arrowProdEquivProdArrow_apply, arrowProdEquivProdArrow_symm_apply, boolArrowEquivProd_apply, boolArrowEquivProd_symm_apply, boolProdEquivSum_apply, boolProdEquivSum_symm_apply, coe_prodComm, coe_prodUnique, coe_sigmaUnique, coe_uniqueProd, curry_apply, curry_symm_apply, funSplitAt_apply, funSplitAt_symm_apply, piEquivPiSubtypeProd_apply, piEquivPiSubtypeProd_symm_apply, piSplitAt_apply, piSplitAt_symm_apply, pprodCongr_apply, pprodCongr_symm_apply, pprodEquivProdPLift_apply, pprodEquivProdPLift_symm_apply, pprodEquivProd_apply, pprodEquivProd_symm_apply, pprodProd_apply, pprodProd_symm_apply, prodAssoc_apply, prodAssoc_symm_apply, prodComm_apply, prodComm_symm, prodCongrLeft_apply, prodCongrLeft_apply_fst, prodCongrLeft_apply_snd, prodCongrLeft_symm, prodCongrLeft_trans_prodComm, prodCongrRight_apply, prodCongrRight_apply_fst, prodCongrRight_apply_snd, prodCongrRight_symm, prodCongrRight_trans_prodComm, prodCongr_apply, prodCongr_refl_left, prodCongr_refl_right, prodCongr_symm, prodPProd_apply, prodPProd_symm_apply, prodPUnit_apply, prodPUnit_symm_apply, prodPiEquivSumPi_apply, prodPiEquivSumPi_symm_apply, prodProdProdComm_apply, prodProdProdComm_symm, prodShear_apply, prodShear_symm_apply, prodUnique_apply, prodUnique_symm_apply, punitProd_apply, punitProd_symm_apply, sigmaCongrRight_sigmaEquivProd, sigmaEquivProd_sigmaCongrRight, sigmaPUnit_apply, sigmaPUnit_symm_apply_fst, sigmaPUnit_symm_apply_snd, sigmaProdDistrib_apply, sigmaProdDistrib_symm_apply, sigmaUnique_apply, sigmaUnique_symm_apply, sumArrowEquivProdArrow_apply_fst, sumArrowEquivProdArrow_apply_snd, sumArrowEquivProdArrow_symm_apply_inl, sumArrowEquivProdArrow_symm_apply_inr, sumPiEquivProdPi_apply, sumPiEquivProdPi_symm_apply, sumProdDistrib_apply_left, sumProdDistrib_apply_right, sumProdDistrib_symm_apply_left, sumProdDistrib_symm_apply_right, uniqueProd_apply, uniqueProd_symm_apply, uniqueSigma_apply, uniqueSigma_symm_apply, optionProdEquiv_mk_none, optionProdEquiv_mk_some, optionProdEquiv_symm_inl, optionProdEquiv_symm_inr
89
Total130

Equiv

Definitions

NameCategoryTheorems
arrowProdEquivProdArrow πŸ“–CompOp
2 mathmath: arrowProdEquivProdArrow_apply, arrowProdEquivProdArrow_symm_apply
boolArrowEquivProd πŸ“–CompOp
3 mathmath: boolArrowEquivProd_symm_apply, boolArrowEquivProd_apply, Finset.finsetCongr_piAntidiag_eq_antidiag
boolProdEquivSum πŸ“–CompOp
2 mathmath: boolProdEquivSum_symm_apply, boolProdEquivSum_apply
curry πŸ“–CompOp
4 mathmath: measurable_equivCurry_symm, curry_apply, measurable_equivCurry, curry_symm_apply
emptyProd πŸ“–CompOpβ€”
funSplitAt πŸ“–CompOp
2 mathmath: funSplitAt_symm_apply, funSplitAt_apply
pemptyProd πŸ“–CompOpβ€”
piEquivPiSubtypeProd πŸ“–CompOp
5 mathmath: piEquivPiSubtypeProd_symm_apply, measurable_piEquivPiSubtypeProd_symm, preimage_piEquivPiSubtypeProd_symm_pi, piEquivPiSubtypeProd_apply, measurable_piEquivPiSubtypeProd
piSplitAt πŸ“–CompOp
2 mathmath: piSplitAt_symm_apply, piSplitAt_apply
pprodCongr πŸ“–CompOp
2 mathmath: pprodCongr_symm_apply, pprodCongr_apply
pprodEquivProd πŸ“–CompOp
2 mathmath: pprodEquivProd_apply, pprodEquivProd_symm_apply
pprodEquivProdPLift πŸ“–CompOp
2 mathmath: pprodEquivProdPLift_apply, pprodEquivProdPLift_symm_apply
pprodProd πŸ“–CompOp
2 mathmath: pprodProd_apply, pprodProd_symm_apply
prodAssoc πŸ“–CompOp
27 mathmath: contDiff_prodAssoc_symm, ContinuousLinearEquiv.coe_prodAssoc, Homeomorph.prodAssoc_toEquiv, prod_assoc_image, Matrix.kroneckerTMul_assoc', Matrix.kroneckerMap_assoc₁, contDiff_prodAssoc, Filter.tendsto_prodAssoc_symm, TensorProduct.toMatrix_assoc, prodAssoc_apply, AddEquiv.coe_prodAssoc, MulEquiv.coe_prodAssoc, LinearIsometryEquiv.coe_prodAssoc_symm, Matrix.kronecker_assoc, Matrix.kronecker_assoc', AddEquiv.coe_prodAssoc_symm, Filter.tendsto_prodAssoc, MulEquiv.coe_prodAssoc_symm, Filter.prod_assoc, Filter.prod_assoc_symm, Matrix.kroneckerMap_assoc, prodAssoc_symm_apply, prod_assoc_preimage, prod_assoc_symm_image, Matrix.kroneckerTMul_assoc, prod_assoc_symm_preimage, LinearIsometryEquiv.coe_prodAssoc
prodComm πŸ“–CompOp
17 mathmath: Matrix.natCast_kronecker, Matrix.one_kronecker, Nat.map_swap_divisorsAntidiagonal, Int.map_prodComm_divisorsAntidiag, prodComm_apply, Matrix.diagonal_kroneckerTMul, prodCongrRight_trans_prodComm, prodComm_symm, coe_prodComm, prodCongrLeft_trans_prodComm, Matrix.diagonal_kronecker, Rep.leftRegularTensorTrivialIsoFree_inv_hom, Matrix.ofNat_kronecker, Matrix.comp_diagonal, Rep.leftRegularTensorTrivialIsoFree_hom_hom, Matrix.kroneckerMap_diagonal_left, Finset.map_prodComm_antidiagonal
prodCongr πŸ“–CompOp
10 mathmath: prodCongr_refl_right, CategoryTheory.Functor.Monoidal.RepresentableBy.tensorObj_homEquiv, Matrix.kroneckerMap_reindex_right, Matrix.kroneckerMap_reindex, AlgEquiv.prodCongr_apply, prodCongr_refl_left, prodCongr_apply, Matrix.kroneckerMap_reindex_left, prodCongr_symm, AlgEquiv.prodCongr_symm_apply
prodCongrLeft πŸ“–CompOp
8 mathmath: prodCongrLeft_apply_snd, prodCongr_refl_right, prodCongrLeft_apply_fst, prodCongrRight_trans_prodComm, prodCongrLeft_trans_prodComm, prodCongrLeft_symm, prodCongrLeft_apply, Perm.sign_prodCongrLeft
prodCongrRight πŸ“–CompOp
11 mathmath: sigmaCongrRight_sigmaEquivProd, prodCongr_refl_left, prodCongrRight_trans_prodComm, prodCongrLeft_trans_prodComm, prodCongrRight_apply_snd, sigmaEquivProd_sigmaCongrRight, prodCongrRight_apply_fst, Perm.sign_prodCongrRight, prodCongrRight_symm, Perm.prod_prodExtendRight, prodCongrRight_apply
prodEmpty πŸ“–CompOpβ€”
prodPEmpty πŸ“–CompOpβ€”
prodPProd πŸ“–CompOp
2 mathmath: prodPProd_apply, prodPProd_symm_apply
prodPUnit πŸ“–CompOp
2 mathmath: prodPUnit_apply, prodPUnit_symm_apply
prodPiEquivSumPi πŸ“–CompOp
2 mathmath: prodPiEquivSumPi_apply, prodPiEquivSumPi_symm_apply
prodProdProdComm πŸ“–CompOp
8 mathmath: Set.graphOn_prod_graphOn, AddEquiv.prodProdProdComm_toEquiv, MulEquiv.prodProdProdComm_toEquiv, prodProdProdComm_symm, ContinuousLinearEquiv.coe_prodProdProdComm, prodProdProdComm_apply, Set.graphOn_prod_prodMap, RingEquiv.prodProdProdComm_toEquiv
prodShear πŸ“–CompOp
2 mathmath: prodShear_apply, prodShear_symm_apply
prodSubtypeFstEquivSubtypeProd πŸ“–CompOp
1 mathmath: Matrix.comp_toSquareBlock
prodUnique πŸ“–CompOp
5 mathmath: prodUnique_symm_apply, LinearEquiv.coe_prodUnique, prodUnique_apply, coe_prodUnique, ContinuousLinearEquiv.coe_prodUnique
punitProd πŸ“–CompOp
3 mathmath: punitProd_symm_apply, punitProd_apply, HahnSeries.SummableFamily.smul_eq
sigmaPUnit πŸ“–CompOp
3 mathmath: sigmaPUnit_symm_apply_snd, sigmaPUnit_symm_apply_fst, sigmaPUnit_apply
sigmaProdDistrib πŸ“–CompOp
3 mathmath: sigmaProdDistrib_symm_apply, Homeomorph.toEquiv_sigmaProdDistrib, sigmaProdDistrib_apply
sigmaUnique πŸ“–CompOp
3 mathmath: sigmaUnique_apply, sigmaUnique_symm_apply, coe_sigmaUnique
subtypeProdEquivProd πŸ“–CompOpβ€”
subtypeProdEquivSigmaSubtype πŸ“–CompOpβ€”
sumArrowEquivProdArrow πŸ“–CompOp
8 mathmath: AlgEquiv.sumArrowEquivProdArrow_symm_apply_inr, sumArrowEquivProdArrow_symm_apply_inr, RingEquiv.sumArrowEquivProdArrow_symm_apply, sumArrowEquivProdArrow_apply_fst, RingEquiv.sumArrowEquivProdArrow_apply, sumArrowEquivProdArrow_apply_snd, sumArrowEquivProdArrow_symm_apply_inl, AlgEquiv.sumArrowEquivProdArrow_apply
sumPiEquivProdPi πŸ“–CompOp
11 mathmath: prodPiEquivSumPi_apply, sumPiEquivProdPi_symm_apply, MeasurableEquiv.coe_sumPiEquivProdPi, LinearEquiv.sumPiEquivProdPi_apply, sumPiEquivProdPi_symm_preimage_univ_pi, piCongrLeft_sumInl, LinearEquiv.sumPiEquivProdPi_symm_apply, prodPiEquivSumPi_symm_apply, MeasurableEquiv.coe_sumPiEquivProdPi_symm, piCongrLeft_sumInr, sumPiEquivProdPi_apply
sumProdDistrib πŸ“–CompOp
11 mathmath: Homeomorph.sumProdDistrib_symm_apply, Prod.Lex.sumLexProdLexDistrib_symm_apply, sumProdDistrib_symm_apply_right, Prod.Lex.sumLexProdLexDistrib_apply, Homeomorph.sumProdDistrib_apply, sumProdDistrib_apply_left, sumProdDistrib_apply_right, sumProdDistrib_symm_apply_left, SimpleGraph.Iso.boxProdSumDistrib_symm_apply, SimpleGraph.Iso.boxProdSumDistrib_apply, SimpleGraph.Iso.sumBoxProdDistrib_toEquiv
uniqueProd πŸ“–CompOp
5 mathmath: uniqueProd_symm_apply, ContinuousLinearEquiv.coe_uniqueProd, LinearEquiv.coe_uniqueProd, uniqueProd_apply, coe_uniqueProd
uniqueSigma πŸ“–CompOp
2 mathmath: uniqueSigma_apply, uniqueSigma_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
arrowProdEquivProdArrow_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
arrowProdEquivProdArrow
β€”β€”
arrowProdEquivProdArrow_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
arrowProdEquivProdArrow
β€”β€”
boolArrowEquivProd_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
boolArrowEquivProd
β€”β€”
boolArrowEquivProd_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
boolArrowEquivProd
β€”β€”
boolProdEquivSum_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
boolProdEquivSum
β€”β€”
boolProdEquivSum_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
boolProdEquivSum
β€”β€”
coe_prodComm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodComm
β€”β€”
coe_prodUnique πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodUnique
β€”β€”
coe_sigmaUnique πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
sigmaUnique
β€”β€”
coe_uniqueProd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
uniqueProd
β€”β€”
curry_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
curry
β€”β€”
curry_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
curry
β€”β€”
funSplitAt_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
funSplitAt
β€”β€”
funSplitAt_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
funSplitAt
β€”β€”
piEquivPiSubtypeProd_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piEquivPiSubtypeProd
β€”β€”
piEquivPiSubtypeProd_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piEquivPiSubtypeProd
β€”β€”
piSplitAt_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
piSplitAt
β€”β€”
piSplitAt_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
piSplitAt
β€”β€”
pprodCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
pprodCongr
β€”β€”
pprodCongr_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
pprodCongr
β€”β€”
pprodEquivProdPLift_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
pprodEquivProdPLift
β€”β€”
pprodEquivProdPLift_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
pprodEquivProdPLift
β€”β€”
pprodEquivProd_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
pprodEquivProd
β€”β€”
pprodEquivProd_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
pprodEquivProd
β€”β€”
pprodProd_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
pprodProd
β€”β€”
pprodProd_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
pprodProd
β€”β€”
prodAssoc_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodAssoc
β€”β€”
prodAssoc_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
prodAssoc
β€”β€”
prodComm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodComm
β€”β€”
prodComm_symm πŸ“–mathematicalβ€”symm
prodComm
β€”β€”
prodCongrLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodCongrLeft
β€”β€”
prodCongrLeft_apply_fst πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodCongrLeft
β€”β€”
prodCongrLeft_apply_snd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodCongrLeft
β€”β€”
prodCongrLeft_symm πŸ“–mathematicalβ€”symm
prodCongrLeft
Equiv
β€”β€”
prodCongrLeft_trans_prodComm πŸ“–mathematicalβ€”trans
prodCongrLeft
prodComm
prodCongrRight
β€”ext
prodCongrRight_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodCongrRight
β€”β€”
prodCongrRight_apply_fst πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodCongrRight
β€”β€”
prodCongrRight_apply_snd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodCongrRight
β€”β€”
prodCongrRight_symm πŸ“–mathematicalβ€”symm
prodCongrRight
Equiv
β€”β€”
prodCongrRight_trans_prodComm πŸ“–mathematicalβ€”trans
prodCongrRight
prodComm
prodCongrLeft
β€”ext
prodCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodCongr
β€”β€”
prodCongr_refl_left πŸ“–mathematicalβ€”prodCongr
refl
prodCongrRight
β€”β€”
prodCongr_refl_right πŸ“–mathematicalβ€”prodCongr
refl
prodCongrLeft
β€”β€”
prodCongr_symm πŸ“–mathematicalβ€”symm
prodCongr
β€”β€”
prodPProd_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodPProd
β€”β€”
prodPProd_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
prodPProd
β€”β€”
prodPUnit_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodPUnit
β€”β€”
prodPUnit_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
prodPUnit
β€”β€”
prodPiEquivSumPi_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodPiEquivSumPi
symm
sumPiEquivProdPi
β€”β€”
prodPiEquivSumPi_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
prodPiEquivSumPi
sumPiEquivProdPi
β€”β€”
prodProdProdComm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodProdProdComm
β€”β€”
prodProdProdComm_symm πŸ“–mathematicalβ€”symm
prodProdProdComm
β€”β€”
prodShear_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodShear
β€”β€”
prodShear_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
prodShear
β€”β€”
prodUnique_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
prodUnique
β€”β€”
prodUnique_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
prodUnique
Unique.instInhabited
β€”β€”
punitProd_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
punitProd
β€”β€”
punitProd_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
punitProd
β€”β€”
sigmaCongrRight_sigmaEquivProd πŸ“–mathematicalβ€”trans
sigmaCongrRight
sigmaEquivProd
prodCongrRight
β€”ext
sigmaEquivProd_sigmaCongrRight πŸ“–mathematicalβ€”trans
symm
sigmaEquivProd
sigmaCongrRight
prodCongrRight
β€”ext
sigmaPUnit_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
sigmaPUnit
β€”β€”
sigmaPUnit_symm_apply_fst πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sigmaPUnit
β€”β€”
sigmaPUnit_symm_apply_snd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sigmaPUnit
β€”β€”
sigmaProdDistrib_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
sigmaProdDistrib
β€”β€”
sigmaProdDistrib_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sigmaProdDistrib
β€”β€”
sigmaUnique_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
sigmaUnique
β€”β€”
sigmaUnique_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sigmaUnique
Unique.instInhabited
β€”β€”
sumArrowEquivProdArrow_apply_fst πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
sumArrowEquivProdArrow
β€”β€”
sumArrowEquivProdArrow_apply_snd πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
sumArrowEquivProdArrow
β€”β€”
sumArrowEquivProdArrow_symm_apply_inl πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sumArrowEquivProdArrow
β€”β€”
sumArrowEquivProdArrow_symm_apply_inr πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sumArrowEquivProdArrow
β€”β€”
sumPiEquivProdPi_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
sumPiEquivProdPi
β€”β€”
sumPiEquivProdPi_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sumPiEquivProdPi
β€”β€”
sumProdDistrib_apply_left πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
sumProdDistrib
β€”β€”
sumProdDistrib_apply_right πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
sumProdDistrib
β€”β€”
sumProdDistrib_symm_apply_left πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sumProdDistrib
β€”β€”
sumProdDistrib_symm_apply_right πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
sumProdDistrib
β€”β€”
uniqueProd_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
uniqueProd
β€”β€”
uniqueProd_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
uniqueProd
Unique.instInhabited
β€”β€”
uniqueSigma_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Unique.instInhabited
EquivLike.toFunLike
instEquivLike
uniqueSigma
Unique.eq_default
β€”β€”
uniqueSigma_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Unique.instInhabited
EquivLike.toFunLike
instEquivLike
symm
uniqueSigma
β€”β€”

Equiv.Perm

Definitions

NameCategoryTheorems
prodExtendRight πŸ“–CompOp
5 mathmath: prodExtendRight_apply_ne, sign_prodExtendRight, prodExtendRight_apply_eq, fst_prodExtendRight, prod_prodExtendRight

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_prodExtendRight_ne πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
prodExtendRight_apply_ne
fst_prodExtendRight πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
prodExtendRight
β€”β€”
prodExtendRight_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
prodExtendRight
β€”β€”
prodExtendRight_apply_ne πŸ“–mathematicalβ€”DFunLike.coe
Equiv.Perm
EquivLike.toFunLike
Equiv.instEquivLike
prodExtendRight
β€”β€”

(root)

Definitions

NameCategoryTheorems
optionProdEquiv πŸ“–CompOp
4 mathmath: optionProdEquiv_symm_inr, optionProdEquiv_mk_some, optionProdEquiv_symm_inl, optionProdEquiv_mk_none
subsingletonProdSelfEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
optionProdEquiv_mk_none πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
optionProdEquiv
β€”β€”
optionProdEquiv_mk_some πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
optionProdEquiv
β€”β€”
optionProdEquiv_symm_inl πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
optionProdEquiv
β€”β€”
optionProdEquiv_symm_inr πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
optionProdEquiv
β€”β€”

---

← Back to Index