Documentation Verification Report

Relation

πŸ“ Source: Mathlib/Logic/Relation.lean

Statistics

MetricCount
DefinitionsEqvGen, setoid, ReflGen, ReflTransGen, SymmGen, decidableRel, instDecidableMapOfExistsAndEq, instTransReflTransGen, instTransReflTransGenTransGen, instTransReflTransGen_1, instTransTransGenReflTransGen, instTransTransGen_mathlib, instTransTransGen_mathlib_1
13
Theoremsof_downward_closed, of_fibration, comap, eqvGen_eq, eqvGen_iff, reflexive, symmGen, symmGen_symm, eqvGen_exact, eqvGen_sound, comap, ne_imp_iff, rel_of_ne_imp, is_equivalence, mono, instRefl, mono, to_reflTransGen, cases_head, cases_head_iff, cases_tail, cases_tail_iff, head, head_induction_on, lift', mono, single, swap, symmetric, total_of_right_unique, trans, trans_induction_on, instRefl, instSymm, of_ge, of_le, of_rel, of_rel_symm, refl, rfl, swap, closed, closed', head, head', head'_iff, head_induction_on, lift', mono, swap, symmetric, tail', tail'_iff, to_reflTransGen, trans_induction_on, trans_left, trans_right, church_rosser, comp_assoc, comp_eq, comp_eq_fun, comp_iff, eq_comp, equivalence_join, equivalence_join_reflTransGen, eqvGen_iff, flip_comp, fun_eq_comp, iff_comp, instIsTransReflTransGen, instIsTransTransGen, instReflReflTransGen, join_of_equivalence, join_of_single, le_onFun_map, map_apply, map_apply_apply, map_equivalence, map_id_id, map_map, map_mono, map_onFun_eq_of_surjective, map_onFun_le, map_onFun_map_eq_map, map_reflexive, map_symmetric, map_transitive, onFun_map_eq_of_injective, onFun_map_onFun_eq_onFun, onFun_map_onFun_iff_onFun, reflGen_eq_self, reflGen_iff, reflGen_minimal, reflGen_transGen, reflTransGen_closed, reflTransGen_eq_reflGen, reflTransGen_eq_self, reflTransGen_eq_transGen, reflTransGen_idem, reflTransGen_iff_eq, reflTransGen_iff_eq_or_transGen, reflTransGen_minimal, reflTransGen_of_equivalence, reflTransGen_of_transitive_reflexive, reflTransGen_reflGen, reflTransGen_swap, reflTransGen_transGen, reflexive_join, reflexive_reflGen, reflexive_reflTransGen, symmGen_comm, symmGen_of_total, symmGen_swap, symmGen_swap_apply, symmetric_join, transGen_eq_self, transGen_idem, transGen_iff, transGen_minimal, transGen_reflGen, transGen_swap, transitive_join, transitive_reflTransGen, transitive_transGen, reflexive, comap, flip_eq, iff, swap_eq, comap, flip_eq_iff, irrefl_iff_subrelation_ne, irreflexive_iff_subrelation_ne, reflexive_iff_subrelation_eq, reflexive_ne_imp_iff, swap_eq_iff
136
Total149

Acc

Theorems

NameKindAssumesProvesValidatesDepends On
of_downward_closed πŸ“–β€”β€”β€”β€”of_fibration
of_fibration πŸ“–β€”Relation.Fibrationβ€”β€”β€”

Equivalence

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalβ€”Function.onFunβ€”β€”
eqvGen_eq πŸ“–mathematicalβ€”Relation.EqvGenβ€”eqvGen_iff
eqvGen_iff πŸ“–mathematicalβ€”Relation.EqvGenβ€”β€”

IsRefl

Theorems

NameKindAssumesProvesValidatesDepends On
reflexive πŸ“–mathematicalβ€”Reflexiveβ€”Std.Refl.reflexive

LE.le

Theorems

NameKindAssumesProvesValidatesDepends On
symmGen πŸ“–mathematicalβ€”Relation.SymmGenβ€”Relation.SymmGen.of_le
symmGen_symm πŸ“–mathematicalβ€”Relation.SymmGenβ€”Relation.SymmGen.of_ge

Quot

Theorems

NameKindAssumesProvesValidatesDepends On
eqvGen_exact πŸ“–mathematicalβ€”Relation.EqvGenβ€”β€”
eqvGen_sound πŸ“–β€”Relation.EqvGenβ€”β€”β€”

Reflexive

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalReflexiveFunction.onFunβ€”β€”
ne_imp_iff πŸ“–β€”Reflexiveβ€”β€”rel_of_ne_imp
rel_of_ne_imp πŸ“–β€”Reflexiveβ€”β€”β€”

Relation

Definitions

NameCategoryTheorems
EqvGen πŸ“–CompData
18 mathmath: TopCat.GlueData.eqvGen_of_Ο€_eq, CategoryTheory.Functor.eqvGen_colimitTypeRel_iff_of_isFiltered, CategoryTheory.Quotient.functor_homRel_eq_compClosure_eqvGen, CategoryTheory.Limits.Types.colimit_eq, CategoryTheory.Quotient.compClosure.congruence, EqvGen.is_equivalence, Quot.subsingleton_iff, eqvGen_iff, CategoryTheory.Limits.Types.FilteredColimit.eqvGen_colimitTypeRel_of_rel, CategoryTheory.Limits.Types.FilteredColimit.rel_eq_eqvGen_colimitTypeRel, FreeGroup.eqvGen_step_iff_join_red, FreeAddGroup.eqvGen_step_iff_join_red, Quot.eqvGen_exact, Equivalence.eqvGen_iff, CategoryTheory.Functor.ΞΉColimitType_eq_iff, Quot.eq, RingQuot.eqvGen_rel_eq, Equivalence.eqvGen_eq
ReflGen πŸ“–CompData
9 mathmath: transGen_reflGen, reflGen_eq_self, reflTransGen_reflGen, reflGen_transGen, ReflGen.instRefl, wcovBy_eq_reflGen_covBy, reflexive_reflGen, reflGen_iff, reflTransGen_eq_reflGen
ReflTransGen πŸ“–CompData
40 mathmath: ReflTransGen.cases_tail_iff, reflTransGen_of_succ_of_ge, reflTransGen_swap, ReflTransGen.cases_head_iff, List.relationReflTransGen_of_exists_isChain, reflTransGen_of_pred, TransGen.tail'_iff, reflexive_reflTransGen, ReflGen.to_reflTransGen, reflTransGen_eq_transGen, SimpleGraph.reachable_fromEdgeSet_eq_reflTransGen_toRel, reflTransGen_of_pred_of_ge, Set.WellFoundedOn.acc_iff_wellFoundedOn, transGen_reflGen, ReflTransGen.symmetric, reflTransGen_eq_self, le_iff_reflTransGen_covBy, reflTransGen_of_succ_of_le, reflTransGen_reflGen, reflGen_transGen, reflTransGen_idem, reflTransGen_iff_eq_or_transGen, transitive_reflTransGen, SimpleGraph.reachable_iff_reflTransGen, ReflTransGen.single, reflTransGen_transGen, TransGen.head'_iff, reflTransGen_of_pred_of_le, TransGen.to_reflTransGen, List.relationReflTransGen_of_exists_isChain_cons, reflTransGen_iff_eq, List.relationReflTransGen_of_exists_chain_cons, transGen_wcovBy_eq_reflTransGen_covBy, SimpleGraph.reachable_fromEdgeSet_fromRel_eq_reflTransGen, SimpleGraph.reachable_eq_reflTransGen, reflTransGen_wcovBy_eq_reflTransGen_covBy, instReflReflTransGen, reflTransGen_of_succ, instIsTransReflTransGen, reflTransGen_eq_reflGen
SymmGen πŸ“–MathDef
25 mathmath: AntisymmRel.symmGen_congr, symmGen_of_total, SymmGen.of_lt, SymmGen.of_gt, SymmGen.rfl, SymmGen.refl, AntisymmRel.symmGen, LT.lt.symmGen, SymmGen.of_le, SymmGen.instRefl, IsTotal.compRel, AntisymmRel.symmGen_congr_left, symmGen_swap, SymmGen.of_ge, symmGen_swap_apply, SymmGen.of_rel_symm, AntisymmRel.symmGen_congr_right, symmGen_comm, not_symmGen_iff, SymmGen.of_rel, LE.le.symmGen_symm, LT.lt.symmGen_symm, SymmGen.instSymm, not_incompRel_iff_symmGen, LE.le.symmGen
instDecidableMapOfExistsAndEq πŸ“–CompOp
4 mathmath: SimpleGraph.card_edgeFinset_map, SimpleGraph.edgeFinset_map, SimpleGraph.cliqueFinset_map_of_equiv, SimpleGraph.cliqueFinset_map
instTransReflTransGen πŸ“–CompOpβ€”
instTransReflTransGenTransGen πŸ“–CompOpβ€”
instTransReflTransGen_1 πŸ“–CompOpβ€”
instTransTransGenReflTransGen πŸ“–CompOpβ€”
instTransTransGen_mathlib πŸ“–CompOpβ€”
instTransTransGen_mathlib_1 πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
church_rosser πŸ“–mathematicalReflGen
ReflTransGen
Joinβ€”ReflTransGen.trans
comp_assoc πŸ“–mathematicalβ€”Compβ€”β€”
comp_eq πŸ“–mathematicalβ€”Compβ€”comp_eq_fun
comp_eq_fun πŸ“–mathematicalβ€”Compβ€”β€”
comp_iff πŸ“–mathematicalβ€”Compβ€”β€”
eq_comp πŸ“–mathematicalβ€”Compβ€”fun_eq_comp
equivalence_join πŸ“–β€”Reflexive
Transitive
Join
β€”β€”reflexive_join
symmetric_join
transitive_join
equivalence_join_reflTransGen πŸ“–mathematicalReflGen
ReflTransGen
Joinβ€”equivalence_join
reflexive_reflTransGen
transitive_reflTransGen
church_rosser
eqvGen_iff πŸ“–mathematicalβ€”EqvGenβ€”β€”
flip_comp πŸ“–mathematicalβ€”Compβ€”β€”
fun_eq_comp πŸ“–mathematicalβ€”Compβ€”β€”
iff_comp πŸ“–mathematicalβ€”Compβ€”β€”
instIsTransReflTransGen πŸ“–mathematicalβ€”IsTrans
ReflTransGen
β€”ReflTransGen.trans
instIsTransTransGen πŸ“–mathematicalβ€”IsTransβ€”β€”
instReflReflTransGen πŸ“–mathematicalβ€”ReflTransGenβ€”β€”
join_of_equivalence πŸ“–β€”Joinβ€”β€”β€”
join_of_single πŸ“–mathematicalReflexiveJoinβ€”β€”
le_onFun_map πŸ“–mathematicalβ€”Function.onFun
Map
β€”β€”
map_apply πŸ“–mathematicalβ€”Mapβ€”β€”
map_apply_apply πŸ“–mathematicalβ€”Mapβ€”β€”
map_equivalence πŸ“–mathematicalβ€”Mapβ€”map_reflexive
Equivalence.reflexive
map_symmetric
Equivalence.symmetric
map_transitive
Equivalence.transitive
map_id_id πŸ“–mathematicalβ€”Mapβ€”β€”
map_map πŸ“–mathematicalβ€”Mapβ€”β€”
map_mono πŸ“–β€”Mapβ€”β€”β€”
map_onFun_eq_of_surjective πŸ“–mathematicalβ€”Map
Function.onFun
β€”β€”
map_onFun_le πŸ“–mathematicalβ€”Map
Function.onFun
β€”β€”
map_onFun_map_eq_map πŸ“–mathematicalβ€”Map
Function.onFun
β€”β€”
map_reflexive πŸ“–mathematicalReflexiveMapβ€”β€”
map_symmetric πŸ“–mathematicalSymmetricMapβ€”β€”
map_transitive πŸ“–mathematicalTransitiveMapβ€”β€”
onFun_map_eq_of_injective πŸ“–mathematicalβ€”Function.onFun
Map
β€”β€”
onFun_map_onFun_eq_onFun πŸ“–mathematicalβ€”Function.onFun
Map
β€”β€”
onFun_map_onFun_iff_onFun πŸ“–mathematicalβ€”Map
Function.onFun
β€”β€”
reflGen_eq_self πŸ“–mathematicalReflexiveReflGenβ€”β€”
reflGen_iff πŸ“–mathematicalβ€”ReflGenβ€”β€”
reflGen_minimal πŸ“–β€”Reflexive
ReflGen
β€”β€”reflGen_eq_self
ReflGen.mono
reflGen_transGen πŸ“–mathematicalβ€”ReflGen
ReflTransGen
β€”β€”
reflTransGen_closed πŸ“–β€”ReflTransGenβ€”β€”ReflTransGen.lift'
reflTransGen_eq_reflGen πŸ“–mathematicalTransitiveReflTransGen
ReflGen
β€”reflGen_transGen
transGen_eq_self
reflTransGen_eq_self πŸ“–mathematicalReflexive
Transitive
ReflTransGenβ€”ReflTransGen.single
reflTransGen_eq_transGen πŸ“–mathematicalReflexiveReflTransGenβ€”transGen_reflGen
reflGen_eq_self
reflTransGen_idem πŸ“–mathematicalβ€”ReflTransGenβ€”reflTransGen_eq_self
reflexive_reflTransGen
transitive_reflTransGen
reflTransGen_iff_eq πŸ“–mathematicalβ€”ReflTransGenβ€”ReflTransGen.cases_head_iff
reflTransGen_iff_eq_or_transGen πŸ“–mathematicalβ€”ReflTransGenβ€”TransGen.tail'
TransGen.to_reflTransGen
reflTransGen_minimal πŸ“–β€”Reflexive
Transitive
ReflTransGen
β€”β€”reflTransGen_of_transitive_reflexive
reflTransGen_of_equivalence πŸ“–β€”ReflTransGenβ€”β€”reflTransGen_of_transitive_reflexive
reflTransGen_of_transitive_reflexive πŸ“–β€”Reflexive
Transitive
ReflTransGen
β€”β€”reflTransGen_eq_self
ReflTransGen.mono
reflTransGen_reflGen πŸ“–mathematicalβ€”ReflTransGen
ReflGen
β€”reflGen_eq_self
reflexive_reflGen
reflTransGen_swap πŸ“–mathematicalβ€”ReflTransGen
Function.swap
β€”ReflTransGen.swap
reflTransGen_transGen πŸ“–mathematicalβ€”ReflTransGenβ€”transGen_idem
reflexive_join πŸ“–mathematicalReflexiveJoinβ€”β€”
reflexive_reflGen πŸ“–mathematicalβ€”Reflexive
ReflGen
β€”β€”
reflexive_reflTransGen πŸ“–mathematicalβ€”Reflexive
ReflTransGen
β€”β€”
symmGen_comm πŸ“–mathematicalβ€”SymmGenβ€”β€”
symmGen_of_total πŸ“–mathematicalβ€”SymmGenβ€”β€”
symmGen_swap πŸ“–mathematicalβ€”SymmGen
Function.swap
β€”β€”
symmGen_swap_apply πŸ“–mathematicalβ€”SymmGen
Function.swap
β€”β€”
symmetric_join πŸ“–mathematicalβ€”Symmetric
Join
β€”β€”
transGen_eq_self πŸ“–β€”Transitiveβ€”β€”β€”
transGen_idem πŸ“–β€”β€”β€”β€”transGen_eq_self
transitive_transGen
transGen_iff πŸ“–β€”β€”β€”β€”β€”
transGen_minimal πŸ“–β€”Transitiveβ€”β€”transGen_eq_self
TransGen.mono
transGen_reflGen πŸ“–mathematicalβ€”ReflGen
ReflTransGen
β€”reflTransGen_idem
TransGen.to_reflTransGen
TransGen.mono
ReflGen.to_reflTransGen
reflTransGen_iff_eq_or_transGen
transGen_swap πŸ“–mathematicalβ€”Function.swapβ€”TransGen.swap
transitive_join πŸ“–β€”Transitive
Join
β€”β€”β€”
transitive_reflTransGen πŸ“–mathematicalβ€”Transitive
ReflTransGen
β€”ReflTransGen.trans
transitive_transGen πŸ“–mathematicalβ€”Transitiveβ€”β€”

Relation.EqvGen

Definitions

NameCategoryTheorems
setoid πŸ“–CompOp
9 mathmath: Setoid.eqvGen_le, Setoid.sSup_def, Setoid.sup_eq_eqvGen, Setoid.sup_def, Setoid.eqvGen_mono, Setoid.sSup_eq_eqvGen, Setoid.eqvGen_eq, Setoid.eqvGen_idem, Setoid.eqvGen_of_setoid

Theorems

NameKindAssumesProvesValidatesDepends On
is_equivalence πŸ“–mathematicalβ€”Relation.EqvGenβ€”β€”
mono πŸ“–β€”Relation.EqvGenβ€”β€”β€”

Relation.ReflGen

Theorems

NameKindAssumesProvesValidatesDepends On
instRefl πŸ“–mathematicalβ€”Relation.ReflGenβ€”β€”
mono πŸ“–β€”Relation.ReflGenβ€”β€”β€”
to_reflTransGen πŸ“–mathematicalRelation.ReflGenRelation.ReflTransGenβ€”β€”

Relation.ReflTransGen

Theorems

NameKindAssumesProvesValidatesDepends On
cases_head πŸ“–β€”Relation.ReflTransGenβ€”β€”head_induction_on
cases_head_iff πŸ“–mathematicalβ€”Relation.ReflTransGenβ€”cases_head
head
cases_tail πŸ“–β€”Relation.ReflTransGenβ€”β€”cases_tail_iff
cases_tail_iff πŸ“–mathematicalβ€”Relation.ReflTransGenβ€”β€”
head πŸ“–β€”Relation.ReflTransGenβ€”β€”β€”
head_induction_on πŸ“–β€”Relation.ReflTransGen
refl
head
β€”β€”head
lift' πŸ“–β€”Relation.ReflTransGenβ€”β€”Relation.reflTransGen_idem
lift
mono πŸ“–β€”Relation.ReflTransGenβ€”β€”lift
single πŸ“–mathematicalβ€”Relation.ReflTransGenβ€”β€”
swap πŸ“–mathematicalRelation.ReflTransGenFunction.swapβ€”head
symmetric πŸ“–mathematicalSymmetricRelation.ReflTransGenβ€”head
total_of_right_unique πŸ“–β€”Relator.RightUnique
Relation.ReflTransGen
β€”β€”cases_head
single
trans πŸ“–β€”Relation.ReflTransGenβ€”β€”β€”
trans_induction_on πŸ“–β€”Relation.ReflTransGen
refl
single
trans
β€”β€”single
trans

Relation.SymmGen

Definitions

NameCategoryTheorems
decidableRel πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instRefl πŸ“–mathematicalβ€”Relation.SymmGenβ€”refl
instSymm πŸ“–mathematicalβ€”Relation.SymmGenβ€”symm
of_ge πŸ“–mathematicalβ€”Relation.SymmGenβ€”of_rel_symm
of_le πŸ“–mathematicalβ€”Relation.SymmGenβ€”of_rel
of_rel πŸ“–mathematicalβ€”Relation.SymmGenβ€”β€”
of_rel_symm πŸ“–mathematicalβ€”Relation.SymmGenβ€”β€”
refl πŸ“–mathematicalβ€”Relation.SymmGenβ€”of_rel
refl
rfl πŸ“–mathematicalβ€”Relation.SymmGenβ€”refl
swap πŸ“–mathematicalRelation.SymmGenFunction.swapβ€”of_rel
of_rel_symm

Relation.TransGen

Theorems

NameKindAssumesProvesValidatesDepends On
closed πŸ“–β€”β€”β€”β€”lift'
closed' πŸ“–β€”β€”β€”β€”head_induction_on
head πŸ“–β€”β€”β€”β€”head'
to_reflTransGen
head' πŸ“–β€”Relation.ReflTransGenβ€”β€”trans_left
head'_iff πŸ“–mathematicalβ€”Relation.ReflTransGenβ€”head'
head_induction_on πŸ“–β€”headβ€”β€”head
lift' πŸ“–β€”β€”β€”β€”Relation.transGen_idem
lift
mono πŸ“–β€”β€”β€”β€”lift
swap πŸ“–mathematicalβ€”Function.swapβ€”head
symmetric πŸ“–β€”Symmetricβ€”β€”head
tail' πŸ“–β€”Relation.ReflTransGenβ€”β€”β€”
tail'_iff πŸ“–mathematicalβ€”Relation.ReflTransGenβ€”to_reflTransGen
tail'
to_reflTransGen πŸ“–mathematicalβ€”Relation.ReflTransGenβ€”Relation.ReflTransGen.single
trans_induction_on πŸ“–β€”β€”β€”β€”β€”
trans_left πŸ“–β€”Relation.ReflTransGenβ€”β€”β€”
trans_right πŸ“–β€”Relation.ReflTransGenβ€”β€”tail'

Std.Refl

Theorems

NameKindAssumesProvesValidatesDepends On
reflexive πŸ“–mathematicalβ€”Reflexiveβ€”β€”

Symmetric

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalSymmetricFunction.onFunβ€”β€”
flip_eq πŸ“–β€”Symmetricβ€”β€”iff
iff πŸ“–β€”Symmetricβ€”β€”β€”
swap_eq πŸ“–mathematicalSymmetricFunction.swapβ€”flip_eq

Transitive

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalTransitiveFunction.onFunβ€”β€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
flip_eq_iff πŸ“–mathematicalβ€”Symmetricβ€”Symmetric.flip_eq
irrefl_iff_subrelation_ne πŸ“–β€”β€”β€”β€”β€”
irreflexive_iff_subrelation_ne πŸ“–β€”β€”β€”β€”irrefl_iff_subrelation_ne
reflexive_iff_subrelation_eq πŸ“–mathematicalβ€”Reflexiveβ€”β€”
reflexive_ne_imp_iff πŸ“–β€”β€”β€”β€”Reflexive.ne_imp_iff
Std.Refl.reflexive
swap_eq_iff πŸ“–mathematicalβ€”Function.swap
Symmetric
β€”flip_eq_iff

---

← Back to Index