Relation
π Source: Mathlib/Logic/Relation.lean
Statistics
Acc
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
of_downward_closed π | β | β | β | β | of_fibration |
of_fibration π | β | Relation.Fibration | β | β | β |
Equivalence
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
comap π | mathematical | β | Function.onFun | β | β |
eqvGen_eq π | mathematical | β | Relation.EqvGen | β | eqvGen_iff |
eqvGen_iff π | mathematical | β | Relation.EqvGen | β | β |
IsRefl
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
reflexive π | mathematical | β | Reflexive | β | Std.Refl.reflexive |
LE.le
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
symmGen π | mathematical | β | Relation.SymmGen | β | Relation.SymmGen.of_le |
symmGen_symm π | mathematical | β | Relation.SymmGen | β | Relation.SymmGen.of_ge |
Quot
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eqvGen_exact π | mathematical | β | Relation.EqvGen | β | β |
eqvGen_sound π | β | Relation.EqvGen | β | β | β |
Reflexive
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
comap π | mathematical | Reflexive | Function.onFun | β | β |
ne_imp_iff π | β | Reflexive | β | β | rel_of_ne_imp |
rel_of_ne_imp π | β | Reflexive | β | β | β |
Relation
Definitions
Theorems
Relation.EqvGen
Definitions
| Name | Category | Theorems |
|---|---|---|
setoid π | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
is_equivalence π | mathematical | β | Relation.EqvGen | β | β |
mono π | β | Relation.EqvGen | β | β | β |
Relation.ReflGen
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instRefl π | mathematical | β | Relation.ReflGen | β | β |
mono π | β | Relation.ReflGen | β | β | β |
to_reflTransGen π | mathematical | Relation.ReflGen | Relation.ReflTransGen | β | β |
Relation.ReflTransGen
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
cases_head π | β | Relation.ReflTransGen | β | β | head_induction_on |
cases_head_iff π | mathematical | β | Relation.ReflTransGen | β | cases_headhead |
cases_tail π | β | Relation.ReflTransGen | β | β | cases_tail_iff |
cases_tail_iff π | mathematical | β | Relation.ReflTransGen | β | β |
head π | β | Relation.ReflTransGen | β | β | β |
head_induction_on π | β | Relation.ReflTransGenreflhead | β | β | head |
lift' π | β | Relation.ReflTransGen | β | β | Relation.reflTransGen_idemlift |
mono π | β | Relation.ReflTransGen | β | β | lift |
single π | mathematical | β | Relation.ReflTransGen | β | β |
swap π | mathematical | Relation.ReflTransGen | Function.swap | β | head |
symmetric π | mathematical | Symmetric | Relation.ReflTransGen | β | head |
total_of_right_unique π | β | Relator.RightUniqueRelation.ReflTransGen | β | β | cases_headsingle |
trans π | β | Relation.ReflTransGen | β | β | β |
trans_induction_on π | β | Relation.ReflTransGenreflsingletrans | β | β | singletrans |
Relation.SymmGen
Definitions
| Name | Category | Theorems |
|---|---|---|
decidableRel π | CompOp | β |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instRefl π | mathematical | β | Relation.SymmGen | β | refl |
instSymm π | mathematical | β | Relation.SymmGen | β | symm |
of_ge π | mathematical | β | Relation.SymmGen | β | of_rel_symm |
of_le π | mathematical | β | Relation.SymmGen | β | of_rel |
of_rel π | mathematical | β | Relation.SymmGen | β | β |
of_rel_symm π | mathematical | β | Relation.SymmGen | β | β |
refl π | mathematical | β | Relation.SymmGen | β | of_relrefl |
rfl π | mathematical | β | Relation.SymmGen | β | refl |
swap π | mathematical | Relation.SymmGen | Function.swap | β | of_relof_rel_symm |
Relation.TransGen
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
closed π | β | β | β | β | lift' |
closed' π | β | β | β | β | head_induction_on |
head π | β | β | β | β | head'to_reflTransGen |
head' π | β | Relation.ReflTransGen | β | β | trans_left |
head'_iff π | mathematical | β | Relation.ReflTransGen | β | head' |
head_induction_on π | β | head | β | β | head |
lift' π | β | β | β | β | Relation.transGen_idemlift |
mono π | β | β | β | β | lift |
swap π | mathematical | β | Function.swap | β | head |
symmetric π | β | Symmetric | β | β | head |
tail' π | β | Relation.ReflTransGen | β | β | β |
tail'_iff π | mathematical | β | Relation.ReflTransGen | β | to_reflTransGentail' |
to_reflTransGen π | mathematical | β | Relation.ReflTransGen | β | Relation.ReflTransGen.single |
trans_induction_on π | β | β | β | β | β |
trans_left π | β | Relation.ReflTransGen | β | β | β |
trans_right π | β | Relation.ReflTransGen | β | β | tail' |
Std.Refl
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
reflexive π | mathematical | β | Reflexive | β | β |
Symmetric
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
comap π | mathematical | Symmetric | Function.onFun | β | β |
flip_eq π | β | Symmetric | β | β | iff |
iff π | β | Symmetric | β | β | β |
swap_eq π | mathematical | Symmetric | Function.swap | β | flip_eq |
Transitive
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
comap π | mathematical | Transitive | Function.onFun | β | β |
(root)
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
flip_eq_iff π | mathematical | β | Symmetric | β | Symmetric.flip_eq |
irrefl_iff_subrelation_ne π | β | β | β | β | β |
irreflexive_iff_subrelation_ne π | β | β | β | β | irrefl_iff_subrelation_ne |
reflexive_iff_subrelation_eq π | mathematical | β | Reflexive | β | β |
reflexive_ne_imp_iff π | β | β | β | β | Reflexive.ne_imp_iffStd.Refl.reflexive |
swap_eq_iff π | mathematical | β | Function.swapSymmetric | β | flip_eq_iff |
---