Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Logic/Small/Defs.lean

Statistics

MetricCount
Definitionsrec, equivShrink
2
Theoremsext, ext_iff, rec_equivShrink, equiv_small, mk', instNontrivialShrink, not_small_type, small_congr, small_iff, small_lift, small_map, small_max, small_plift, small_self, small_sigma, small_succ, small_type, small_ulift, small_zero
19
Total21

Shrink

Definitions

NameCategoryTheorems
rec πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
β€”β€”EquivLike.toEmbeddingLike
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
β€”ext
rec_equivShrink πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Shrink
EquivLike.toFunLike
Equiv.instEquivLike
equivShrink
β€”Equiv.symm_apply_apply

Small

Theorems

NameKindAssumesProvesValidatesDepends On
equiv_small πŸ“–mathematicalβ€”Equivβ€”β€”
mk' πŸ“–mathematicalβ€”Smallβ€”β€”

(root)

Definitions

NameCategoryTheorems
equivShrink πŸ“–CompOp
60 mathmath: CategoryTheory.Limits.Types.Small.productIso_hom_comp_eval, CategoryTheory.Limits.Types.Small.productIso_hom_comp_eval_apply, CategoryTheory.CountableCategory.instObjAsType, CategoryTheory.FunctorToTypes.shrinkMap_app, CategoryTheory.ShrinkHoms.id_def, equivShrink_symm_div, equivShrink_symm_sub, Shrink.linearEquiv_symm_apply, CommRing.Pic.mul_eq_tensor, equivShrink_top, CategoryTheory.Subobject.wideCospan_map_term, equivShrink_symm_bot, CategoryTheory.Limits.Types.Small.productIso_inv_comp_Ο€, CommRing.Pic.inv_eq_dual, equivShrink_symm_zero, CommRing.Pic.mk_eq_iff, CommRing.Pic.mk_eq_self, CommRing.Pic.mapAlgebra_apply, CommRing.Pic.ext_iff, CommRing.Pic.instFreeAsModuleOfNat, Shrink.ext_iff, equivShrink_symm_top, CategoryTheory.FunctorToTypes.shrink_map, CategoryTheory.CountableCategory.instLocallySmallObjAsType, equivShrink_div, CategoryTheory.Limits.Types.Small.productIso_inv_comp_Ο€_apply, equivShrink_mul, Shrink.algEquiv_apply, CategoryTheory.Limits.Types.Small.limitCone_pt_ext_iff, CategoryTheory.Limits.Types.Small.limitCone_Ο€_app, Shrink.toEquiv_homeomorph, CategoryTheory.Equalizer.Presieve.Arrows.compatible_iff_of_small, CategoryTheory.Limits.Types.Small.limitConeIsLimit_lift, AlgebraicGeometry.Scheme.IsLocallyDirected.glueDataΞΉ_naturality, equivShrink_lt_equivShrink, equivShrink_add, CategoryTheory.CountableCategory.instCountableHomObjAsType, Shrink.continuousLinearEquiv_symm_apply, equivShrink_symm_add, Shrink.rec_equivShrink, orderIsoShrink_apply, Shrink.continuousLinearEquiv_apply, orderIsoShrink_symm_apply, CategoryTheory.Subobject.leInfCone_Ο€_app_none, equivShrink_inv, CategoryTheory.ShrinkHoms.comp_def, CategoryTheory.ShrinkHoms.inverse_map, equivShrink_smul, equivShrink_le_equivShrink, CategoryTheory.ShrinkHoms.functor_map, equivShrink_neg, equivShrink_symm_mul, equivShrink_symm_inv, equivShrink_symm_one, Shrink.linearEquiv_apply, equivShrink_symm_neg, equivShrink_symm_smul, equivShrink_bot, Shrink.algEquiv_symm_apply, equivShrink_sub

Theorems

NameKindAssumesProvesValidatesDepends On
instNontrivialShrink πŸ“–mathematicalβ€”Nontrivial
Shrink
β€”Equiv.nontrivial
not_small_type πŸ“–mathematicalβ€”Smallβ€”Function.cantor_injective
Equiv.left_inv
small_congr πŸ“–mathematicalβ€”Smallβ€”small_map
small_iff πŸ“–mathematicalβ€”Small
Equiv
β€”β€”
small_lift πŸ“–mathematicalβ€”Smallβ€”Small.mk'
small_map πŸ“–mathematicalβ€”Smallβ€”Small.equiv_small
Small.mk'
small_max πŸ“–mathematicalβ€”Smallβ€”small_lift
small_self
small_plift πŸ“–mathematicalβ€”Smallβ€”small_map
small_self πŸ“–mathematicalβ€”Smallβ€”Small.mk'
small_sigma πŸ“–β€”Smallβ€”β€”Equiv.symm_apply_apply
Shrink.congr_simp
small_succ πŸ“–mathematicalβ€”Smallβ€”small_lift
small_self
small_type πŸ“–mathematicalβ€”Smallβ€”small_max
small_ulift πŸ“–mathematicalβ€”Smallβ€”small_map
small_zero πŸ“–mathematicalβ€”Smallβ€”small_max

---

← Back to Index