Documentation Verification Report

Basic

📁 Source: Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean

Statistics

MetricCount
DefinitionsBorelSpace, measurableSpace, measurableSpace, toMeasurableEquiv, addBorelInstance, borelToRefl, tacticBorelize___, measurableSpace, OpensMeasurableSpace, measurableSpace, SecondCountableTopologyEither, borel
12
TheoremsborelSpace, countablyGenerated, measurable_eq, opensMeasurable, aemeasurable, aemeasurable2, borel_measurable, measurable, measurable2, measurableAdd, measurableMul₂, toMeasurableConstSMul, toMeasurableConstVAdd, measurableInv, measurableInv, measurable, measurableMul, measurableMul₂, measurableNeg, measurable_piecewise, measurableSMul₂, toMeasurableSMul, measurableSub, measurableSub₂, toMeasurableVAdd, instBorelSpace, toBorelSpace, borelSpace, borelSpace, borelSpace, measurableInv, measurable, measurableEmbedding, toMeasurableEquiv_coe, toMeasurableEquiv_symm_coe, mem_measurableSet_iff, borelSpace, measurableSet, nullMeasurableSet, measurable, closure_subset_measurableSet, measurableSet, measure_closure, nullMeasurableSet, measurableSet, measurableSet, nullMeasurableSet, borelSpace, induction_on_open, nhdsWithin_isMeasurablyGenerated, comap, map, borelSpace, borelSpace, borel_le, separatesPoints, toMeasurableSingletonClass, borelSpace, opensMeasurableSpace, borelSpace, borelSpace_of_subsingleton, opensMeasurableSpace, opensMeasurableSpace_of_subsingleton, borelSpace, opensMeasurableSpace, borelSpace, borelSpace, out, borelSpace, opensMeasurableSpace, borel_eq_generateFrom, measurableEmbedding, measurableEmbedding, measurableEmbedding, instBorelSpace, borelSpace, borel_anti, borel_comap, borel_eq_generateFrom_isClosed, borel_eq_generateFrom_of_subbasis, borel_eq_top_of_countable, borel_eq_top_of_discrete, closure_ae_eq_of_null_frontier, instCountablySeparatedElemOfHasCountableSeparatingOnIsOpen, instMeasurableEqOfSecondCountableTopologyOfT2Space, interior_ae_eq_of_null_frontier, isPiSystem_isClosed, isPiSystem_isOpen, measurableSet_closure, measurableSet_frontier, measurableSet_interior, measurableSet_of_continuousAt, measurable_of_continuousOn_compl_singleton, measurable_of_isClosed, measurable_of_isClosed', measurable_of_isOpen, measure_closure_of_null_frontier, measure_interior_of_null_frontier, nhds_isMeasurablyGenerated, nullMeasurableSet_of_null_frontier, null_frontier_inter, opensMeasurableSpace_iff_forall_measurableSet, pi_le_borel_pi, prod_le_borel_prod, secondCountableTopologyEither_of_left, secondCountableTopologyEither_of_right, separatesPointsOfOpensMeasurableSpaceOfT0Space
107
Total119

Bool

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
instTopologicalSpaceBool
instMeasurableSpace
borel_eq_top_of_discrete
instDiscreteTopologyBool

BorelSpace

Theorems

NameKindAssumesProvesValidatesDepends On
countablyGenerated 📖mathematicalMeasurableSpace.CountablyGeneratedTopologicalSpace.exists_countable_basis
measurable_eq
TopologicalSpace.IsTopologicalBasis.borel_eq_generateFrom
measurable_eq 📖mathematicalborel
opensMeasurable 📖mathematicalOpensMeasurableSpacege_of_eq
measurable_eq

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
aemeasurable 📖mathematicalContinuousAEMeasurableMeasurable.aemeasurable
measurable
aemeasurable2 📖Continuous
instTopologicalSpaceProd
AEMeasurable
Measurable.comp_aemeasurable
measurable
Prod.opensMeasurableSpace
AEMeasurable.prodMk
borel_measurable 📖mathematicalContinuousMeasurable
borel
Measurable.of_le_map
MeasurableSpace.generateFrom_le
IsOpen.preimage
measurable 📖mathematicalContinuousMeasurableMeasurable.mono
borel_measurable
OpensMeasurableSpace.borel_le
le_of_eq
BorelSpace.measurable_eq
measurable2 📖Continuous
instTopologicalSpaceProd
Measurable
Measurable.comp
measurable
Prod.opensMeasurableSpace
Measurable.prodMk

ContinuousAdd

Theorems

NameKindAssumesProvesValidatesDepends On
measurableAdd 📖mathematicalMeasurableAddContinuous.measurable
BorelSpace.opensMeasurable
Continuous.comp'
Continuous.fun_add
Continuous.fst
continuous_id'
Continuous.snd
Continuous.prodMk
continuous_const
measurableMul₂ 📖mathematicalMeasurableAdd₂Continuous.measurable
Prod.opensMeasurableSpace
BorelSpace.opensMeasurable
secondCountableTopologyEither_of_right
continuous_add

ContinuousConstSMul

Theorems

NameKindAssumesProvesValidatesDepends On
toMeasurableConstSMul 📖mathematicalMeasurableConstSMulContinuous.measurable
BorelSpace.opensMeasurable
Continuous.const_smul
continuous_id'

ContinuousConstVAdd

Theorems

NameKindAssumesProvesValidatesDepends On
toMeasurableConstVAdd 📖mathematicalMeasurableConstVAddContinuous.measurable
BorelSpace.opensMeasurable
Continuous.const_vadd
continuous_id'

ContinuousInv

Theorems

NameKindAssumesProvesValidatesDepends On
measurableInv 📖mathematicalMeasurableInvContinuous.measurable
BorelSpace.opensMeasurable
continuous_inv

ContinuousInv₀

Theorems

NameKindAssumesProvesValidatesDepends On
measurableInv 📖mathematicalMeasurableInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
measurable_of_continuousOn_compl_singleton
BorelSpace.opensMeasurable
continuousOn_inv₀

ContinuousMap

Theorems

NameKindAssumesProvesValidatesDepends On
measurable 📖mathematicalMeasurable
DFunLike.coe
ContinuousMap
instFunLike
Continuous.measurable
continuous

ContinuousMul

Theorems

NameKindAssumesProvesValidatesDepends On
measurableMul 📖mathematicalMeasurableMulContinuous.measurable
BorelSpace.opensMeasurable
Continuous.comp'
Continuous.fun_mul
Continuous.fst
continuous_id'
Continuous.snd
Continuous.prodMk
continuous_const
measurableMul₂ 📖mathematicalMeasurableMul₂Continuous.measurable
Prod.opensMeasurableSpace
BorelSpace.opensMeasurable
secondCountableTopologyEither_of_right
continuous_mul

ContinuousNeg

Theorems

NameKindAssumesProvesValidatesDepends On
measurableNeg 📖mathematicalMeasurableNegContinuous.measurable
BorelSpace.opensMeasurable
continuous_neg

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
measurable_piecewise 📖mathematicalContinuousOn
Compl.compl
Set
Set.instCompl
MeasurableSet
Measurable
Set.piecewise
measurable_of_isOpen
Set.piecewise_preimage
Set.ite.eq_1
MeasurableSet.union
continuousOn_iff'
MeasurableSet.inter
IsOpen.measurableSet
Set.diff_eq_compl_inter
Set.inter_comm
MeasurableSet.compl

ContinuousSMul

Theorems

NameKindAssumesProvesValidatesDepends On
measurableSMul₂ 📖mathematicalMeasurableSMul₂Continuous.measurable
Prod.opensMeasurableSpace
BorelSpace.opensMeasurable
continuous_smul
toMeasurableSMul 📖mathematicalMeasurableSMulContinuousConstSMul.toMeasurableConstSMul
continuousConstSMul
Continuous.measurable
Continuous.smul
continuous_id'
continuous_const

ContinuousSub

Theorems

NameKindAssumesProvesValidatesDepends On
measurableSub 📖mathematicalMeasurableSubContinuous.measurable
BorelSpace.opensMeasurable
Continuous.sub
continuous_const
continuous_id'
measurableSub₂ 📖mathematicalMeasurableSub₂Continuous.measurable
Prod.opensMeasurableSpace
BorelSpace.opensMeasurable
secondCountableTopologyEither_of_right
continuous_sub

ContinuousVAdd

Theorems

NameKindAssumesProvesValidatesDepends On
toMeasurableVAdd 📖mathematicalMeasurableVAddContinuousConstVAdd.toMeasurableConstVAdd
continuousConstVAdd
Continuous.measurable
Continuous.vadd
continuous_id'
continuous_const

Countable

Theorems

NameKindAssumesProvesValidatesDepends On
instBorelSpace 📖mathematicalBorelSpaceSet.Countable.measurableSet
Set.to_countable
SetCoe.countable
MeasurableSpace.measurableSet_generateFrom
isOpen_discrete
MeasurableSpace.ext

DiscreteMeasurableSpace

Theorems

NameKindAssumesProvesValidatesDepends On
toBorelSpace 📖mathematicalBorelSpaceMeasurableSpace.ext

ENNReal

Definitions

NameCategoryTheorems
measurableSpace 📖CompOp
91 mathmath: MeasureTheory.aemeasurable_withDensity_ennreal_iff', measurable_ereal_toENNReal, EReal.measurable_exp, MeasureTheory.Measure.measurable_measure, Measurable.ennreal_ofReal, MeasureTheory.Measure.measurable_coe, hasMeasurablePow, MeasureTheory.measurable_measure_add_right, AEMeasurable.enorm, ProbabilityTheory.Kernel.measurable_densityProcess_countableFiltration_aux, ProbabilityTheory.Kernel.measurable_singularPart_fun_right, measurable_edist_right, measurable_toNNReal, Measurable.coe_nnreal_ennreal, ProbabilityTheory.measurable_condDistrib, MeasureTheory.measurable_measure_mul_right, instMeasurableInv, measurable_infEDist, MeasureTheory.Measure.singularPart_def, ProbabilityTheory.IdentDistrib.coe_nnreal_ennreal, MeasureTheory.StronglyMeasurable.enorm, measurable_toReal, Measurable.infEdist, ProbabilityTheory.measurable_gaussianPDF, MeasureTheory.aemeasurable_ofReal_abs_det_fderivWithin, MeasureTheory.measurable_pdf, MeasureTheory.exists_measurable_le_forall_setLIntegral_eq, ProbabilityTheory.Kernel.measurable_rnDeriv, measurable_infEdist, AEMeasurable.edist, instMeasurableMul₂, AEMeasurable.coe_nnreal_ennreal, MeasureTheory.StronglyAdapted.measurable_upcrossings, ProbabilityTheory.IsKolmogorovProcess.measurable_edist, MeasureTheory.iSup_lintegral_measurable_le_eq_lintegral, ProbabilityTheory.Kernel.measurable_kernel_prodMk_left', ProbabilityTheory.measurable_preCDF, ProbabilityTheory.Kernel.measurable_lintegral_indicator_const, ProbabilityTheory.Kernel.measurable_singularPart_fun, measurable_measure_prodMk_left_finite, MeasureTheory.Measure.HaveLebesgueDecomposition.lebesgue_decomposition, VitaliFamily.limRatioMeas_measurable, measurable_of_measurable_nnreal_prod, measurable_of_measurable_nnreal_nnreal, ProbabilityTheory.Kernel.measurable_rnDeriv_right, measurable_coe_ennreal_ereal, aemeasurable_of_exist_almost_disjoint_supersets, Measurable.enorm, MeasureTheory.Measure.rnDeriv_def, ProbabilityTheory.Kernel.measurable_densityProcess_aux, measurable_edist_left, measurable_measure_prodMk_left, AEMeasurable.ereal_toENNReal, NNReal.instMeasurableSMul₂ENNReal, ProbabilityTheory.measurable_condExpKernel, measurable_log, measurable_enorm, instMeasurableSub₂, MeasureTheory.measurable_condLExp', MeasureTheory.measurable_condLExp, measurable_measure_prodMk_right, MeasureTheory.aemeasurable_withDensity_ennreal_iff, measurable_ofReal, measurable_of_measurable_nnreal, borelSpace, Measurable.edist, MeasureTheory.AEStronglyMeasurable.enorm, BoundedContinuousFunction.measurable_coe_ennreal_comp, ProbabilityTheory.Kernel.measurable_coe, AEMeasurable.ennreal_ofReal, MeasureTheory.exists_measurable_le_lintegral_eq, MeasureTheory.condLExp_def, ProbabilityTheory.Kernel.measurable_kernel_prodMk_left_of_finite, ProbabilityTheory.IsAEKolmogorovProcess.aemeasurable_edist, MeasureTheory.exists_measurable_le_setLIntegral_eq_of_integrable, measurable_edist, ProbabilityTheory.Kernel.measurable_kernel_prodMk_right, MeasureTheory.Measure.measurable_rnDeriv, instMeasurableSMulNNReal, MeasureTheory.exists_measurable_le_withDensity_eq, Probability.measurable_cauchyPDF, measurable_coe_nnreal_ennreal, aemeasurable_coe_nnreal_ennreal_iff, MeasureTheory.AEStronglyMeasurable.edist, ProbabilityTheory.Kernel.measurable_kernel_prodMk_left, MeasureTheory.Measure.haveLebesgueDecomposition_spec, Measurable.infEDist, VitaliFamily.aemeasurable_limRatio, measurable_coe_nnreal_ennreal_iff, Measurable.ereal_toENNReal, Measurable.ereal_exp

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
ENNReal
instTopologicalSpace
measurableSpace

EReal

Definitions

NameCategoryTheorems
measurableSpace 📖CompOp
18 mathmath: instMeasurableMul₂, measurable_ereal_toENNReal, measurable_exp, measurable_ereal_toReal, instMeasurableAdd₂, measurable_of_measurable_real, Measurable.coe_ereal_ennreal, Measurable.ennreal_log, measurable_coe_ennreal_ereal, measurable_of_real_prod, borelSpace, ENNReal.measurable_log, measurable_coe_real_ereal, AEMeasurable.coe_ereal_ennreal, measurableEmbedding_coe, Measurable.coe_real_ereal, AEMeasurable.coe_real_ereal, measurable_of_real_real

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
EReal
instTopologicalSpace
measurableSpace

Empty

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
instTopologicalSpaceEmpty
instMeasurableSpace
borel_eq_top_of_discrete
instDiscreteTopologyEmpty

HasContinuousInv₀

Theorems

NameKindAssumesProvesValidatesDepends On
measurableInv 📖mathematicalMeasurableInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
ContinuousInv₀.measurableInv

Homeomorph

Definitions

NameCategoryTheorems
toMeasurableEquiv 📖CompOp
2 mathmath: toMeasurableEquiv_symm_coe, toMeasurableEquiv_coe

Theorems

NameKindAssumesProvesValidatesDepends On
measurable 📖mathematicalMeasurable
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Continuous.measurable
continuous
measurableEmbedding 📖mathematicalMeasurableEmbedding
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
MeasurableEquiv.measurableEmbedding
toMeasurableEquiv_coe 📖mathematicalDFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
toMeasurableEquiv
Homeomorph
instEquivLike
toMeasurableEquiv_symm_coe 📖mathematicalDFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.symm
toMeasurableEquiv
Homeomorph
instEquivLike
symm

Inseparable

Theorems

NameKindAssumesProvesValidatesDepends On
mem_measurableSet_iff 📖mathematicalInseparable
MeasurableSet
Set
Set.instMembership
MeasurableSet.induction_on_open
mem_open_iff
Iff.not

Int

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
instTopologicalSpaceInt
instMeasurableSpace
borel_eq_top_of_discrete
instDiscreteTopologyInt

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
measurableSet 📖mathematicalMeasurableSetMeasurableSet.of_compl
IsOpen.measurableSet
isOpen_compl
nullMeasurableSet 📖mathematicalMeasureTheory.NullMeasurableSetMeasurableSet.nullMeasurableSet
measurableSet

IsClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
measurable 📖mathematicalTopology.IsClosedEmbeddingMeasurableContinuous.measurable
Topology.IsClosedEmbedding.continuous

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
closure_subset_measurableSet 📖mathematicalIsCompact
MeasurableSet
Set
Set.instHasSubset
closureclosure_eq_biUnion_inseparable
Set.iUnion₂_subset_iff
Inseparable.mem_measurableSet_iff
measurableSet 📖mathematicalIsCompactMeasurableSetIsClosed.measurableSet
isClosed
measure_closure 📖mathematicalIsCompactDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
closure
le_antisymm
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
closure_subset_measurableSet
MeasureTheory.measurableSet_toMeasurable
MeasureTheory.subset_toMeasurable
MeasureTheory.measure_toMeasurable
subset_closure
nullMeasurableSet 📖mathematicalIsCompactMeasureTheory.NullMeasurableSetIsClosed.nullMeasurableSet
isClosed

IsGδ

Theorems

NameKindAssumesProvesValidatesDepends On
measurableSet 📖mathematicalIsGδMeasurableSetMeasurableSet.sInter
IsOpen.measurableSet

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
measurableSet 📖mathematicalIsOpenMeasurableSetOpensMeasurableSpace.borel_le
nullMeasurableSet 📖mathematicalIsOpenMeasureTheory.NullMeasurableSetMeasurableSet.nullMeasurableSet
measurableSet

Mathlib.Tactic.Borelize

Definitions

NameCategoryTheorems
addBorelInstance 📖CompOp
borelToRefl 📖CompOp
tacticBorelize___ 📖CompOp

MeasurableEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalMeasurableEmbedding
Topology.IsInducing
BorelSpaceBorelSpace.measurable_eq
comap_eq
borel_comap
Topology.IsInducing.eq_induced

MeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
induction_on_open 📖IsOpen.measurableSet
BorelSpace.opensMeasurable
Compl.compl
Set
Set.instCompl
compl
Set.iUnion
iUnion
instCountableNat
MeasurableSet
IsOpen.measurableSet
BorelSpace.opensMeasurable
compl
iUnion
instCountableNat
MeasurableSpace.induction_on_inter
BorelSpace.measurable_eq
isPiSystem_isOpen
isOpen_empty
nhdsWithin_isMeasurablyGenerated 📖mathematicalMeasurableSetFilter.IsMeasurablyGenerated
nhdsWithin
Filter.inf_isMeasurablyGenerated
nhds_isMeasurablyGenerated
principal_isMeasurablyGenerated

MeasureTheory.Measure.IsFiniteMeasureOnCompacts

Theorems

NameKindAssumesProvesValidatesDepends On
comap 📖mathematicalMeasureTheory.IsFiniteMeasureOnCompacts
MeasureTheory.Measure.comap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
MeasureTheory.IsFiniteMeasureOnCompacts.comap'
Homeomorph.continuous
Homeomorph.measurableEmbedding
map 📖mathematicalMeasureTheory.IsFiniteMeasureOnCompacts
MeasureTheory.Measure.map
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.toMeasurableEquiv_coe
MeasurableEquiv.map_apply
IsCompact.measure_lt_top
Homeomorph.isCompact_preimage

NNReal

Definitions

NameCategoryTheorems
measurableSpace 📖CompOp
26 mathmath: AEMeasurable.ennreal_toNNReal, Measurable.ennreal_toNNReal, aemeasurable_coe_nnreal_real_iff, ENNReal.measurable_toNNReal, AEMeasurable.real_toNNReal, measurable_real_toNNReal, ProbabilityTheory.IdentDistrib.nnnorm, Measurable.nnnorm, Measurable.real_toNNReal, instMeasurableSMul₂ENNReal, measurable_coe_nnreal_real, AEMeasurable.nnnorm, hasMeasurablePow, borelSpace, MeasureTheory.aemeasurable_toNNReal_abs_det_fderivWithin, measurable_nndist, measurable_infNndist, ENNReal.instMeasurableSMulNNReal, Measurable.nndist, measurable_coe_nnreal_ennreal, aemeasurable_coe_nnreal_ennreal_iff, measurable_coe_nnreal_real_iff, measurable_coe_nnreal_ennreal_iff, Measurable.infNndist, MeasureTheory.exists_pos_lintegral_lt_of_sigmaFinite, measurable_nnnorm

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
NNReal
instTopologicalSpace
measurableSpace
Subtype.borelSpace
Real.borelSpace

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
instTopologicalSpaceNat
instMeasurableSpace
borel_eq_top_of_discrete
instDiscreteTopologyNat

OpensMeasurableSpace

Theorems

NameKindAssumesProvesValidatesDepends On
borel_le 📖mathematicalMeasurableSpace
MeasurableSpace.instLE
borel
separatesPoints 📖mathematicalMeasurableSpace.SeparatesPointsMeasurableSpace.separatesPoints_iff
Inseparable.eq
inseparable_iff_forall_isOpen
IsOpen.measurableSet
toMeasurableSingletonClass 📖mathematicalMeasurableSingletonClassIsClosed.measurableSet
isClosed_singleton

OrderDual

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
OrderDual
instTopologicalSpace
instMeasurableSpaceOrderDual
opensMeasurableSpace 📖mathematicalOpensMeasurableSpace
OrderDual
instTopologicalSpace
instMeasurableSpaceOrderDual

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalSecondCountableTopology
BorelSpace
topologicalSpace
MeasurableSpace.pi
le_antisymm
pi_le_borel_pi
OpensMeasurableSpace.borel_le
opensMeasurableSpace
BorelSpace.opensMeasurable
borelSpace_of_subsingleton 📖mathematicalBorelSpacetopologicalSpace
MeasurableSpace.pi
le_antisymm
pi_le_borel_pi
OpensMeasurableSpace.borel_le
opensMeasurableSpace_of_subsingleton
BorelSpace.opensMeasurable
opensMeasurableSpace 📖mathematicalSecondCountableTopology
OpensMeasurableSpace
topologicalSpace
MeasurableSpace.pi
TopologicalSpace.eq_generateFrom_countableBasis
pi_generateFrom_eq
borel_eq_generateFrom_of_subbasis
TopologicalSpace.instSecondCountableTopologyForallOfCountable
MeasurableSpace.generateFrom_le
MeasurableSet.pi
Finset.countable_toSet
IsOpen.measurableSet
opensMeasurableSpace_of_subsingleton 📖mathematicalOpensMeasurableSpacetopologicalSpace
MeasurableSpace.pi
isEmpty_or_nonempty
Subsingleton.set_cases
Unique.instSubsingleton
MeasurableSet.empty
MeasurableSet.univ
nonempty_unique
borel.eq_1
MeasurableSpace.pi.eq_1
ciSup_unique
MeasurableSpace.generateFrom_le
MeasurableSpace.measurableSet_comap
ciInf_unique
IsOpen.measurableSet

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
instTopologicalSpaceProd
instMeasurableSpace
le_antisymm
prod_le_borel_prod
OpensMeasurableSpace.borel_le
opensMeasurableSpace
BorelSpace.opensMeasurable
opensMeasurableSpace 📖mathematicalOpensMeasurableSpace
instTopologicalSpaceProd
instMeasurableSpace
opensMeasurableSpace_iff_forall_measurableSet
SecondCountableTopologyEither.out
isOpen_iff_forall_mem_open
Set.Subset.antisymm
isOpen_prod_iff
TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
TopologicalSpace.isBasis_countableBasis
HasSubset.Subset.trans
Set.instIsTransSubset
Set.prod_mono_left
Set.mem_prod
MeasurableSet.biUnion
TopologicalSpace.countable_countableBasis
MeasurableSet.prod
IsOpen.measurableSet
TopologicalSpace.isOpen_of_mem_countableBasis
Set.prod_mono_right

Rat

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
instMeasurableSpace
borel_eq_top_of_countable
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
Encodable.countable

Real

Definitions

NameCategoryTheorems
measurableSpace 📖CompOp
440 math, 2 bridgemath: Measurable.ereal_toReal, ProbabilityTheory.Kernel.measurable_rnDerivAux, hasDerivAt_fourier, NumberField.mixedEmbedding.fundamentalDomain_integerLattice, RCLike.measurable_ofReal, ProbabilityTheory.cdf_measure_stieltjesFunction, ProbabilityTheory.condCDF_ae_eq, ProbabilityTheory.gaussianReal_map_const_mul, ProbabilityTheory.lintegral_condCDF, mellin_eq_fourier, hasMeasurablePow, BoxIntegral.Prepartition.measure_iUnion_toReal, NumberField.mixedEmbedding.measurable_polarCoordReal_symm, fourierCoeff_tsum_comp_add, ProbabilityTheory.IsCondKernelCDF.toKernel_Iic, smul_map_volume_mul_right, ProbabilityTheory.lintegral_toKernel_univ, RightDerivMeasurableAux.measurableSet_B, intervalIntegrable_iff', measurable_sinh, ProbabilityTheory.variance_fun_id_gaussianReal, ProbabilityTheory.Kernel.borelMarkovFromReal_apply', ProbabilityTheory.setLIntegral_preCDF_fst, intervalIntegrable_iff, Polynomial.Chebyshev.integral_measureT_eq_integral_cos, ProbabilityTheory.unitInterval.cdf_eq_real, ProbabilityTheory.gaussianReal_map_neg, intervalIntegral.intervalIntegral_eq_integral_uIoc, AddCircle.volume_eq_smul_haarAddCircle, ZLattice.covolume_eq_det_inv, ProbabilityTheory.isProbabilityMeasure_paretoMeasure, ProbabilityTheory.IsGaussian.map_eq_gaussianReal, WeakFEPair.hf_modif_int, measurable_norm, ProbabilityTheory.integrable_preCDF, ProbabilityTheory.rnDeriv_gaussianReal, Complex.measurable_arg, ProbabilityTheory.aemeasurable_of_mem_interior_integrableExpSet, BoxIntegral.Box.measurableSet_Icc, indicator_indepFun_pi_of_prod_bcf, intervalIntegrable_iff_integrableOn_Icc_of_le, GaussianFourier.integral_cexp_neg_mul_sq_norm_add_of_euclideanSpace, MeasureTheory.measurableEmbedding_embeddingReal, ProbabilityTheory.setIntegral_condCDF, ProbabilityTheory.integral_gaussianReal_eq_integral_smul, unitInterval.coe_symmMeasurableEquiv, fourier_gaussian_pi', ProbabilityTheory.integral_continuousLinearMap_gaussianReal, exists_eq_interval_average_of_noAtoms, AddCircle.isAddFundamentalDomain_of_ae_ball, measurable_ereal_toReal, intervalIntegrable_iff_integrableOn_Ico_of_le, fourier_real_eq_integral_exp_smul, ProbabilityTheory.setLIntegral_stieltjesOfMeasurableRat_rat, stronglyMeasurable_derivWithin_Ioi, ProbabilityTheory.gaussianReal_zero_var, ProbabilityTheory.isProbabilityMeasure_expMeasure, Probability.measurable_cauchyPDFReal, ProbabilityTheory.IsRatCondKernelCDF.setIntegral, AddCircle.integral_haarAddCircle, AEMeasurable.norm, fourier_deriv, ProbabilityTheory.IsCondKernelCDF.integral, smul_map_diagonal_volume_pi, BoxIntegral.Box.measurableSet_coe, volume_val, Polynomial.Chebyshev.integral_T_real_mul_self_measureT_of_ne_zero, ENNReal.hasMeasurablePow, Polynomial.Chebyshev.integral_measureT, aestronglyMeasurable_rpowIntegrand₀₁, OrthonormalBasis.measurePreserving_repr, AEMeasurable.im, ProbabilityTheory.Kernel.isCondKernelCDF_condKernelCDF, Icc_mem_vitaliFamily_at_left, aemeasurable_coe_nnreal_real_iff, Polynomial.Chebyshev.integral_measureT_eq_integral_cos_of_continuous, Complex.measurableEquivPi_apply, MeasureTheory.charFunDual_eq_charFun_map_one, unitInterval.symmMeasurableEquiv_apply, Set.OrdConnected.nullMeasurableSet, ProbabilityTheory.integral_stieltjesOfMeasurableRat, ProbabilityTheory.IsRatCondKernelCDFAux.measurable, intervalIntegral.FTCFilter.finiteAt_inner, BoxIntegral.unitPartition.integralSum_eq_tsum_div, ProbabilityTheory.covarianceBilin_apply_basisFun_self, MeasureTheory.charFun_apply_real, GaussianFourier.integrable_cexp_neg_mul_sq_norm_add_of_euclideanSpace, ProbabilityTheory.integrable_condCDF, InformationTheory.measurable_klFun, UnitAddTorus.mFourierCoeff_toLp, ProbabilityTheory.gaussianReal_map_continuousLinearMap, EuclideanSpace.volume_closedBall_fin_three, ProbabilityTheory.Kernel.instIsMarkovKernelCondKernelUnitReal, Complex.measurableEquivRealProd_apply, ProbabilityTheory.cdf_eq_real, map_matrix_volume_pi_eq_smul_volume_pi, measurable_circleMap, ProbabilityTheory.IsMeasurableRatCDF.instIsProbabilityMeasure_stieltjesFunction, orthonormal_fourier, intervalIntegral.abs_intervalIntegral_eq, MeasureTheory.memLp_haarAddCircle_iff, ProbabilityTheory.noAtoms_gaussianReal, ProbabilityTheory.isProbabilityMeasure_gammaMeasure, fourierIntegral_gaussian_pi, volume_eq_stieltjes_id, measurable_sinc, smul_map_volume_mul_left, ENNReal.measurable_toReal, mellinInv_eq_fourierIntegralInv, PiLp.volume_preserving_toLp, measurableEmbedding_sigmoid, Complex.measurable_re, BoxIntegral.Box.measure_coe_lt_top, MeasureTheory.posConvolution_eq_convolution_indicator, ProbabilityTheory.Kernel.measurable_density, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, measurable_cos, BoxIntegral.Box.measure_Icc_lt_top, ZLattice.covolume_div_covolume_eq_relIndex, Polynomial.toAddCircle.integrable, AddCircle.instHasAddFundamentalDomainSubtypeAddOppositeRealMemAddSubgroupOpZmultiples, isAddFundamentalDomain_Ioc, measurableEmbedding_sigmoid_comp_embeddingReal, MeasureTheory.exists_subset_real_measurableEquiv, mellinInv_eq_fourierInv, ProbabilityTheory.isRatCondKernelCDF_preCDF, fourier_real_eq, ProbabilityTheory.ofReal_condCDF_ae_eq, ProbabilityTheory.IsMeasurableRatCDF.measure_stieltjesFunction_univ, hasSum_fourier_series_L2, measurable_arctan, ProbabilityTheory.integral_truncation_eq_intervalIntegral, MeasureTheory.hausdorffMeasure_pi_real, Monotone.ae_hasDerivAt, ProbabilityTheory.IsCondKernelCDF.setIntegral, IntervalIntegrable.aestronglyMeasurable', integrable_sinc, EuclideanSpace.volume_closedBall_fin_two, intervalIntegrable_iff_integrableOn_Ioc_of_le, ProbabilityTheory.measurable_gaussianPDF, ProbabilityTheory.gaussianReal_map_linearMap, tendsto_measure_Icc, aestronglyMeasurable_derivWithin_Ioi, ProbabilityTheory.integrableExpSet_id_gaussianReal, intervalIntegral.integral_cases, measurable_real_toNNReal, ProbabilityTheory.complexMGF_id_mul_I, ProbabilityTheory.Kernel.measurable_densityProcess, ProbabilityTheory.IsCondKernelCDF.setLIntegral, unitInterval.measurable_symm, ProbabilityTheory.instIsProbabilityMeasureGaussianReal, measurableSet_pi_polarCoord_target, ProbabilityTheory.integrableExpSet_fun_id_gaussianReal, ProbabilityTheory.measurable_paretoPDFReal, RCLike.measurable_re, ProbabilityTheory.preCDF_le_one, zero_at_infty_fourierIntegral, ProbabilityTheory.Kernel.measurable_densityProcess_left, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, ProbabilityTheory.measurable_gammaPDFReal, ProbabilityTheory.memLp_id_gaussianReal', fourierIntegral_real_eq_integral_exp_smul, deriv_fourierIntegral, NumberField.mixedEmbedding.covolume_idealLattice, NumberField.mixedEmbedding.volume_preserving_negAt, AddCircle.instIsProbabilityMeasureRealHaarAddCircle, ProbabilityTheory.integral_truncation_eq_intervalIntegral_of_nonneg, ProbabilityTheory.Kernel.measurable_countableFiltration_densityProcess, ProbabilityTheory.setIntegral_stieltjesOfMeasurableRat, MeasureTheory.hausdorffMeasure_prod_real, ProbabilityTheory.mgf_fun_id_gaussianReal, MeasureTheory.hausdorffMeasure_lineMap_image, intervalIntegral.integral_smul_measure, intervalIntegral.FTCFilter.meas_gen, ProbabilityTheory.gaussianReal_apply, NumberField.Units.regOfFamily_of_isMaxRank, ProbabilityTheory.gaussianReal_conv_gaussianReal, PiLp.volume_preserving_ofLp, measurableSet_of_differentiableWithinAt_Ici_of_isComplete, ProbabilityTheory.isGaussian_gaussianReal, Polynomial.Chebyshev.integrable_measureT, ProbabilityTheory.monotone_preCDF, MeasureTheory.integral_charFun_Icc, ProbabilityTheory.moment_truncation_eq_intervalIntegral_of_nonneg, intervalIntegral.norm_intervalIntegral_eq, measurable_cosh, indicator_indepFun_pi_of_bcf, fourierCoeff_toLp, coe_fourierBasis, ProbabilityTheory.variance_continuousLinearMap_gaussianReal, tendsto_measure_Icc_nhdsWithin_right, ProbabilityTheory.Kernel.compProd_fst_condKernelReal, unitInterval.symmMeasurableEquiv_symm_apply, Probability.stronglyMeasurable_cauchyPDF, ProbabilityTheory.aemeasurable_of_integrable_exp_mul, NumberField.mixedEmbedding.volume_preserving_mixedSpaceToRealMixedSpace_symm, aestronglyMeasurable_derivWithin_Ici, BoxIntegral.norm_integral_le_of_le_const, indicator_indepFun_process_of_bcf, ProbabilityTheory.integral_linearMap_gaussianReal, ProbabilityTheory.HasSubgaussianMGF.aemeasurable, Polynomial.Chebyshev.integral_eval_T_real_measureT_zero, ProbabilityTheory.setLIntegral_toKernel_univ, ProbabilityTheory.withDensity_preCDF, MeasureTheory.measurableEquiv_range_coe_nat_of_infinite_of_countable, ProbabilityTheory.measurable_preCDF', ProbabilityTheory.measurable_poissonPMFReal, intervalIntegral.integral_of_ge, ProbabilityTheory.condCDF_eq_stieltjesOfMeasurableRat_unit_prod, Measurable.im, IntervalIntegrable.aestronglyMeasurable, ProbabilityTheory.covarianceBilin_real_self, MeasureTheory.Measure.IicSnd_apply, NumberField.mixedEmbedding.fundamentalDomain_stdBasis, ProbabilityTheory.IsCondKernelCDF.measurable, Complex.measurable_im, Probability.cauchyMeasure_zero_scale, NumberField.mixedEmbedding.measurableSet_fundamentalCone, Measurable.re, stronglyMeasurable_sinc, Measurable.coe_nnreal_real, measurable_arccos, ProbabilityTheory.moment_truncation_eq_intervalIntegral, ProbabilityTheory.integrable_exp_mul_gaussianReal, ProbabilityTheory.measurable_geometricPMFReal, ProbabilityTheory.instIsProbabilityMeasureCondCDF, Complex.measurableEquivRealProd_symm_polarCoord_symm_apply, Complex.volume_preserving_equiv_real_prod, ProbabilityTheory.gaussianReal_map_mul_const, intervalIntegral.integral_of_le, mellin_eq_fourierIntegral, MeasureTheory.SignedMeasure.measurable_rnDeriv, ProbabilityTheory.Kernel.condKernelUnitReal.instIsCondKernel, MeasureTheory.Measure.measurePreserving_homeomorphUnitSphereProd, MeasureTheory.Measure.instSigmaFiniteElemRealIoiOfNatVolumeIoiPow, hasPDF_iff, ProbabilityTheory.covarianceBilin_apply_pi, AddCircle.measurePreserving_equivIoc, ProbabilityTheory.Kernel.isRatCondKernelCDF_density_Iic, NumberField.mixedEmbedding.covolume_integerLattice, EuclideanSpace.volume_ball_fin_three, intervalIntegrable_const_iff, Polynomial.Chebyshev.integral_eval_T_real_mul_eval_T_real_measureT, ProbabilityTheory.covarianceBilin_apply_basisFun, ProbabilityTheory.measure_cdf, ProbabilityTheory.setIntegral_preCDF_fst, ProbabilityTheory.IdentDistrib.norm, MeasureTheory.Measure.IicSnd_le_fst, OrthonormalBasis.measurePreserving_repr_symm, measurable_arcsin, MeasureTheory.ContinuousOn.hasBoxIntegral, Measurable.infDist, MeasureTheory.measureReal_abs_gt_le_integral_charFun, UnitAddCircle.measurePreserving_mk, MeasureTheory.addHaarMeasure_eq_volume_pi, intervalIntegral.integral_const_of_cdf, intervalIntegral.integral_const', intervalIntegrable_iff_integrableOn_Ioo_of_le, ProbabilityTheory.IsMeasurableRatCDF.measure_stieltjesFunction_Iic, AEMeasurable.carg, ProbabilityTheory.gaussianReal_map_sub_const, MeasureTheory.hausdorffMeasure_smul_right_image, ProbabilityTheory.compProd_toKernel, ZLattice.volume_image_eq_volume_div_covolume, map_linearMap_volume_pi_eq_smul_volume_pi, ProbabilityTheory.IsMeasurableRatCDF.measurable_stieltjesFunction, ProbabilityTheory.memLp_id_gaussianReal, Complex.measurableEquivPi_symm_apply, MeasureTheory.Measure.map_linearMap_addHaar_pi_eq_smul_addHaar, span_fourierLp_closure_eq_top, EuclideanSpace.volume_preserving_symm_measurableEquiv_toLp, ProbabilityTheory.variance_id_gaussianReal, zero_at_infty_fourier, Polynomial.Chebyshev.integral_eval_T_real_measureT_of_ne_zero, MeasureTheory.Measure.iInf_rat_gt_prod_Iic, Complex.volume_preserving_equiv_pi, ProbabilityTheory.integral_condCDF, NumberField.mixedEmbedding.volume_preserving_homeoRealMixedSpacePolarSpace, EuclideanSpace.volume_ball_fin_two, ProbabilityTheory.covarianceBilin_real, measurable_exp, MeasureTheory.exists_measurableEmbedding_real, EuclideanSpace.volume_ball, ProbabilityTheory.IsRatCondKernelCDFAux.measurable_right, RCLike.measurable_im, MeasureTheory.MemLp.haarAddCircle, measurableSet_of_differentiableWithinAt_Ioi, ProbabilityTheory.isRatCondKernelCDFAux_preCDF, ENNReal.measurable_ofReal, AEMeasurable.ereal_toReal, CFC.exists_measure_nnrpow_eq_integral_cfcₙ_rpowIntegrand₀₁, ProbabilityTheory.Kernel.isRatCondKernelCDFAux_density_Iic, measurable_derivWithin_Ioi, Measurable.dist, MeasureTheory.exists_nat_measurableEquiv_range_coe_fin_of_finite, measurable_coe_nnreal_real, measurable_coe_real_ereal, InformationTheory.stronglyMeasurable_klFun, stronglyMeasurable_derivWithin_Ici, ProbabilityTheory.measurable_exponentialPDFReal, ProbabilityTheory.isCondKernelCDF_condCDF, ProbabilityTheory.measurable_gaussianPDFReal, MonotoneOn.exists_tendsto_deriv_liminf_lintegral_enorm_le, MeasureTheory.hausdorffMeasure_real, NumberField.mixedEmbedding.measurable_polarCoord_symm, ProbabilityTheory.Kernel.borelMarkovFromReal_apply, ProbabilityTheory.gaussianReal_map_add_const, MeasureTheory.Measure.toBoxAdditive_apply, ProbabilityTheory.instIsMarkovKernel_toKernel, ProbabilityTheory.stronglyMeasurable_gaussianPDFReal, indicator_indepFun_of_bcf, ProbabilityTheory.Kernel.measurable_density_left, exists_eq_interval_average_of_measure, MeasureTheory.charFun_map_mul, MeasureTheory.measurable_llr, MeasureTheory.Measure.tendsto_IicSnd_atTop, NNReal.hasMeasurablePow, ProbabilityTheory.complexMGF_id_gaussianReal, IntervalIntegrable.def', AddCircle.measurePreserving_mk, AddCircle.measurable_mk', WeakFEPair.hg_int, tendsto_Icc_vitaliFamily_left, tendsto_measure_Icc_nhdsWithin_right', intervalIntegral.abs_integral_eq_abs_integral_uIoc, ProbabilityTheory.integral_id_gaussianReal, map_volume_mul_right, ProbabilityTheory.isProbabilityMeasureGamma, unitInterval.measurableEmbedding_coe, volume_euclideanSpace_eq_dirac, ProbabilityTheory.IsRatCondKernelCDFAux.setIntegral_iInf_rat_gt, BoxIntegral.Box.volume_apply, WeakFEPair.hf_int, Measurable.ennreal_toReal, measurable_sin, ProbabilityTheory.gaussianReal_map_const_sub, TemperedDistribution.derivCLM_toTemperedDistributionCLM_eq, StieltjesFunction.ae_hasDerivAt, hasSum_sq_fourierCoeff, ProbabilityTheory.measure_condCDF_Iic, measurable_log, ProbabilityTheory.gaussianReal_map_const_add, ProbabilityTheory.Kernel.instIsMarkovKernelCondKernelReal, ProbabilityTheory.measurable_measure_condCDF, ProbabilityTheory.variance_linearMap_gaussianReal, ProbabilityTheory.stronglyMeasurable_gammaPDFReal, fourierBasis_repr, ProbabilityTheory.mgf_id_gaussianReal, BoxIntegral.Box.measurableSet_Ioo, ProbabilityTheory.lintegral_preCDF_fst, ProbabilityTheory.IsRatCondKernelCDF.measurable, intervalIntegral.norm_integral_eq_norm_integral_uIoc, ProbabilityTheory.IsMeasurableRatCDF.measurable, Polynomial.Chebyshev.integral_eval_T_real_mul_eval_T_real_measureT_of_ne, MeasureTheory.addHaarMeasure_eq_volume, ProbabilityTheory.setLIntegral_condCDF, ProbabilityTheory.isProbabilityMeasureBeta, ProbabilityTheory.IsMeasurableRatCDF.measurable_measure_stieltjesFunction, ProbabilityTheory.measure_condCDF_univ, ProbabilityTheory.lintegral_stieltjesOfMeasurableRat, Probability.stronglyMeasurable_cauchyPDFReal, MeasureTheory.Measure.IicSnd_univ, indicator_indepFun_process_of_prod_bcf, MeasureTheory.Measure.volumeIoiPow_apply_Iio, ProbabilityTheory.Kernel.measurable_densityProcess_right, EuclideanSpace.coe_measurableEquiv, borelSpace, EReal.measurableEmbedding_coe, AEMeasurable.re, Polynomial.Chebyshev.integral_eval_T_real_mul_self_measureT_zero, ProbabilityTheory.measurable_condCDF, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, ProbabilityTheory.stronglyMeasurable_betaPDFReal, IntervalIntegrable.aestronglyMeasurable_restrict_uIoc, ProbabilityTheory.IsCondKernelCDF.lintegral, tsum_sq_fourierCoeff, aemeasurable_derivWithin_Ici, ProbabilityTheory.measurable_betaPDFReal, Icc_mem_vitaliFamily_at_right, hasDerivAt_fourierIntegral, EuclideanSpace.measurableEquiv_toEquiv, Probability.instIsProbabilityMeasure_cauchyMeasure, MeasureTheory.Measure.IicSnd_ac_fst, intervalIntegral.integral_eq_integral_of_support_subset, Complex.measurable_ofReal, MeasureTheory.charFun_map_eq_charFunDual_smul, SchwartzMap.tsum_eq_tsum_fourierIntegral, MeasureTheory.intervalIntegrable_charFun, ProbabilityTheory.isProbabilityMeasureExponential, ProbabilityTheory.gaussianReal_apply_eq_integral, ProbabilityTheory.IsRatCondKernelCDFAux.setIntegral, AEMeasurable.coe_nnreal_real, ProbabilityTheory.setIntegral_stieltjesOfMeasurableRat_rat, ProbabilityTheory.charFun_gaussianReal, measurable_infDist, measurable_derivWithin_Ici, Complex.measurableEquivRealProd_symm_apply, fourierIntegral_deriv, OrthonormalBasis.measurePreserving_measurableEquiv, fourierIntegral_real_eq, NumberField.mixedEmbedding.fundamentalCone.measurableSet_paramSet, AEMeasurable.ennreal_toReal, Probability.measurable_cauchyPDF, ProbabilityTheory.stronglyMeasurable_paretoPDFReal, intervalIntegral.norm_integral_le_integral_norm_uIoc, ProbabilityTheory.setLIntegral_stieltjesOfMeasurableRat, NumberField.mixedEmbedding.fundamentalCone.measurableSet_normLeOne, volume_preserving_transvectionStruct, ProbabilityTheory.Kernel.measurable_density_right, measurableSet_of_differentiableWithinAt_Ici, ProbabilityTheory.Kernel.measurable_rnDerivAux_right, isAddFundamentalDomain_Ioc', exists_measure_rpow_eq_integral, Measurable.carg, EuclideanSpace.volume_closedBall, ProbabilityTheory.stronglyMeasurable_exponentialPDFReal, NumberField.mixedEmbedding.measurable_polarSpaceCoord_symm, Measurable.norm, ProbabilityTheory.IsGaussian.eq_gaussianReal, EuclideanSpace.coe_measurableEquiv_symm, AEMeasurable.dist, fourier_gaussian_pi, coeFn_fourierLp, deriv_fourier, MeasureTheory.measurable_embeddingReal, measurable_coe_nnreal_real_iff, ProbabilityTheory.ofReal_cdf, fourierIntegral_gaussian_pi', unitInterval.symm_symmMeasurableEquiv, ProbabilityTheory.integral_preCDF_fst, ProbabilityTheory.setLIntegral_toKernel_Iic, ProbabilityTheory.IsCondKernelCDF.toKernel_apply, ProbabilityTheory.instIsProbabilityMeasurecdf, SchwartzMap.tsum_eq_tsum_fourier, ZLattice.covolume_eq_det, tendsto_Icc_vitaliFamily_right, ProbabilityTheory.gaussianReal_absolutelyContinuous, map_volume_mul_left, aemeasurable_derivWithin_Ioi, measurable_dist
bridge: MeasureTheory.SimpleFunc.hasBoxIntegral, MeasureTheory.SimpleFunc.box_integral_eq_integral

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
measurableSpace

SecondCountableTopologyEither

Theorems

NameKindAssumesProvesValidatesDepends On
out 📖mathematicalSecondCountableTopology

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
instTopologicalSpaceSubtype
instMeasurableSpace
BorelSpace.measurable_eq
borel_comap
opensMeasurableSpace 📖mathematicalOpensMeasurableSpace
instTopologicalSpaceSubtype
instMeasurableSpace
borel_comap
MeasurableSpace.comap_mono
OpensMeasurableSpace.borel_le

TopologicalSpace.IsTopologicalBasis

Theorems

NameKindAssumesProvesValidatesDepends On
borel_eq_generateFrom 📖mathematicalTopologicalSpace.IsTopologicalBasisborel
MeasurableSpace.generateFrom
borel_eq_generateFrom_of_subbasis
eq_generateFrom

Topology.IsClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
measurableEmbedding 📖mathematicalTopology.IsClosedEmbeddingMeasurableEmbeddingTopology.IsEmbedding.measurableEmbedding
isEmbedding
IsClosed.measurableSet
BorelSpace.opensMeasurable
isClosed_range

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
measurableEmbedding 📖mathematicalTopology.IsEmbedding
MeasurableSet
Set.range
MeasurableEmbeddingSubtype.borelSpace
MeasurableEmbedding.comp
MeasurableEmbedding.subtype_coe
MeasurableEquiv.measurableEmbedding

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
measurableEmbedding 📖mathematicalTopology.IsOpenEmbeddingMeasurableEmbeddingTopology.IsEmbedding.measurableEmbedding
isEmbedding
IsOpen.measurableSet
BorelSpace.opensMeasurable
isOpen_range

ULift

Theorems

NameKindAssumesProvesValidatesDepends On
instBorelSpace 📖mathematicalBorelSpace
topologicalSpace
instMeasurableSpace
MeasurableEmbedding.borelSpace
MeasurableEquiv.measurableEmbedding
Homeomorph.isInducing

Unit

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
instTopologicalSpacePUnit
PUnit.instMeasurableSpace
borel_eq_top_of_discrete
instDiscreteTopologyPUnit

(root)

Definitions

NameCategoryTheorems
BorelSpace 📖CompData
33 mathmath: QuotientGroup.borelSpace, Int.borelSpace, Complex.borelSpace, RCLike.borelSpace, Rat.borelSpace, OrderDual.borelSpace, WithLp.borelSpace, Unit.borelSpace, WithTop.instBorelSpace, DiscreteMeasurableSpace.toBorelSpace, Prod.borelSpace, UpgradedStandardBorel.toBorelSpace, instBorelSpaceSubtypeMemOpens, ULift.instBorelSpace, Empty.borelSpace, EReal.borelSpace, Countable.instBorelSpace, StandardBorelSpace.polish, ENNReal.borelSpace, NNReal.borelSpace, CosetSpace.borelSpace, MeasurableSet.isClopenable', Real.borelSpace, ContinuousLinearMap.instBorelSpace, Subtype.borelSpace, QuotientAddGroup.borelSpace, Bool.borelSpace, exists_borelSpace_of_countablyGenerated_of_separatesPoints, MeasurableEmbedding.borelSpace, AddCosetSpace.borelSpace, Measurable.borelSpace_codomain, Nat.borelSpace, Quotient.borelSpace
OpensMeasurableSpace 📖CompData
6 mathmath: Subtype.opensMeasurableSpace, exists_opensMeasurableSpace_of_countablySeparated, BorelSpace.opensMeasurable, OrderDual.opensMeasurableSpace, opensMeasurableSpace_iff_forall_measurableSet, Prod.opensMeasurableSpace
SecondCountableTopologyEither 📖CompData
2 mathmath: secondCountableTopologyEither_of_left, secondCountableTopologyEither_of_right
borel 📖CompOp
42 mathmath: MeasureTheory.OuterMeasure.IsMetric.borel_le_caratheodory, borel_eq_generateFrom_isClosed, borel_eq_generateFrom_Ici, Real.borel_eq_generateFrom_Iio_rat, OpensMeasurableSpace.borel_le, Real.borel_eq_generateFrom_Ioo_rat, BorelSpace.measurable_eq, borel_eq_generateFrom_of_subbasis, generateFrom_Icc_mem_le_borel, borel_eq_generateFrom_Icc, generateFrom_Ico_mem_le_borel, MeasureTheory.distribHaarChar_apply, Real.borel_eq_generateFrom_Ioi_rat, borel_eq_top_of_discrete, StieltjesFunction.borel_le_measurable, borel_eq_generateFrom_Ioc, Real.borel_eq_generateFrom_Ici_rat, Continuous.borel_measurable, Dense.borel_eq_generateFrom_Ico_mem, Continuous.map_eq_borel, ProbabilityTheory.IsKolmogorovProcess.measurablePair, Dense.borel_eq_generateFrom_Ico_mem_aux, Continuous.map_borel_eq, pi_le_borel_pi, Dense.borel_eq_generateFrom_Ioc_mem_aux, borel_eq_generateFrom_Ico, borel_eq_generateFrom_Ioc_le, borel_eq_generateFrom_Ioi, borel_eq_generateFrom_Iio, borel_eq_top_of_countable, prod_le_borel_prod, borel_anti, borel_eq_generateFrom_Iic, Real.borel_eq_generateFrom_Iic_rat, borel_comap, MeasureTheory.borel_eq_borel_of_le, eq_borel_upgradeStandardBorel, Dense.borel_eq_generateFrom_Ioc_mem, Dense.borel_eq_generateFrom_Icc_mem, TopologicalSpace.IsTopologicalBasis.borel_eq_generateFrom, Dense.borel_eq_generateFrom_Icc_mem_aux, Measurable.map_measurableSpace_eq_borel

Theorems

NameKindAssumesProvesValidatesDepends On
borel_anti 📖mathematicalAntitone
TopologicalSpace
MeasurableSpace
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
MeasurableSpace.instPartialOrder
borel
MeasurableSpace.generateFrom_le
borel_comap 📖mathematicalborel
TopologicalSpace.induced
MeasurableSpace.comap
MeasurableSpace.comap_generateFrom
borel_eq_generateFrom_isClosed 📖mathematicalborel
MeasurableSpace.generateFrom
setOf
Set
IsClosed
le_antisymm
MeasurableSpace.generateFrom_le
MeasurableSet.of_compl
isClosed_compl_iff
isOpen_compl_iff
borel_eq_generateFrom_of_subbasis 📖mathematicalTopologicalSpace.generateFromborel
MeasurableSpace.generateFrom
le_antisymm
MeasurableSpace.generateFrom_le
MeasurableSet.univ
MeasurableSet.inter
TopologicalSpace.isOpen_sUnion_countable
MeasurableSet.sUnion
borel_eq_top_of_countable 📖mathematicalborel
Top.top
MeasurableSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
MeasurableSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
top_unique
MeasurableSet.of_discrete
MeasurableSingletonClass.toDiscreteMeasurableSpace
MeasurableSpace.MeasurableSingletonClass.of_separatesPoints
OpensMeasurableSpace.separatesPoints
BorelSpace.opensMeasurable
borel_eq_top_of_discrete 📖mathematicalborel
Top.top
MeasurableSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
MeasurableSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
top_le_iff
isOpen_discrete
closure_ae_eq_of_null_frontier 📖mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
frontier
instZeroENNReal
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
closure
Filter.EventuallyLE.antisymm
MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyLE.trans
MeasureTheory.ae_le_set
HasSubset.Subset.eventuallyLE
interior_subset
subset_closure
instCountablySeparatedElemOfHasCountableSeparatingOnIsOpen 📖mathematicalMeasurableSpace.CountablySeparated
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
MeasurableSpace.CountablySeparated.subtype_iff
HasCountableSeparatingOn.mono
IsOpen.measurableSet
Set.Subset.rfl
instMeasurableEqOfSecondCountableTopologyOfT2Space 📖mathematicalMeasurableEqIsClosed.measurableSet
Prod.opensMeasurableSpace
secondCountableTopologyEither_of_right
isClosed_diagonal
interior_ae_eq_of_null_frontier 📖mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
frontier
instZeroENNReal
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
interior
Filter.EventuallyLE.antisymm
MeasureTheory.Measure.instOuterMeasureClass
HasSubset.Subset.eventuallyLE
interior_subset
Filter.EventuallyLE.trans
subset_closure
MeasureTheory.ae_le_set
isPiSystem_isClosed 📖mathematicalIsPiSystem
setOf
Set
IsClosed
IsClosed.inter
isPiSystem_isOpen 📖mathematicalIsPiSystem
setOf
Set
IsOpen
IsOpen.inter
measurableSet_closure 📖mathematicalMeasurableSet
closure
IsClosed.measurableSet
isClosed_closure
measurableSet_frontier 📖mathematicalMeasurableSet
frontier
MeasurableSet.diff
measurableSet_closure
measurableSet_interior
measurableSet_interior 📖mathematicalMeasurableSet
interior
IsOpen.measurableSet
isOpen_interior
measurableSet_of_continuousAt 📖mathematicalMeasurableSet
setOf
ContinuousAt
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
IsGδ.measurableSet
IsGδ.setOf_continuousAt
PseudoEMetricSpace.pseudoMetrizableSpace
measurable_of_continuousOn_compl_singleton 📖mathematicalContinuousOn
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Measurablemeasurable_of_measurable_on_compl_singleton
OpensMeasurableSpace.toMeasurableSingletonClass
Continuous.measurable
Subtype.opensMeasurableSpace
continuousOn_iff_continuous_restrict
measurable_of_isClosed 📖mathematicalMeasurableSet
Set.preimage
Measurablemeasurable_of_isOpen
MeasurableSet.compl_iff
Set.preimage_compl
isClosed_compl_iff
measurable_of_isClosed' 📖mathematicalMeasurableSet
Set.preimage
Measurablemeasurable_of_isClosed
Set.eq_empty_or_nonempty
measurable_of_isOpen 📖mathematicalMeasurableSet
Set.preimage
MeasurableBorelSpace.measurable_eq
measurable_generateFrom
measure_closure_of_null_frontier 📖mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
frontier
instZeroENNReal
closureMeasureTheory.measure_congr
MeasureTheory.Measure.instOuterMeasureClass
closure_ae_eq_of_null_frontier
measure_interior_of_null_frontier 📖mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
frontier
instZeroENNReal
interiorMeasureTheory.measure_congr
MeasureTheory.Measure.instOuterMeasureClass
interior_ae_eq_of_null_frontier
nhds_isMeasurablyGenerated 📖mathematicalFilter.IsMeasurablyGenerated
nhds
nhds_def
iInf_subtype'
Filter.iInf_isMeasurablyGenerated
MeasurableSet.principal_isMeasurablyGenerated
IsOpen.measurableSet
nullMeasurableSet_of_null_frontier 📖mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
frontier
instZeroENNReal
MeasureTheory.NullMeasurableSetMeasureTheory.Measure.instOuterMeasureClass
IsOpen.measurableSet
isOpen_interior
Filter.EventuallyEq.symm
interior_ae_eq_of_null_frontier
null_frontier_inter 📖mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
frontier
instZeroENNReal
Set.instInterbot_unique
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
HasSubset.Subset.trans
Set.instIsTransSubset
frontier_inter_subset
MeasureTheory.measure_union_le
add_zero
opensMeasurableSpace_iff_forall_measurableSet 📖mathematicalOpensMeasurableSpace
MeasurableSet
OpensMeasurableSpace.borel_le
MeasurableSpace.generateFrom_le
pi_le_borel_pi 📖mathematicalBorelSpaceMeasurableSpace
MeasurableSpace.instLE
MeasurableSpace.pi
borel
Pi.topologicalSpace
BorelSpace.measurable_eq
iSup_le
MeasurableSpace.comap_le_iff_le_map
Continuous.borel_measurable
continuous_apply
prod_le_borel_prod 📖mathematicalMeasurableSpace
MeasurableSpace.instLE
Prod.instMeasurableSpace
borel
instTopologicalSpaceProd
BorelSpace.measurable_eq
sup_le
MeasurableSpace.comap_le_iff_le_map
Continuous.borel_measurable
continuous_fst
continuous_snd
secondCountableTopologyEither_of_left 📖mathematicalSecondCountableTopologyEither
secondCountableTopologyEither_of_right 📖mathematicalSecondCountableTopologyEither
separatesPointsOfOpensMeasurableSpaceOfT0Space 📖mathematicalMeasurableSpace.SeparatesPointsMathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
MeasurableSpace.exists_measurableSet_of_ne
OpensMeasurableSpace.separatesPoints

---

← Back to Index