Documentation Verification Report

ClosedCompactCylinders

📁 Source: Mathlib/MeasureTheory/Constructions/ClosedCompactCylinders.lean

Statistics

MetricCount
DefinitionsclosedCompactCylinders, finset
2
Theoremseq_cylinder, isClosed, isCompact, cylinder_mem_closedCompactCylinders, empty_mem_closedCompactCylinders, mem_closedCompactCylinders, mem_measurableCylinders_of_mem_closedCompactCylinders
7
Total9

MeasureTheory

Definitions

NameCategoryTheorems
closedCompactCylinders 📖CompOp
3 mathmath: mem_closedCompactCylinders, empty_mem_closedCompactCylinders, cylinder_mem_closedCompactCylinders

Theorems

NameKindAssumesProvesValidatesDepends On
cylinder_mem_closedCompactCylinders 📖mathematicalIsCompact
Pi.topologicalSpace
Finset
SetLike.instMembership
Finset.instSetLike
Set
Set.instMembership
closedCompactCylinders
cylinder
mem_closedCompactCylinders
empty_mem_closedCompactCylinders 📖mathematicalSet
Set.instMembership
closedCompactCylinders
Set.instEmptyCollection
isClosed_empty
isCompact_empty
cylinder_empty
mem_closedCompactCylinders 📖mathematicalSet
Set.instMembership
closedCompactCylinders
IsClosed
Pi.topologicalSpace
Finset
SetLike.instMembership
Finset.instSetLike
IsCompact
cylinder
mem_measurableCylinders_of_mem_closedCompactCylinders 📖mathematicalSecondCountableTopology
OpensMeasurableSpace
Set
Set.instMembership
closedCompactCylinders
measurableCylindersmem_measurableCylinders
IsClosed.measurableSet
Pi.opensMeasurableSpace
Finite.to_countable
Finite.of_fintype
closedCompactCylinders.isClosed
closedCompactCylinders.eq_cylinder

MeasureTheory.closedCompactCylinders

Definitions

NameCategoryTheorems
finset 📖CompOp
3 mathmath: isCompact, eq_cylinder, isClosed

Theorems

NameKindAssumesProvesValidatesDepends On
eq_cylinder 📖mathematicalSet
Set.instMembership
MeasureTheory.closedCompactCylinders
MeasureTheory.cylinder
finset
set
MeasureTheory.mem_closedCompactCylinders
isClosed 📖mathematicalSet
Set.instMembership
MeasureTheory.closedCompactCylinders
IsClosed
Pi.topologicalSpace
Finset
SetLike.instMembership
Finset.instSetLike
finset
set
MeasureTheory.mem_closedCompactCylinders
isCompact 📖mathematicalSet
Set.instMembership
MeasureTheory.closedCompactCylinders
IsCompact
Pi.topologicalSpace
Finset
SetLike.instMembership
Finset.instSetLike
finset
set
MeasureTheory.mem_closedCompactCylinders

---

← Back to Index