Documentation Verification Report

Cylinders

πŸ“ Source: Mathlib/MeasureTheory/Constructions/Cylinders.lean

Statistics

MetricCount
Definitionscylinder, cylinderEvents, measurableCylinders, finset, squareCylinders
5
Theoremscylinder, of_mem_measurableCylinders, cylinder, eval_cylinderEvents, comap_eval_le_generateFrom_squareCylinders_singleton, compl_cylinder, compl_mem_measurableCylinders, cylinderEvents_le_pi, cylinderEvents_mono, cylinderEvents_univ, cylinder_empty, cylinder_eq_cylinder_union, cylinder_eq_empty_iff, cylinder_mem_measurableCylinders, cylinder_univ, dependsOn_cylinder_indicator_const, diff_cylinder_same, diff_mem_measurableCylinders, disjoint_cylinder_iff, empty_mem_measurableCylinders, eq_of_cylinder_eq_of_subset, generateFrom_measurableCylinders, generateFrom_squareCylinders, inter_cylinder, inter_cylinder_same, inter_mem_measurableCylinders, isPiSystem_measurableCylinders, isPiSystem_squareCylinders, eq_cylinder, measurableSet, measurableCylinders_nat, measurable_cylinderEvent_apply, measurable_cylinderEvents_iff, measurable_cylinderEvents_lambda, measurable_restrict_cylinderEvents, measurable_uniqueElim_cylinderEvents, measurable_update_cylinderEvents, measurable_update_cylinderEvents', measurable_update_cylinderEvents_left, mem_cylinder, mem_measurableCylinders, squareCylinders_eq_iUnion_image, union_cylinder, union_cylinder_same, union_mem_measurableCylinders, univ_mem_measurableCylinders
46
Total51

MeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
cylinder πŸ“–mathematicalMeasurableSet
MeasurableSpace.pi
Finset
SetLike.instMembership
Finset.instSetLike
MeasureTheory.cylinderβ€”measurable_pi_lambda
measurable_pi_apply
of_mem_measurableCylinders πŸ“–mathematicalSet
Set.instMembership
MeasureTheory.measurableCylinders
MeasurableSet
MeasurableSpace.pi
β€”MeasureTheory.mem_measurableCylinders
cylinder

MeasureTheory

Definitions

NameCategoryTheorems
cylinder πŸ“–CompOp
28 mathmath: ProbabilityTheory.Kernel.trajContent_cylinder, inter_cylinder_same, cylinder_empty, inter_cylinder, piContent_cylinder, cylinder_eq_cylinder_union, compl_cylinder, union_cylinder, cylinder_univ, closedCompactCylinders.eq_cylinder, projectiveFamilyContent_cylinder, measurableCylinders_nat, disjoint_cylinder_iff, mem_closedCompactCylinders, IsClosed.cylinder, cylinder_mem_measurableCylinders, MeasurableSet.cylinder, IsProjectiveLimit.measure_cylinder, cylinder_eq_empty_iff, mem_cylinder, dependsOn_cylinder_indicator_const, Measure.infinitePi_cylinder, measurableCylinders.eq_cylinder, ProbabilityTheory.Kernel.trajContent_eq_lmarginalPartialTraj, cylinder_mem_closedCompactCylinders, union_cylinder_same, mem_measurableCylinders, diff_cylinder_same
cylinderEvents πŸ“–CompOp
9 mathmath: measurable_restrict_cylinderEvents, measurable_update_cylinderEvents, measurable_update_cylinderEvents_left, cylinderEvents_mono, measurable_update_cylinderEvents', measurable_cylinderEvents_iff, measurable_cylinderEvent_apply, cylinderEvents_le_pi, cylinderEvents_univ
measurableCylinders πŸ“–CompOp
20 mathmath: ProbabilityTheory.Kernel.trajContent_cylinder, empty_mem_measurableCylinders, ProbabilityTheory.Kernel.isSigmaSubadditive_trajContent, piContent_cylinder, projectiveFamilyContent_eq, isSetSemiring_measurableCylinders, univ_mem_measurableCylinders, projectiveFamilyContent_cylinder, isSetRing_measurableCylinders, projectiveFamilyContent_congr, piContent_eq_measure_pi, measurableCylinders_nat, mem_measurableCylinders_of_mem_closedCompactCylinders, isSetAlgebra_measurableCylinders, isSigmaSubadditive_piContent, cylinder_mem_measurableCylinders, isPiSystem_measurableCylinders, generateFrom_measurableCylinders, ProbabilityTheory.Kernel.trajContent_eq_lmarginalPartialTraj, mem_measurableCylinders
squareCylinders πŸ“–CompOp
3 mathmath: isPiSystem_squareCylinders, generateFrom_squareCylinders, squareCylinders_eq_iUnion_image

Theorems

NameKindAssumesProvesValidatesDepends On
comap_eval_le_generateFrom_squareCylinders_singleton πŸ“–mathematicalβ€”MeasurableSpace
MeasurableSpace.instLE
MeasurableSpace.comap
Function.eval
MeasurableSpace.generateFrom
Set.image
Set
Set.pi
Set.instSingletonSet
Set.univ
setOf
MeasurableSet
β€”Set.image_congr
Set.singleton_pi
MeasurableSpace.comap_eq_generateFrom
MeasurableSpace.generateFrom_mono
compl_cylinder πŸ“–mathematicalβ€”Compl.compl
Set
Set.instCompl
cylinder
β€”Set.ext
compl_mem_measurableCylinders πŸ“–mathematicalSet
Set.instMembership
measurableCylinders
Compl.compl
Set.instCompl
β€”mem_measurableCylinders
MeasurableSet.compl
compl_cylinder
cylinderEvents_le_pi πŸ“–mathematicalβ€”MeasurableSpace
MeasurableSpace.instLE
cylinderEvents
MeasurableSpace.pi
β€”cylinderEvents_univ
cylinderEvents_mono
Set.subset_univ
cylinderEvents_mono πŸ“–mathematicalSet
Set.instHasSubset
MeasurableSpace
MeasurableSpace.instLE
cylinderEvents
β€”biSup_mono
cylinderEvents_univ πŸ“–mathematicalβ€”cylinderEvents
Set.univ
MeasurableSpace.pi
β€”iSup_congr_Prop
iSup_pos
cylinder_empty πŸ“–mathematicalβ€”cylinder
Set
Set.instEmptyCollection
β€”cylinder.eq_1
Set.preimage_empty
cylinder_eq_cylinder_union πŸ“–mathematicalβ€”cylinder
Finset
Finset.instUnion
Set.preimage
Finset.restrictβ‚‚
Finset.subset_union_left
β€”Set.ext
Finset.subset_union_left
cylinder_eq_empty_iff πŸ“–mathematicalβ€”cylinder
Set
Set.instEmptyCollection
β€”Set.nonempty_iff_ne_empty
mem_cylinder
Set.notMem_empty
cylinder_empty
cylinder_mem_measurableCylinders πŸ“–mathematicalMeasurableSet
MeasurableSpace.pi
Finset
SetLike.instMembership
Finset.instSetLike
Set
Set.instMembership
measurableCylinders
cylinder
β€”mem_measurableCylinders
cylinder_univ πŸ“–mathematicalβ€”cylinder
Set.univ
β€”cylinder.eq_1
Set.preimage_univ
dependsOn_cylinder_indicator_const πŸ“–mathematicalβ€”DependsOn
Set.indicator
cylinder
SetLike.coe
Finset
Finset.instSetLike
β€”Set.indicator_const_eq_indicator_const
diff_cylinder_same πŸ“–mathematicalβ€”Set
Set.instSDiff
cylinder
β€”Set.ext
diff_mem_measurableCylinders πŸ“–mathematicalSet
Set.instMembership
measurableCylinders
Set.instSDiffβ€”Set.diff_eq_compl_inter
inter_mem_measurableCylinders
compl_mem_measurableCylinders
disjoint_cylinder_iff πŸ“–mathematicalβ€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
cylinder
Set.preimage
Finset.restrictβ‚‚
Finset
Finset.instUnion
Finset.subset_union_left
Finset.subset_union_right
β€”Finset.subset_union_left
Finset.subset_union_right
empty_mem_measurableCylinders πŸ“–mathematicalβ€”Set
Set.instMembership
measurableCylinders
Set.instEmptyCollection
β€”MeasurableSet.empty
cylinder_empty
eq_of_cylinder_eq_of_subset πŸ“–mathematicalcylinder
Finset
Finset.instHasSubset
Set.preimage
Finset.restrictβ‚‚
β€”Set.ext
Subtype.prop
Set.ext_iff
generateFrom_measurableCylinders πŸ“–mathematicalβ€”MeasurableSpace.generateFrom
measurableCylinders
MeasurableSpace.pi
β€”le_antisymm
MeasurableSpace.generateFrom_le
mem_measurableCylinders
MeasurableSet.cylinder
iSup_le
LE.le.trans
comap_eval_le_generateFrom_squareCylinders_singleton
MeasurableSpace.generateFrom_mono
Set.image_congr
Set.singleton_pi
Finset.mem_singleton_self
measurable_pi_apply
Set.ext
generateFrom_squareCylinders πŸ“–mathematicalβ€”MeasurableSpace.generateFrom
squareCylinders
setOf
Set
MeasurableSet
MeasurableSpace.pi
β€”le_antisymm
MeasurableSpace.generateFrom_le_iff
MeasurableSet.pi
Finset.countable_toSet
iSup_le
LE.le.trans
comap_eval_le_generateFrom_squareCylinders_singleton
MeasurableSpace.generateFrom_mono
Finset.coe_singleton
squareCylinders_eq_iUnion_image
Set.subset_iUnion
inter_cylinder πŸ“–mathematicalβ€”Set
Set.instInter
cylinder
Finset
Finset.instUnion
Set.preimage
Finset.restrictβ‚‚
Finset.subset_union_left
Finset.subset_union_right
β€”β€”
inter_cylinder_same πŸ“–mathematicalβ€”Set
Set.instInter
cylinder
β€”β€”
inter_mem_measurableCylinders πŸ“–mathematicalSet
Set.instMembership
measurableCylinders
Set.instInterβ€”mem_measurableCylinders
Finset.subset_union_left
Finset.subset_union_right
MeasurableSet.inter
measurable_pi_lambda
measurable_pi_apply
inter_cylinder
isPiSystem_measurableCylinders πŸ“–mathematicalβ€”IsPiSystem
measurableCylinders
β€”inter_mem_measurableCylinders
isPiSystem_squareCylinders πŸ“–mathematicalIsPiSystem
Set
Set.instMembership
Set.univ
squareCylindersβ€”Finset.piecewise_eq_of_mem
Finset.piecewise_eq_of_notMem
Set.pi_congr
Set.union_pi_inter
Set.mem_univ_pi
Set.mem_pi
Set.mem_inter_iff
Set.mem_univ
Finset.coe_union
measurableCylinders_nat πŸ“–mathematicalβ€”measurableCylinders
Set.iUnion
Set
MeasurableSet
MeasurableSpace.pi
Finset
SetLike.instMembership
Finset.instSetLike
Finset.Iic
Nat.instPreorder
LocallyFiniteOrder.toLocallyFiniteOrderBot
Nat.instOrderBot
Nat.instLocallyFiniteOrder
Set.instSingletonSet
cylinder
β€”Set.ext
Finset.subset_Iic_sup_id
Finset.measurable_restrictβ‚‚
Set.preimage_comp
Finset.restrictβ‚‚_comp_restrict
Set.mem_singleton
measurable_cylinderEvent_apply πŸ“–mathematicalSet
Set.instMembership
Measurable
cylinderEvents
β€”measurable_cylinderEvents_iff
measurable_id
measurable_cylinderEvents_iff πŸ“–mathematicalβ€”Measurable
cylinderEvents
β€”MeasurableSpace.comap_iSup
iSup_congr_Prop
MeasurableSpace.comap_comp
measurable_cylinderEvents_lambda πŸ“–mathematicalMeasurableMeasurableSpace.piβ€”measurable_pi_iff
measurable_restrict_cylinderEvents πŸ“–mathematicalβ€”Measurable
cylinderEvents
MeasurableSpace.pi
Set.Elem
Set
Set.instMembership
Set.restrict
β€”measurable_pi_iff
measurable_cylinderEvent_apply
measurable_uniqueElim_cylinderEvents πŸ“–mathematicalβ€”Measurable
Unique.instInhabited
MeasurableSpace.pi
uniqueElim
β€”measurable_id
measurable_update_cylinderEvents πŸ“–mathematicalβ€”Measurable
cylinderEvents
Function.update
β€”Measurable.comp
measurable_update_cylinderEvents'
measurable_prodMk_left
measurable_update_cylinderEvents' πŸ“–mathematicalβ€”Measurable
MeasurableSpace.prod
cylinderEvents
Function.update
β€”measurable_cylinderEvents_iff
measurable_snd
measurable_fst
measurable_update_cylinderEvents_left πŸ“–mathematicalβ€”Measurable
cylinderEvents
Function.update
β€”Measurable.comp
measurable_update_cylinderEvents'
measurable_prodMk_right
mem_cylinder πŸ“–mathematicalβ€”Set
Set.instMembership
cylinder
Finset.restrict
β€”Set.mem_preimage
mem_measurableCylinders πŸ“–mathematicalβ€”Set
Set.instMembership
measurableCylinders
MeasurableSet
MeasurableSpace.pi
Finset
SetLike.instMembership
Finset.instSetLike
cylinder
β€”β€”
squareCylinders_eq_iUnion_image πŸ“–mathematicalβ€”squareCylinders
Set.iUnion
Set
Finset
Set.image
Set.pi
SetLike.coe
Finset.instSetLike
Set.univ
β€”Set.ext
union_cylinder πŸ“–mathematicalβ€”Set
Set.instUnion
cylinder
Finset
Finset.instUnion
Set.preimage
Finset.restrictβ‚‚
Finset.subset_union_left
Finset.subset_union_right
β€”β€”
union_cylinder_same πŸ“–mathematicalβ€”Set
Set.instUnion
cylinder
β€”β€”
union_mem_measurableCylinders πŸ“–mathematicalSet
Set.instMembership
measurableCylinders
Set.instUnionβ€”Set.union_eq_compl_compl_inter_compl
compl_mem_measurableCylinders
inter_mem_measurableCylinders
univ_mem_measurableCylinders πŸ“–mathematicalβ€”Set
Set.instMembership
measurableCylinders
Set.univ
β€”Set.compl_empty
compl_mem_measurableCylinders
empty_mem_measurableCylinders

MeasureTheory.IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
cylinder πŸ“–mathematicalβ€”IsClosed
Pi.topologicalSpace
MeasureTheory.cylinder
β€”IsClosed.preimage
continuous_pi
continuous_apply

MeasureTheory.Measurable

Theorems

NameKindAssumesProvesValidatesDepends On
eval_cylinderEvents πŸ“–β€”Set
Set.instMembership
Measurable
MeasureTheory.cylinderEvents
β€”β€”Measurable.comp
MeasureTheory.measurable_cylinderEvent_apply

MeasureTheory.measurableCylinders

Definitions

NameCategoryTheorems
finset πŸ“–CompOp
2 mathmath: eq_cylinder, measurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
eq_cylinder πŸ“–mathematicalSet
Set.instMembership
MeasureTheory.measurableCylinders
MeasureTheory.cylinder
finset
set
β€”MeasureTheory.mem_measurableCylinders
measurableSet πŸ“–mathematicalSet
Set.instMembership
MeasureTheory.measurableCylinders
MeasurableSet
MeasurableSpace.pi
Finset
SetLike.instMembership
Finset.instSetLike
finset
set
β€”MeasureTheory.mem_measurableCylinders

---

← Back to Index