Documentation Verification Report

Basic

πŸ“ Source: Mathlib/MeasureTheory/Constructions/Polish/Basic.lean

Statistics

MetricCount
DefinitionsAnalyticSet, MeasurablySeparable, measurableEquiv, borelSchroederBernstein, measurableEquivNatBoolOfNotCountable, measurableEquivOfNotCountable, StandardBorelSpace, UpgradedStandardBorel, toMeasurableSpace, toTopologicalSpace, upgradeStandardBorel
11
TheoremsborelSpace, map_borel_eq, map_eq_borel, measurableEmbedding, measurableEmbedding, borelSpace, analyticSet, measurableSet_image_of_continuousOn_injOn, analyticSet_image, borelSpace_codomain, exists_continuous, map_measurableSpace_eq, map_measurableSpace_eq_borel, measurableEmbedding, measurableSet_preimage_iff_inter_range, measurableSet_preimage_iff_of_surjective, measurableSet_preimage_iff_preimage_val, measurable_comp_iff_of_surjective, measurable_comp_iff_restrict, analyticSet, analyticSet_image, image_of_antitoneOn, image_of_continuousOn_injOn, image_of_measurable_injOn, image_of_monotoneOn, image_of_monotoneOn_of_continuousOn, isClopenable, isClopenable', standardBorel, iInter, iUnion, image_of_continuous, image_of_continuousOn, measurableSet_of_compl, measurablySeparable, preimage, AnalyticSet_def, iUnion, analyticSet_empty, analyticSet_iff_exists_polishSpace_range, analyticSet_range_of_polishSpace, borel_eq_borel_of_le, isClopenable_iff_measurableSet, measurableSet_exists_tendsto, measurableSet_range_of_continuous_injective, measurableSet_tendsto_fun, measurablySeparable_range_of_disjoint, borelSpace, borelSpace, borelSpace, pi_countable, polish, prod, toBorelSpace, toPolishSpace, countablyGenerated_of_standardBorel, eq_borel_upgradeStandardBorel, measurableSingleton_of_standardBorel, standardBorelSpace_of_discreteMeasurableSpace, standardBorel_of_polish
60
Total71

AddCosetSpace

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace πŸ“–mathematicalβ€”BorelSpace
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
QuotientAddGroup.instTopologicalSpace
QuotientAddGroup.measurableSpace
β€”Quotient.borelSpace
T1Space.t0Space
T2Space.t1Space

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
map_borel_eq πŸ“–mathematicalContinuousMeasurableSpace.map
borel
β€”map_eq_borel
map_eq_borel πŸ“–mathematicalContinuousMeasurableSpace.map
borel
β€”Measurable.map_measurableSpace_eq
standardBorel_of_polish
MeasurableSpace.countablySeparated_of_separatesPoints
BorelSpace.countablyGenerated
separatesPointsOfOpensMeasurableSpaceOfT0Space
BorelSpace.opensMeasurable
measurable
measurableEmbedding πŸ“–mathematicalContinuousMeasurableEmbeddingβ€”measurable
BorelSpace.opensMeasurable
MeasurableSet.image_of_continuousOn_injOn
continuousOn
Function.Injective.injOn

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
measurableEmbedding πŸ“–mathematicalMeasurableSet
ContinuousOn
Set.InjOn
MeasurableEmbedding
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
Set.restrict
β€”Set.injOn_iff_injective
Continuous.measurable
Subtype.opensMeasurableSpace
BorelSpace.opensMeasurable
continuousOn_iff_continuous_restrict
MeasurableEmbedding.measurableSet_image
MeasurableEmbedding.subtype_coe
MeasurableSet.image_of_continuousOn_injOn
mono
Subtype.coe_image_subset
Set.InjOn.mono
Set.image_comp

CosetSpace

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace πŸ“–mathematicalβ€”BorelSpace
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
QuotientGroup.instTopologicalSpace
QuotientGroup.measurableSpace
β€”Quotient.borelSpace
T1Space.t0Space
T2Space.t1Space

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
analyticSet πŸ“–mathematicalβ€”MeasureTheory.AnalyticSetβ€”Subtype.range_val
MeasureTheory.analyticSet_range_of_polishSpace
polishSpace
continuous_subtype_val
measurableSet_image_of_continuousOn_injOn πŸ“–mathematicalContinuousOn
Set.InjOn
MeasurableSet
Set.image
β€”Set.image_eq_range
MeasureTheory.measurableSet_range_of_continuous_injective
polishSpace
continuousOn_iff_continuous_restrict
Set.injOn_iff_injective

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
analyticSet_image πŸ“–mathematicalIsOpen
Continuous
MeasureTheory.AnalyticSet
Set.image
β€”Set.image_eq_range
MeasureTheory.analyticSet_range_of_polishSpace
polishSpace
Continuous.comp
continuous_subtype_val

Measurable

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace_codomain πŸ“–mathematicalMeasurableBorelSpaceβ€”map_measurableSpace_eq
MeasurableSpace.countablySeparated_of_hasCountableSeparatingOn
MeasurableSpace.hasCountableSeparatingOn_of_countablySeparated_subtype
instCountablySeparatedElemOfHasCountableSeparatingOnIsOpen
instHasCountableSeparatingOnIsOpenOfT0SpaceOfSecondCountableTopologyElem
Subtype.t0Space
TopologicalSpace.Subtype.secondCountableTopology
map_measurableSpace_eq_borel
exists_continuous πŸ“–mathematicalMeasurableTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
Continuous
PolishSpace
β€”TopologicalSpace.exists_countable_basis
MeasurableSet.isClopenable
Set.mem_range_self
IsOpen.measurableSet
Subtype.opensMeasurableSpace
TopologicalSpace.IsTopologicalBasis.isOpen
PolishSpace.exists_polishSpace_forall_le
Set.Countable.to_subtype
TopologicalSpace.IsTopologicalBasis.continuous_iff
Continuous.comp
continuous_subtype_val
map_measurableSpace_eq πŸ“–mathematicalMeasurableMeasurableSpace.mapβ€”MeasurableSpace.ext
measurableSet_preimage_iff_of_surjective
map_measurableSpace_eq_borel πŸ“–mathematicalMeasurableMeasurableSpace.map
borel
β€”mono
le_rfl
OpensMeasurableSpace.borel_le
map_measurableSpace_eq
MeasurableSpace.countablySeparated_of_separatesPoints
BorelSpace.countablyGenerated
separatesPointsOfOpensMeasurableSpaceOfT0Space
BorelSpace.opensMeasurable
measurableEmbedding πŸ“–mathematicalMeasurableMeasurableEmbeddingβ€”MeasurableSet.image_of_measurable_injOn
Function.Injective.injOn
measurableSet_preimage_iff_inter_range πŸ“–mathematicalMeasurable
MeasurableSet
Set.range
Set.preimage
Set
Set.instInter
β€”measurableSet_preimage_iff_preimage_val
Set.inter_comm
MeasurableEmbedding.measurableSet_image
MeasurableEmbedding.subtype_coe
Subtype.image_preimage_coe
measurableSet_preimage_iff_of_surjective πŸ“–mathematicalMeasurableMeasurableSet
Set.preimage
β€”exists_opensMeasurableSpace_of_countablySeparated
MeasureTheory.AnalyticSet.measurableSet_of_compl
T25Space.t2Space
T3Space.t25Space
T4Space.t3Space
Set.image_preimage_eq
MeasurableSet.analyticSet_image
TopologicalSpace.Subtype.secondCountableTopology
MeasurableSet.compl
measurableSet_preimage_iff_preimage_val πŸ“–mathematicalMeasurableMeasurableSet
Set.preimage
Set.Elem
Set.range
Subtype.instMeasurableSpace
Set
Set.instMembership
β€”Set.mem_range_self
measurableSet_preimage_iff_of_surjective
Set.rangeFactorization_surjective
measurable_comp_iff_of_surjective πŸ“–β€”Measurableβ€”β€”measurableSet_preimage_iff_of_surjective
measurable_comp_iff_restrict πŸ“–mathematicalMeasurableSet.Elem
Set.range
Subtype.instMeasurableSpace
Set
Set.instMembership
Set.restrict
β€”measurableSet_preimage_iff_preimage_val

MeasurableSet

Theorems

NameKindAssumesProvesValidatesDepends On
analyticSet πŸ“–mathematicalMeasurableSetMeasureTheory.AnalyticSetβ€”isClopenable
IsClosed.analyticSet
Set.image_congr
Set.image_id'
MeasureTheory.AnalyticSet.image_of_continuous
continuous_id_of_le
analyticSet_image πŸ“–mathematicalMeasurableSet
Measurable
MeasureTheory.AnalyticSet
Set.image
β€”Measurable.exists_continuous
UpgradedStandardBorel.toPolishSpace
UpgradedStandardBorel.toBorelSpace
borel_anti
MeasureTheory.AnalyticSet.image_of_continuous
analyticSet
eq_borel_upgradeStandardBorel
image_of_antitoneOn πŸ“–mathematicalMeasurableSet
AntitoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.imageβ€”image_of_monotoneOn
OrderDual.borelSpace
instOrderTopologyOrderDual
instSecondCountableTopologyOrderDual
AntitoneOn.dual_right
image_of_continuousOn_injOn πŸ“–mathematicalMeasurableSet
ContinuousOn
Set.InjOn
Set.imageβ€”isClopenable
IsClosed.measurableSet_image_of_continuousOn_injOn
ContinuousOn.mono_dom
image_of_measurable_injOn πŸ“–mathematicalMeasurableSet
Measurable
Set.InjOn
Set.imageβ€”exists_opensMeasurableSpace_of_countablySeparated
Measurable.exists_continuous
UpgradedStandardBorel.toPolishSpace
UpgradedStandardBorel.toBorelSpace
TopologicalSpace.Subtype.secondCountableTopology
Continuous.measurable
BorelSpace.opensMeasurable
continuous_id_of_le
image_of_continuousOn_injOn
T25Space.t2Space
T3Space.t25Space
T4Space.t3Space
Continuous.continuousOn
image_of_monotoneOn πŸ“–mathematicalMeasurableSet
MonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.imageβ€”MonotoneOn.countable_not_continuousWithinAt
Set.image_union
Set.ext
Set.sdiff_sep_self
union
image_of_monotoneOn_of_continuousOn
diff
Set.Countable.measurableSet
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
PolishSpace.toSecondCountableTopology
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
TopologicalSpace.IsCompletelyPseudoMetrizableSpace.PseudoMetrizableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.toIsCompletelyPseudoMetrizableSpace
PolishSpace.toIsCompletelyMetrizableSpace
MonotoneOn.mono
Set.diff_subset
ContinuousWithinAt.mono
T25Space.t2Space
T3Space.t25Space
Set.Countable.image
image_of_monotoneOn_of_continuousOn πŸ“–mathematicalMeasurableSet
MonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
ContinuousOn
Set.imageβ€”MonotoneOn.countable_setOf_two_preimages
PolishSpace.toSecondCountableTopology
Set.ext
biUnion
Set.OrdConnected.preimage_monotoneOn
Set.ordConnected_singleton
inter
Set.OrdConnected.measurableSet
BorelSpace.opensMeasurable
OrderTopology.to_orderClosedTopology
Set.diff_self_inter
Set.diff_union_inter
union
image_of_continuousOn_injOn
T25Space.t2Space
T3Space.t25Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
diff
ContinuousOn.mono
Set.diff_subset
Mathlib.Tactic.Contrapose.contrapose₁
lt_of_le_of_ne
Set.Countable.measurableSet
OpensMeasurableSpace.toMeasurableSingletonClass
T5Space.toT1Space
Set.Countable.mono
isClopenable πŸ“–mathematicalMeasurableSetPolishSpace.IsClopenableβ€”induction_on_open
IsOpen.isClopenable
PolishSpace.IsClopenable.compl
PolishSpace.IsClopenable.iUnion
isClopenable' πŸ“–mathematicalMeasurableSetBorelSpace
PolishSpace
IsClosed
IsOpen
β€”isClopenable
UpgradedStandardBorel.toPolishSpace
UpgradedStandardBorel.toBorelSpace
eq_borel_upgradeStandardBorel
MeasureTheory.borel_eq_borel_of_le
standardBorel πŸ“–mathematicalMeasurableSetStandardBorelSpace
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
β€”isClopenable'
standardBorel_of_polish
Subtype.borelSpace
IsClosed.polishSpace

MeasureTheory

Definitions

NameCategoryTheorems
AnalyticSet πŸ“–MathDef
8 mathmath: analyticSet_iff_exists_polishSpace_range, MeasurableSet.analyticSet, IsOpen.analyticSet_image, IsClosed.analyticSet, AnalyticSet_def, MeasurableSet.analyticSet_image, analyticSet_range_of_polishSpace, analyticSet_empty
MeasurablySeparable πŸ“–MathDef
2 mathmath: measurablySeparable_range_of_disjoint, AnalyticSet.measurablySeparable

Theorems

NameKindAssumesProvesValidatesDepends On
AnalyticSet_def πŸ“–mathematicalβ€”AnalyticSet
Set
Set.instEmptyCollection
Continuous
Pi.topologicalSpace
instTopologicalSpaceNat
Set.range
β€”β€”
analyticSet_empty πŸ“–mathematicalβ€”AnalyticSet
Set
Set.instEmptyCollection
β€”AnalyticSet_def
analyticSet_iff_exists_polishSpace_range πŸ“–mathematicalβ€”AnalyticSet
Continuous
Set.range
β€”AnalyticSet_def
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
Encodable.countable
Empty.instIsEmpty
PseudoEMetricSpace.pseudoMetrizableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
DiscreteUniformity.instCompleteSpace
DiscreteUniformity.inst
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
continuous_bot
Set.range_eq_empty
TopologicalSpace.instSeparableSpaceForallOfCountable
instCountableNat
Pi.complete
instIsCountablyGeneratedProdForallUniformityOfCountable
Pi.instT0Space
analyticSet_range_of_polishSpace
analyticSet_range_of_polishSpace πŸ“–mathematicalContinuousAnalyticSet
Set.range
β€”isEmpty_or_nonempty
Set.range_eq_empty
analyticSet_empty
AnalyticSet_def
PolishSpace.exists_nat_nat_continuous_surjective
Continuous.comp
Function.Surjective.range_comp
borel_eq_borel_of_le πŸ“–mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
borelβ€”le_antisymm
Continuous.measurableEmbedding
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.MetrizableSpace
PolishSpace.toIsCompletelyMetrizableSpace
continuous_id_of_le
Set.image_congr
Set.image_id'
MeasurableEmbedding.measurableSet_image
borel_anti
isClopenable_iff_measurableSet πŸ“–mathematicalβ€”PolishSpace.IsClopenable
MeasurableSet
β€”BorelSpace.measurable_eq
borel_eq_borel_of_le
MeasurableSpace.measurableSet_generateFrom
MeasurableSet.isClopenable
measurableSet_exists_tendsto πŸ“–mathematicalMeasurableMeasurableSet
setOf
Filter.Tendsto
nhds
β€”Filter.eq_or_neBot
Filter.exists_antitone_basis
PolishSpace.toIsCompletelyMetrizableSpace
TopologicalSpace.UpgradedIsCompletelyMetrizableSpace.toCompleteSpace
Filter.HasAntitoneBasis.prod
Filter.HasAntitoneBasis.map
Filter.NeBot.map
Filter.HasBasis.le_basis_iff
Filter.HasAntitoneBasis.toHasBasis
Metric.uniformity_basis_dist_inv_nat_succ
Set.setOf_forall
MeasurableSet.biInter
Set.countable_univ
instCountableNat
Set.setOf_exists
MeasurableSet.iUnion
Set.prod_image_image_eq
Set.iInter_congr_Prop
Set.to_countable
SetCoe.countable
measurableSet_lt
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Measurable.dist
PolishSpace.toSecondCountableTopology
measurable_const
measurableSet_range_of_continuous_injective πŸ“–mathematicalContinuousMeasurableSet
Set.range
β€”TopologicalSpace.exists_countable_basis
PolishSpace.toSecondCountableTopology
AnalyticSet.measurablySeparable
IsOpen.analyticSet_image
TopologicalSpace.IsTopologicalBasis.isOpen
Disjoint.image
Function.Injective.injOn
Set.subset_univ
Disjoint.symm
exists_seq_strictAnti_tendsto
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
PseudoEMetricSpace.pseudoMetrizableSpace
PolishSpace.toIsCompletelyMetrizableSpace
Set.Subset.antisymm
Set.mem_iInter
Nat.instAtLeastTwoHAddOfNat
TopologicalSpace.IsTopologicalBasis.mem_nhds_iff
Metric.ball_mem_nhds
half_pos
LE.le.trans
Metric.diam_mono
Metric.isBounded_ball
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Metric.diam_ball
LT.lt.le
Set.mem_iUnion
Bornology.IsBounded.subset
Set.mem_inter
subset_closure
Set.mem_image_of_mem
Set.disjoint_left
Set.nonempty_iff_ne_empty
Set.not_disjoint_iff_nonempty_inter
MulZeroClass.mul_zero
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
cauchySeq_of_le_tendsto_0'
dist_triangle
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Metric.dist_le_diam_of_mem
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.sub_nonpos_of_le
StrictAnti.antitone
CauchySeq.tendsto_limUnder
TopologicalSpace.UpgradedIsCompletelyMetrizableSpace.toCompleteSpace
t2_separation
Metric.mem_nhds_iff
ContinuousAt.preimage_mem_nhds
Continuous.continuousAt
IsOpen.mem_nhds
Filter.Eventually.exists
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_order
add_zero
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
tendsto_iff_dist_tendsto_zero
Set.image_subset_iff
Set.Subset.trans
le_imp_le_of_le_of_le
add_le_add_left
le_refl
closure_mono
Disjoint.closure_left
Set.mem_range_self
MeasurableSet.inter
IsClosed.measurableSet
isClosed_closure
MeasurableSet.iInter
Encodable.countable
Prop.countable
MeasurableSet.diff
MeasurableSet.iUnion
instCountableNat
measurableSet_tendsto_fun πŸ“–mathematicalMeasurableMeasurableSet
setOf
Filter.Tendsto
nhds
β€”tendsto_iff_dist_tendsto_zero
measurableSet_tendsto
FirstCountableTopology.nhds_generated_countable
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
PseudoEMetricSpace.pseudoMetrizableSpace
nhds_isMeasurablyGenerated
BorelSpace.opensMeasurable
Real.borelSpace
Measurable.dist
measurablySeparable_range_of_disjoint πŸ“–mathematicalContinuous
Pi.topologicalSpace
instTopologicalSpaceNat
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.range
MeasurablySeparableβ€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
PiNat.iUnion_cylinder_update
Set.image_iUnion
MeasurablySeparable.iUnion
instCountableNat
PiNat.update_mem_cylinder
PiNat.cylinder_zero
Set.image_univ
Function.iterate_succ'
Nat.le_induction
PiNat.mem_cylinder_iff_eq
PiNat.mem_cylinder_iff
t2_separation
Set.disjoint_iff_forall_ne
Set.mem_range_self
Metric.mem_nhds_iff
ContinuousAt.preimage_mem_nhds
Continuous.continuousAt
IsOpen.mem_nhds
Nat.instAtLeastTwoHAddOfNat
exists_pow_lt_of_lt_one
Real.instIsStrictOrderedRing
Real.instArchimedean
AddGroup.existsAddOfLE
lt_min
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.instAtLeastTwo
Set.image_subset_iff
Set.Subset.trans
LE.le.trans_lt
PiNat.mem_cylinder_iff_dist_le
LT.lt.trans_le
min_le_left
Disjoint.mono_left
min_le_right
Disjoint.symm
IsOpen.measurableSet

MeasureTheory.AnalyticSet

Theorems

NameKindAssumesProvesValidatesDepends On
iInter πŸ“–mathematicalMeasureTheory.AnalyticSetSet.iInterβ€”isClosed_iInter
isClosed_eq
Continuous.comp
continuous_apply
continuous_subtype_val
Set.Subset.antisymm
Set.mem_iInter
Set.mem_range_self
Set.mem_range
MeasureTheory.analyticSet_range_of_polishSpace
IsClosed.polishSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.instSeparableSpaceForallOfCountable
TopologicalSpace.SecondCountableTopology.to_separableSpace
PolishSpace.toSecondCountableTopology
TopologicalSpace.IsCompletelyMetrizableSpace.pi_countable
PolishSpace.toIsCompletelyMetrizableSpace
MeasureTheory.analyticSet_iff_exists_polishSpace_range
iUnion πŸ“–mathematicalMeasureTheory.AnalyticSetSet.iUnionβ€”continuous_sigma
Set.range_sigma_eq_iUnion_range
MeasureTheory.analyticSet_range_of_polishSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologySigmaOfCountable
PolishSpace.toSecondCountableTopology
TopologicalSpace.IsCompletelyMetrizableSpace.sigma
PolishSpace.toIsCompletelyMetrizableSpace
MeasureTheory.analyticSet_iff_exists_polishSpace_range
image_of_continuous πŸ“–mathematicalMeasureTheory.AnalyticSet
Continuous
Set.imageβ€”image_of_continuousOn
Continuous.continuousOn
image_of_continuousOn πŸ“–mathematicalMeasureTheory.AnalyticSet
ContinuousOn
Set.imageβ€”MeasureTheory.analyticSet_iff_exists_polishSpace_range
Set.range_comp
MeasureTheory.analyticSet_range_of_polishSpace
ContinuousOn.comp_continuous
Set.mem_range_self
measurableSet_of_compl πŸ“–mathematicalMeasureTheory.AnalyticSet
Compl.compl
Set
Set.instCompl
MeasurableSetβ€”measurablySeparable
disjoint_compl_right
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.disjoint_compl_left_iff_subset
measurablySeparable πŸ“–mathematicalMeasureTheory.AnalyticSet
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
MeasureTheory.MeasurablySeparableβ€”MeasureTheory.AnalyticSet_def
Set.Subset.refl
MeasurableSet.empty
Set.subset_univ
MeasurableSet.univ
MeasureTheory.measurablySeparable_range_of_disjoint
preimage πŸ“–mathematicalMeasureTheory.AnalyticSet
Continuous
Set.preimageβ€”MeasureTheory.analyticSet_iff_exists_polishSpace_range
isClosed_eq
Continuous.fst'
Continuous.snd'
Set.ext
image_of_continuous
IsClosed.analyticSet
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.instSeparableSpaceProd
TopologicalSpace.SecondCountableTopology.to_separableSpace
PolishSpace.toSecondCountableTopology
TopologicalSpace.IsCompletelyMetrizableSpace.prod
PolishSpace.toIsCompletelyMetrizableSpace
continuous_fst

MeasureTheory.MeasurablySeparable

Theorems

NameKindAssumesProvesValidatesDepends On
iUnion πŸ“–mathematicalMeasureTheory.MeasurablySeparableSet.iUnionβ€”Set.iUnion_subset
Set.subset_iUnion_of_subset
Set.subset_iInter
Disjoint.mono_right
Set.iInter_subset
MeasurableSet.iUnion
MeasurableSet.iInter

PolishSpace

Definitions

NameCategoryTheorems
borelSchroederBernstein πŸ“–CompOpβ€”
measurableEquivNatBoolOfNotCountable πŸ“–CompOpβ€”
measurableEquivOfNotCountable πŸ“–CompOpβ€”

PolishSpace.Equiv

Definitions

NameCategoryTheorems
measurableEquiv πŸ“–CompOpβ€”

Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace πŸ“–mathematicalβ€”BorelSpace
instTopologicalSpaceQuotient
instMeasurableSpace
β€”Continuous.map_eq_borel
continuous_quotient_mk'
mk'_surjective

QuotientAddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace πŸ“–mathematicalβ€”BorelSpace
HasQuotient.Quotient
AddSubgroup
instHasQuotientAddSubgroup
instTopologicalSpace
measurableSpace
β€”Continuous.map_eq_borel
T3Space.toT0Space
instT3Space
instSecondCountableTopology
IsTopologicalAddGroup.toContinuousAdd
PolishSpace.toSecondCountableTopology
mk_surjective

QuotientGroup

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace πŸ“–mathematicalβ€”BorelSpace
HasQuotient.Quotient
Subgroup
instHasQuotientSubgroup
instTopologicalSpace
measurableSpace
β€”Continuous.map_eq_borel
T3Space.toT0Space
instT3Space
instSecondCountableTopology
IsTopologicalGroup.toContinuousMul
PolishSpace.toSecondCountableTopology
mk_surjective

StandardBorelSpace

Theorems

NameKindAssumesProvesValidatesDepends On
pi_countable πŸ“–mathematicalStandardBorelSpaceMeasurableSpace.piβ€”standardBorel_of_polish
Pi.borelSpace
PolishSpace.toSecondCountableTopology
UpgradedStandardBorel.toPolishSpace
UpgradedStandardBorel.toBorelSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.instSeparableSpaceForallOfCountable
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.pi_countable
PolishSpace.toIsCompletelyMetrizableSpace
polish πŸ“–mathematicalβ€”BorelSpace
PolishSpace
β€”β€”
prod πŸ“–mathematicalβ€”StandardBorelSpace
Prod.instMeasurableSpace
β€”standardBorel_of_polish
Prod.borelSpace
UpgradedStandardBorel.toBorelSpace
secondCountableTopologyEither_of_right
PolishSpace.toSecondCountableTopology
UpgradedStandardBorel.toPolishSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.instSeparableSpaceProd
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.prod
PolishSpace.toIsCompletelyMetrizableSpace

UpgradedStandardBorel

Definitions

NameCategoryTheorems
toMeasurableSpace πŸ“–CompOp
1 mathmath: toBorelSpace
toTopologicalSpace πŸ“–CompOp
3 mathmath: toBorelSpace, toPolishSpace, eq_borel_upgradeStandardBorel

Theorems

NameKindAssumesProvesValidatesDepends On
toBorelSpace πŸ“–mathematicalβ€”BorelSpace
toTopologicalSpace
toMeasurableSpace
β€”β€”
toPolishSpace πŸ“–mathematicalβ€”PolishSpace
toTopologicalSpace
β€”β€”

(root)

Definitions

NameCategoryTheorems
StandardBorelSpace πŸ“–CompData
4 mathmath: MeasurableSet.standardBorel, standardBorelSpace_of_discreteMeasurableSpace, StandardBorelSpace.prod, standardBorel_of_polish
UpgradedStandardBorel πŸ“–CompDataβ€”
upgradeStandardBorel πŸ“–CompOp
1 mathmath: eq_borel_upgradeStandardBorel

Theorems

NameKindAssumesProvesValidatesDepends On
countablyGenerated_of_standardBorel πŸ“–mathematicalβ€”MeasurableSpace.CountablyGeneratedβ€”BorelSpace.countablyGenerated
UpgradedStandardBorel.toBorelSpace
PolishSpace.toSecondCountableTopology
UpgradedStandardBorel.toPolishSpace
eq_borel_upgradeStandardBorel πŸ“–mathematicalβ€”borel
UpgradedStandardBorel.toTopologicalSpace
upgradeStandardBorel
β€”BorelSpace.measurable_eq
UpgradedStandardBorel.toBorelSpace
measurableSingleton_of_standardBorel πŸ“–mathematicalβ€”MeasurableSingletonClassβ€”instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
UpgradedStandardBorel.toBorelSpace
PolishSpace.toSecondCountableTopology
UpgradedStandardBorel.toPolishSpace
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.MetrizableSpace
PolishSpace.toIsCompletelyMetrizableSpace
standardBorelSpace_of_discreteMeasurableSpace πŸ“–mathematicalβ€”StandardBorelSpaceβ€”standardBorel_of_polish
DiscreteMeasurableSpace.toBorelSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
TopologicalSpace.DiscreteTopology.metrizableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.discrete
standardBorel_of_polish πŸ“–mathematicalβ€”StandardBorelSpaceβ€”β€”

---

← Back to Index