Documentation Verification Report

Besicovitch

πŸ“ Source: Mathlib/MeasureTheory/Covering/Besicovitch.lean

Statistics

MetricCount
DefinitionsBallPackage, c, instInhabited, r, r_bound, SatelliteConfig, c, instInhabited, r, TauPackage, R, color, iUnionUpTo, index, instInhabited, lastStep, toBallPackage, Ο„, unitBallPackage, vitaliFamily, HasBesicovitchCovering, evalBesicovitchSatelliteConfigR
22
Theoremsr_le, rpos, h, hlast, hlast', inter, inter', rpos, color_lt, lastStep_nonempty, mem_iUnionUpTo_lastStep, monotone_iUnionUpTo, one_lt_tau, ae_tendsto_measure_inter_div, ae_tendsto_measure_inter_div_of_measurableSet, ae_tendsto_rnDeriv, exist_disjoint_covering_families, exist_finset_disjoint_balls_large_measure, exists_closedBall_covering_tsum_measure_le, exists_disjoint_closedBall_covering_ae, exists_disjoint_closedBall_covering_ae_aux, exists_disjoint_closedBall_covering_ae_of_finiteMeasure_aux, tendsto_filterAt, no_satelliteConfig
24
Total46

Besicovitch

Definitions

NameCategoryTheorems
BallPackage πŸ“–CompDataβ€”
SatelliteConfig πŸ“–CompData
2 mathmath: HasBesicovitchCovering.no_satelliteConfig, isEmpty_satelliteConfig_multiplicity
TauPackage πŸ“–CompDataβ€”
unitBallPackage πŸ“–CompOpβ€”
vitaliFamily πŸ“–CompOp
1 mathmath: tendsto_filterAt

Theorems

NameKindAssumesProvesValidatesDepends On
ae_tendsto_measure_inter_div πŸ“–mathematicalβ€”Filter.Eventually
Filter.Tendsto
Real
ENNReal
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.instInter
Metric.closedBall
MetricSpace.toPseudoMetricSpace
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ioi
Real.instPreorder
nhds
ENNReal.instTopologicalSpace
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.restrict
β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
BorelSpace.opensMeasurable
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.sigmaFinite_of_locallyFinite
VitaliFamily.ae_tendsto_measure_inter_div
Filter.univ_mem'
Filter.Tendsto.comp
tendsto_filterAt
ae_tendsto_measure_inter_div_of_measurableSet πŸ“–mathematicalMeasurableSetFilter.Eventually
Filter.Tendsto
Real
ENNReal
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.instInter
Metric.closedBall
MetricSpace.toPseudoMetricSpace
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ioi
Real.instPreorder
nhds
ENNReal.instTopologicalSpace
Set.indicator
instZeroENNReal
Pi.instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
BorelSpace.opensMeasurable
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.sigmaFinite_of_locallyFinite
VitaliFamily.ae_tendsto_measure_inter_div_of_measurableSet
Filter.univ_mem'
Filter.Tendsto.comp
tendsto_filterAt
ae_tendsto_rnDeriv πŸ“–mathematicalβ€”Filter.Eventually
Filter.Tendsto
Real
ENNReal
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Metric.closedBall
MetricSpace.toPseudoMetricSpace
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ioi
Real.instPreorder
nhds
ENNReal.instTopologicalSpace
MeasureTheory.Measure.rnDeriv
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
BorelSpace.opensMeasurable
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.sigmaFinite_of_locallyFinite
VitaliFamily.ae_tendsto_rnDeriv
Filter.univ_mem'
Filter.Tendsto.comp
tendsto_filterAt
exist_disjoint_covering_families πŸ“–mathematicalReal
Real.instLT
Real.instOne
Set.PairwiseDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Metric.closedBall
MetricSpace.toPseudoMetricSpace
BallPackage.c
BallPackage.r
Set.instHasSubset
Set.range
Set.iUnion
Set.instMembership
Metric.ball
β€”isEmpty_or_nonempty
Set.pairwiseDisjoint_empty
Set.image_univ
Set.eq_empty_of_isEmpty
instIsEmptySubtype
Set.image_empty
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Set.instReflSubset
lt_or_eq_of_le
TauPackage.color.eq_1
csInf_mem
instWellFoundedLTNat
LT.lt.ne'
TauPackage.color_lt
LT.lt.trans
Mathlib.Tactic.Contrapose.contrapose₁
Disjoint.symm
le_of_not_ge
Set.range_subset_iff
TauPackage.mem_iUnionUpTo_lastStep
Set.iUnion_exists
Set.biUnion_and'
exist_finset_disjoint_balls_large_measure πŸ“–mathematicalReal
Real.instLT
Real.instOne
Real.instZero
Real.instLE
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Set.instSDiff
Set.iUnion
Finset.instMembership
Metric.closedBall
MetricSpace.toPseudoMetricSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Distrib.toAdd
AddMonoidWithOne.toOne
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”le_or_gt
le_bot_iff
Finset.coe_empty
Set.iUnion_congr_Prop
Set.iUnion_false
Set.iUnion_empty
Set.diff_empty
MulZeroClass.mul_zero
ENNReal.instCanonicallyOrderedAdd
isEmpty_or_nonempty
lt_irrefl
Set.eq_empty_of_isEmpty
instIsEmptySubtype
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
not_isEmpty_of_nonempty
MeasureTheory.exists_measurable_superset
exist_disjoint_covering_families
Set.PairwiseDisjoint.countable_of_nonempty_interior
TopologicalSpace.SecondCountableTopology.to_separableSpace
Metric.nonempty_ball
BallPackage.rpos
Set.Nonempty.mono
Metric.ball_subset_interior_closedBall
Set.Subset.antisymm
Subtype.range_coe_subtype
Set.mem_iUnion
Subtype.coe_eta
Metric.ball_subset_closedBall
Set.iUnion_subset
Set.inter_subset_left
Finset.sum_const
Finset.card_fin
nsmul_eq_mul
ENNReal.mul_div_cancel
ENNReal.instCharZero
ENNReal.natCast_ne_top
MeasureTheory.measure_iUnion_fintype_le
ENNReal.exists_le_of_sum_le
bot_lt_iff_ne_bot
Finset.mem_univ
lt_of_lt_of_le
ENNReal.mul_lt_mul_iff_right
LT.lt.ne'
MeasureTheory.measure_ne_top
ENNReal.inv_lt_inv
add_zero
ENNReal.add_lt_add_left
zero_lt_one
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
NeZero.charZero_one
Set.inter_iUnion
MeasureTheory.measure_biUnion
Set.PairwiseDisjoint.mono
Set.inter_subset_right
MeasurableSet.inter
measurableSet_closedBall
Summable.hasSum
ENNReal.summable
LT.lt.trans_le
MeasureTheory.measure_mono
Set.inter_subset_inter_left
Filter.Eventually.exists
SummationFilter.instNeBotFinsetFilterOfNeBot
SummationFilter.instNeBotUnconditional
tendsto_order
ENNReal.instOrderTopology
Finset.coe_image
Set.diff_inter_self_eq_diff
MeasureTheory.measure_diff_le_iff_le_add
MeasureTheory.NullMeasurableSet.inter
Finset.nullMeasurableSet_biUnion
MeasurableSet.nullMeasurableSet
add_mul
Distrib.rightDistribClass
ENNReal.div_add_div_same
add_comm
ENNReal.div_self
Unique.instSubsingleton
one_mul
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
one_div
mul_comm
div_eq_mul_inv
LE.le.trans
LT.lt.le
le_of_eq
Finset.set_biUnion_coe
Set.inter_comm
Set.inter_iUnionβ‚‚
MeasureTheory.measure_biUnion_finset
Subtype.val_injective
Finset.set_biUnion_finset_image
le_trans
Set.diff_subset_diff
Set.Subset.refl
exists_closedBall_covering_tsum_measure_le πŸ“–mathematicalSet.Nonempty
Real
Set
Set.instInter
Set.Ioo
Real.instPreorder
Real.instZero
Set.Countable
Set.instHasSubset
Set.instMembership
Set.iUnion
Metric.closedBall
MetricSpace.toPseudoMetricSpace
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
tsum
Set.Elem
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
SummationFilter.unconditional
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”Nat.instAtLeastTwoHAddOfNat
Set.exists_isOpen_le_add
Metric.mem_nhds_iff
IsOpen.mem_nhds
exists_disjoint_closedBall_covering_ae
Set.diff_subset
HasBesicovitchCovering.no_satelliteConfig
lt_min
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
LT.lt.trans_le
min_le_right
Set.Subset.trans
Metric.closedBall_subset_ball
min_le_left
LT.lt.le
exist_disjoint_covering_families
Set.PairwiseDisjoint.countable_of_nonempty_interior
TopologicalSpace.SecondCountableTopology.to_separableSpace
Metric.nonempty_ball
BallPackage.rpos
Set.Nonempty.mono
Metric.ball_subset_interior_closedBall
dist_self
Set.Countable.union
Set.countable_iUnion
instCountableFin
Set.Countable.image
Subtype.range_coe_subtype
Set.mem_iUnionβ‚‚
Metric.ball_subset_closedBall
MeasureTheory.measure_iUnion
Encodable.countable
pairwise_subtype_iff_pairwise_set
measurableSet_closedBall
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Function.Injective.injOn
Subtype.val_injective
Set.InjOn.bijOn_image
Equiv.tsum_eq
zero_add
ENNReal.tsum_union_le
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_rfl
ENNReal.tsum_iUnion_le
Finset.sum_le_sum
add_le_add_right
Finset.sum_const
Finset.card_fin
nsmul_eq_mul
add_assoc
ENNReal.add_halves
Function.sometimes_spec
exists_disjoint_closedBall_covering_ae πŸ“–mathematicalSet.Nonempty
Real
Set
Set.instInter
Set.Ioo
Real.instPreorder
Real.instZero
Real.instLT
Set.Countable
Set.instHasSubset
Set.instMembership
DFunLike.coe
MeasureTheory.Measure
ENNReal
MeasureTheory.Measure.instFunLike
Set.instSDiff
Set.iUnion
Metric.closedBall
MetricSpace.toPseudoMetricSpace
instZeroENNReal
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”lt_min
LT.lt.trans_le
min_le_right
min_le_left
exists_disjoint_closedBall_covering_ae_aux
LT.lt.le
Set.exists_eq_graphOn
Set.Pairwise.eq
Set.not_disjoint_iff
dist_self
Set.LeftInvOn.injOn
Set.countable_of_injective_of_countable_image
Set.biUnion_image
Set.iUnion_congr_Prop
Set.InjOn.pairwiseDisjoint_image
exists_disjoint_closedBall_covering_ae_aux πŸ“–mathematicalSet.Nonempty
Real
Set
Set.instInter
Set.Ioo
Real.instPreorder
Real.instZero
Set.Countable
Set.instMembership
DFunLike.coe
MeasureTheory.Measure
ENNReal
MeasureTheory.Measure.instFunLike
Set.instSDiff
Set.iUnion
Metric.closedBall
MetricSpace.toPseudoMetricSpace
instZeroENNReal
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”MeasureTheory.exists_isFiniteMeasure_absolutelyContinuous
exists_disjoint_closedBall_covering_ae_of_finiteMeasure_aux
exists_disjoint_closedBall_covering_ae_of_finiteMeasure_aux πŸ“–mathematicalSet.Nonempty
Real
Set
Set.instInter
Set.Ioo
Real.instPreorder
Real.instZero
Set.Countable
Set.instMembership
DFunLike.coe
MeasureTheory.Measure
ENNReal
MeasureTheory.Measure.instFunLike
Set.instSDiff
Set.iUnion
Metric.closedBall
MetricSpace.toPseudoMetricSpace
instZeroENNReal
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”HasBesicovitchCovering.no_satelliteConfig
isClosed_biUnion_finset
Metric.isClosed_closedBall
Set.mem_diff
Set.eq_empty_or_nonempty
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
lt_min
IsClosed.notMem_iff_infDist_pos
LT.lt.trans_le
min_le_right
disjoint_comm
Metric.disjoint_closedBall_of_lt_infDist
min_le_left
exist_finset_disjoint_balls_large_measure
LT.lt.le
Finset.subset_union_left
Finset.coe_union
Finset.coe_image
Set.mem_image
Set.disjoint_of_subset_left
Finset.set_biUnion_coe
Set.subset_biUnion_of_mem
Finset.mem_union
Finset.mem_image
Finset.mem_coe
Finset.set_biUnion_union
Set.diff_diff
Finset.set_biUnion_finset_image
Function.sometimes_spec
Function.iterate_succ'
Finset.coe_empty
instIsEmptyFalse
Set.countable_iUnion
instCountableNat
Finset.countable_toSet
Set.mem_iUnion
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.diff_subset_diff
subset_refl
Set.instReflSubset
Set.biUnion_subset_biUnion_left
Set.subset_iUnion
Set.iUnion_congr_Prop
Set.iUnion_false
Set.iUnion_empty
Set.diff_empty
pow_zero
one_mul
pow_succ'
mul_assoc
le_imp_le_of_le_of_le
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
le_refl
ENNReal.Tendsto.mul_const
ENNReal.tendsto_pow_atTop_nhds_zero_of_lt_one
ENNReal.div_lt_iff
Unique.instSubsingleton
ENNReal.instCharZero
ENNReal.Finiteness.add_ne_top
ENNReal.natCast_ne_top
ENNReal.one_ne_top
add_zero
ENNReal.add_lt_add_left
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
LT.lt.ne
MeasureTheory.measure_lt_top
le_bot_iff
le_of_tendsto_of_tendsto'
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_const_nhds
MulZeroClass.zero_mul
LE.le.trans
Set.pairwiseDisjoint_iUnion
Monotone.directed_le
monotone_nat_of_le_succ
tendsto_filterAt πŸ“–mathematicalβ€”Filter.Tendsto
Real
Set
Metric.closedBall
MetricSpace.toPseudoMetricSpace
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Set.Ioi
Real.instPreorder
VitaliFamily.filterAt
vitaliFamily
β€”VitaliFamily.mem_filterAt_iff
Filter.mp_mem
Ioc_mem_nhdsGT
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Filter.univ_mem'
Set.mem_image_of_mem
Metric.closedBall_subset_closedBall

Besicovitch.BallPackage

Definitions

NameCategoryTheorems
c πŸ“–CompOp
3 mathmath: Besicovitch.exist_disjoint_covering_families, Besicovitch.TauPackage.mem_iUnionUpTo_lastStep, Besicovitch.TauPackage.lastStep_nonempty
instInhabited πŸ“–CompOpβ€”
r πŸ“–CompOp
4 mathmath: Besicovitch.exist_disjoint_covering_families, r_le, rpos, Besicovitch.TauPackage.lastStep_nonempty
r_bound πŸ“–CompOp
1 mathmath: r_le

Theorems

NameKindAssumesProvesValidatesDepends On
r_le πŸ“–mathematicalβ€”Real
Real.instLE
r
r_bound
β€”β€”
rpos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
r
β€”β€”

Besicovitch.SatelliteConfig

Definitions

NameCategoryTheorems
c πŸ“–CompOp
6 mathmath: hlast, h, inter', centerAndRescale_center, exists_normalized_aux1, inter
instInhabited πŸ“–CompOpβ€”
r πŸ“–CompOp
7 mathmath: hlast', centerAndRescale_radius, hlast, h, rpos, inter', inter

Theorems

NameKindAssumesProvesValidatesDepends On
h πŸ“–mathematicalβ€”Pairwise
Real
Real.instLE
r
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
c
Real.instMul
β€”β€”
hlast πŸ“–mathematicalβ€”Real
Real.instLE
r
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
c
Real.instMul
β€”β€”
hlast' πŸ“–mathematicalReal
Real.instLE
Real.instOne
r
Real.instMul
β€”lt_or_ge
hlast
top_le_iff
le_mul_of_one_le_left
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
LT.lt.le
rpos
inter πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
c
Real.instAdd
r
β€”β€”
inter' πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
c
Real.instAdd
r
β€”lt_or_ge
inter
top_le_iff
LT.lt.le
rpos
dist_self
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
rpos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
r
β€”β€”

Besicovitch.TauPackage

Definitions

NameCategoryTheorems
R πŸ“–CompOp
1 mathmath: lastStep_nonempty
color πŸ“–CompOp
1 mathmath: color_lt
iUnionUpTo πŸ“–CompOp
3 mathmath: monotone_iUnionUpTo, mem_iUnionUpTo_lastStep, lastStep_nonempty
index πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
lastStep πŸ“–CompOp
1 mathmath: mem_iUnionUpTo_lastStep
toBallPackage πŸ“–CompOp
2 mathmath: mem_iUnionUpTo_lastStep, lastStep_nonempty
Ο„ πŸ“–CompOp
2 mathmath: one_lt_tau, lastStep_nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
color_lt πŸ“–mathematicalOrdinal
Preorder.toLT
PartialOrder.toPreorder
Ordinal.partialOrder
lastStep
colorβ€”Ordinal.induction
color.eq_1
LT.lt.ne'
LT.lt.trans
Nat.notMem_of_lt_sInf
LE.le.eq_or_lt
color.congr_simp
LT.lt.ne
index.eq_1
notMem_of_lt_csInf
OrderBot.bddBelow
dist_comm
le_trans
monotone_iUnionUpTo
LT.lt.le
le_ciSup
Besicovitch.BallPackage.r_le
Besicovitch.BallPackage.rpos
LE.le.lt_or_eq
Fin.val_injective
le_of_not_ge
Metric.dist_le_add_of_nonempty_closedBall_inter_closedBall
IsEmpty.false
Function.sometimes_spec
csInf_le
lastStep_nonempty πŸ“–mathematicalβ€”Set.Nonempty
Ordinal
setOf
Set
Set.instMembership
iUnionUpTo
Besicovitch.BallPackage.c
toBallPackage
Real
Real.instLE
R
Real.instMul
Ο„
Besicovitch.BallPackage.r
β€”eq_or_lt_of_le
index.eq_1
dist_self
lt_irrefl
LT.lt.trans_le
Besicovitch.BallPackage.rpos
le_of_not_ge
not_injective_of_ordinal
UnivLE.small
UnivLE.self
mem_iUnionUpTo_lastStep πŸ“–mathematicalβ€”Set
Set.instMembership
iUnionUpTo
lastStep
Besicovitch.BallPackage.c
toBallPackage
β€”csInf_mem
Ordinal.wellFoundedLT
lastStep_nonempty
lt_trans
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
one_lt_tau
Besicovitch.BallPackage.rpos
one_mul
mul_lt_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsStrictOrderedRing.toMulPosStrictMono
inv_lt_one_of_one_ltβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
le_rfl
zero_le_one
exists_lt_of_lt_csSup
Set.image_univ
Set.image_nonempty
Set.mem_univ
div_le_iffβ‚€'
LT.lt.le
div_eq_inv_mul
lt_irrefl
LT.lt.trans_le
monotone_iUnionUpTo πŸ“–mathematicalβ€”Monotone
Ordinal
Set
PartialOrder.toPreorder
Ordinal.partialOrder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
iUnionUpTo
β€”Set.iUnion_mono'
LT.lt.trans_le
Set.Subset.rfl
one_lt_tau πŸ“–mathematicalβ€”Real
Real.instLT
Real.instOne
Ο„
β€”β€”

HasBesicovitchCovering

Theorems

NameKindAssumesProvesValidatesDepends On
no_satelliteConfig πŸ“–mathematicalβ€”Real
Real.instLT
Real.instOne
IsEmpty
Besicovitch.SatelliteConfig
β€”β€”

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalBesicovitchSatelliteConfigR πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
HasBesicovitchCovering πŸ“–CompData
1 mathmath: Besicovitch.instHasBesicovitchCovering

---

← Back to Index