Documentation Verification Report

Vitali

📁 Source: Mathlib/MeasureTheory/Covering/Vitali.lean

Statistics

MetricCount
DefinitionsvitaliFamily
1
Theoremsexists_disjoint_covering_ae, exists_disjoint_covering_ae', exists_disjoint_subfamily_covering_enlargement, exists_disjoint_subfamily_covering_enlargement_closedBall
4
Total5

Vitali

Definitions

NameCategoryTheorems
vitaliFamily 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
exists_disjoint_covering_ae 📖mathematicalSet
Set.instHasSubset
Metric.closedBall
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Real
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Set.Nonempty
interior
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
IsClosed
Set.instMembership
Real.instLE
Set.Countable
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instSDiff
Set.iUnion
instZeroENNReal
Nat.instAtLeastTwoHAddOfNat
Filter.Eventually.exists_gt
nhdsGT_neBot
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.Eventually.and
eventually_le_nhds
instClosedIciTopology
OrderTopology.to_orderClosedTopology
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Filter.Tendsto.comp
tendsto_closedBall_smallSets
Continuous.tendsto'
Continuous.comp'
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.fst
continuous_id'
Continuous.snd
Continuous.prodMk
continuous_const
MulZeroClass.mul_zero
MeasureTheory.Measure.FiniteAtFilter.eventually
MeasureTheory.Measure.finiteAt_nhds
LE.le.trans
Set.Nonempty.mono
interior_subset
exists_disjoint_subfamily_covering_enlargement
one_lt_two
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Metric.nonempty_closedBall
Set.PairwiseDisjoint.countable_of_nonempty_interior
TopologicalSpace.SecondCountableTopology.to_separableSpace
MeasureTheory.measure_null_of_locally_null
MeasureTheory.Measure.instOuterMeasureClass
Metric.dist_le_add_of_nonempty_closedBall_inter_closedBall
Set.inter_subset_inter
Metric.ball_subset_closedBall
Set.mem_image
le_trans
le_total
HasSubset.Subset.trans
Set.instIsTransSubset
Metric.closedBall_subset_closedBall'
le_csSup
Set.mem_image_of_mem
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.add_nonpos
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.mul_neg
LT.lt.trans_le
lt_irrefl
le_of_eq
Real.sSup_empty
Set.image_empty
Set.nonempty_iff_ne_empty
exists_lt_of_lt_csSup
Set.Nonempty.image
half_lt_self
lt_of_le_of_lt
MeasureTheory.measure_mono
dist_comm
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
inter_mem_nhdsWithin
Metric.ball_mem_nhds
nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
le_of_forall_gt_imp_ge_of_dense
ENNReal.instDenselyOrdered
MeasureTheory.measure_biUnion
Set.Countable.mono
Set.PairwiseDisjoint.subset
IsClosed.measurableSet
Set.iUnion₂_subset
Filter.Eventually.exists
Filter.atTop_neBot
Finset.isDirected_le
tendsto_order
ENNReal.instOrderTopology
ENNReal.tendsto_tsum_compl_atTop_zero
LT.lt.ne
LT.lt.ne'
isClosed_biUnion_finset
Set.mem_inter
Set.mem_of_mem_inter_left
Set.mem_biUnion
Set.diff_inter_self
IsOpen.mem_nhds
IsOpen.sdiff
Metric.isOpen_ball
Set.mem_diff
Set.mem_of_mem_inter_right
Filter.HasBasis.mem_iff
Metric.nhds_basis_closedBall
lt_min
Set.Subset.trans
Metric.closedBall_subset_closedBall
min_le_left
Set.diff_subset
min_le_right
Set.inter_comm
Set.inter_subset_inter_right
Finset.subset_set_biUnion_of_mem
Metric.mem_closedBall'
Metric.mem_closedBall
dist_triangle
Set.subset_iUnion
MeasureTheory.measure_iUnion_le
Subtype.countable
Set.Countable.to_subtype
ENNReal.tsum_le_tsum
ENNReal.tsum_mul_left
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
le_of_lt
ENNReal.mul_div_le
exists_disjoint_covering_ae' 📖mathematicalSet
Set.instHasSubset
Metric.closedBall
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
Real
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
Set.Nonempty
interior
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
IsClosed
Filter.Frequently
Set.instMembership
nhdsWithin
Real.pseudoMetricSpace
Real.instZero
Set.Ioi
Real.instPreorder
Set.Countable
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instSDiff
Set.iUnion
instZeroENNReal
Nat.instAtLeastTwoHAddOfNat
frequently_nhds_iff
frequently_nhdsWithin_iff
isOpen_Ioo
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
exists_disjoint_covering_ae
exists_disjoint_subfamily_covering_enlargement 📖mathematicalReal
Real.instLT
Real.instOne
Real.instLE
Real.instZero
Set.Nonempty
Set
Set.instHasSubset
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instMembership
Set.instInter
Real.instMul
zorn_subset
Set.pairwiseDisjoint_sUnion
IsChain.directedOn
Set.instReflSubset
Set.subset_sUnion_of_mem
Maximal.prop
Set.not_disjoint_iff_nonempty_inter
lt_irrefl
LT.lt.trans_le
Mathlib.Tactic.Push.not_and_eq
Set.mem_image
LE.le.trans
le_csSup
Set.mem_image_of_mem
eq_or_lt_of_le
zero_div
div_lt_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
mul_one
mul_lt_mul_of_pos_left
IsStrictOrderedRing.toPosMulStrictMono
exists_lt_of_lt_csSup
Set.Nonempty.image
LT.lt.le
Set.Nonempty.ne_empty
disjoint_self
Maximal.mem_of_prop_insert
Set.insert_subset_iff
Set.PairwiseDisjoint.insert
Set.mem_insert_of_mem
Set.mem_insert_iff
Set.mem_insert
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₂
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
le_of_lt
exists_disjoint_subfamily_covering_enlargement_closedBall 📖mathematicalReal
Real.instLE
Real.instLT
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set
Set.instHasSubset
Set.PairwiseDisjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Metric.closedBall
Set.instMembership
Real.instMul
Nat.instAtLeastTwoHAddOfNat
Set.eq_empty_or_nonempty
Set.Subset.refl
Set.pairwiseDisjoint_empty
Set.Subset.rfl
Metric.closedBall_eq_empty
exists_disjoint_subfamily_covering_enlargement
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
Metric.mem_closedBall_self
Metric.dist_le_add_of_nonempty_closedBall_inter_closedBall
Metric.closedBall_subset_closedBall'
le_of_not_gt
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.add_nonpos
CancelDenoms.mul_subst
HasSubset.Subset.trans
Set.instIsTransSubset
le_or_gt
Mathlib.Tactic.Push.not_forall_eq

---

← Back to Index