Documentation Verification Report

AbsolutelyContinuous

πŸ“ Source: Mathlib/MeasureTheory/Function/AbsolutelyContinuous.lean

Statistics

MetricCount
DefinitionsAbsolutelyContinuousOnInterval, disjWithin, totalLengthFilter
3
Theoremsadd, ae_differentiableAt, biUnion_uIoc_subset_of_mem_disjWithin, boundedVariationOn, const_mul, const_smul, continuousOn, disjWithin_comm, disjWithin_mono, exists_bound, fun_add, fun_mul, fun_neg, fun_smul, fun_sub, hasBasis_totalLengthFilter, mono, mul, neg, smul, sub, tendsto_volume_restrict_totalLengthFilter_disjWithin_nhds_zero, tendsto_volume_totalLengthFilter_nhds_zero, uIoc_subset_of_mem_disjWithin, uniformContinuousOn, uniformity_eq_comap_totalLengthFilter, uniformlyContinuousOn, absolutelyContinuousOnInterval_intervalIntegral, absolutelyContinuousOnInterval, absolutelyContinuousOnInterval_iff
30
Total33

AbsolutelyContinuousOnInterval

Definitions

NameCategoryTheorems
disjWithin πŸ“–CompOp
3 mathmath: disjWithin_comm, disjWithin_mono, tendsto_volume_restrict_totalLengthFilter_disjWithin_nhds_zero
totalLengthFilter πŸ“–CompOp
4 mathmath: tendsto_volume_totalLengthFilter_nhds_zero, tendsto_volume_restrict_totalLengthFilter_disjWithin_nhds_zero, uniformity_eq_comap_totalLengthFilter, hasBasis_totalLengthFilter

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedAddCommGroup.toPseudoMetricSpace
Pi.instAdd
Real
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”squeeze_zero
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
dist_nonneg
Finset.sum_add_distrib
Finset.sum_le_sum
dist_add_add_le
add_zero
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ae_differentiableAt πŸ“–mathematicalAbsolutelyContinuousOnInterval
Real
Real.pseudoMetricSpace
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.MeasureSpace.volume
β€”BoundedVariationOn.ae_differentiableAt_of_mem_uIcc
FiniteDimensional.rclike_to_real
boundedVariationOn
biUnion_uIoc_subset_of_mem_disjWithin πŸ“–mathematicalSet
Set.instMembership
disjWithin
Real
Set.instHasSubset
Set.iUnion
Finset
Finset.instMembership
Finset.range
Set.uIoc
Real.linearOrder
β€”Set.iUnion_congr_Prop
uIoc_subset_of_mem_disjWithin
boundedVariationOn πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedAddCommGroup.toPseudoMetricSpace
BoundedVariationOn
Real
Real.linearOrder
PseudoMetricSpace.toPseudoEMetricSpace
Set.uIcc
Real.lattice
β€”Set.uIcc_of_le
LE.le.eq_or_lt
Set.Icc_self
eVariationOn.subsingleton
absolutelyContinuousOnInterval_iff
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.sub_neg_of_lt
exists_nat_one_div_lt
Real.instArchimedean
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.cast_nonneg'
Real.instZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
Monotone.const_add
Monotone.mul_const
IsOrderedRing.toMulPosMono
Nat.mono_cast
div_nonneg
le_of_not_gt
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.natCast_nonneg
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
MulZeroClass.zero_mul
add_zero
Nat.cast_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Finset.sum_congr
eVariationOn.sum'
Set.Icc_subset_Icc
Set.PairwiseDisjoint.eq_1
Set.uIoc_of_le
Nat.succ_eq_succ
Pairwise.set_pairwise
Monotone.pairwise_disjoint_on_Ioc_succ
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Set.mem_Icc
Finset.sum_range_sub
dist_comm
Real.dist_eq
abs_eq_self
ENNReal.toReal_sum
ENNReal.ofReal_toReal
ENNReal.ofReal_one
ENNReal.ofReal_le_ofReal
LT.lt.le
add_mul
Distrib.rightDistribClass
add_assoc
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Set.uIcc_comm
symm
const_mul πŸ“–mathematicalAbsolutelyContinuousOnInterval
Real
Real.pseudoMetricSpace
Real.instMulβ€”const_smul
NormedSpace.toNormSMulClass
const_smul πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedAddCommGroup.toPseudoMetricSpace
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”squeeze_zero
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
dist_nonneg
Finset.sum_congr
dist_smulβ‚€
Finset.mul_sum
MulZeroClass.mul_zero
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuousOn πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedAddCommGroup.toPseudoMetricSpace
ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.uIcc
Real.lattice
β€”UniformContinuousOn.continuousOn
uniformContinuousOn
disjWithin_comm πŸ“–mathematicalβ€”disjWithinβ€”disjWithin.eq_1
Set.uIcc_comm
disjWithin_mono πŸ“–mathematicalSet
Real
Set.instHasSubset
Set.uIcc
Real.lattice
disjWithinβ€”β€”
exists_bound πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedAddCommGroup.toPseudoMetricSpace
Real
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
β€”IsCompact.exists_bound_of_continuousOn
CompactIccSpace.isCompact_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
continuousOn
fun_add πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”add
fun_mul πŸ“–mathematicalAbsolutelyContinuousOnInterval
Real
Real.pseudoMetricSpace
Real.instMulβ€”mul
fun_neg πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedAddCommGroup.toPseudoMetricSpace
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”neg
fun_smul πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedRing.toPseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”smul
fun_sub πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedAddCommGroup.toPseudoMetricSpace
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”sub
hasBasis_totalLengthFilter πŸ“–mathematicalβ€”Filter.HasBasis
Real
totalLengthFilter
Real.instLT
Real.instZero
setOf
Finset.sum
Real.instAddCommMonoid
Finset.range
Dist.dist
PseudoMetricSpace.toDist
β€”Set.ext
zero_sub
zero_add
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
dist_nonneg
Filter.HasBasis.comap
nhds_basis_Ioo_pos
instOrderTopologyReal
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
mono πŸ“–β€”AbsolutelyContinuousOnInterval
Set
Real
Set.instHasSubset
Set.uIcc
Real.lattice
β€”β€”le_trans
Filter.map_mono
inf_le_inf
le_refl
disjWithin_mono
mul πŸ“–mathematicalAbsolutelyContinuousOnInterval
Real
Real.pseudoMetricSpace
Pi.instMul
Real.instMul
β€”smul
NormedSpace.toNormSMulClass
neg πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedAddCommGroup.toPseudoMetricSpace
Pi.instNeg
Real
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”squeeze_zero
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
dist_nonneg
Finset.sum_congr
dist_neg_neg
NormedAddGroup.to_isIsometricVAdd_left
NormedAddGroup.to_isIsometricVAdd_right
smul πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedRing.toPseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Pi.smul'
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”exists_bound
squeeze_zero'
Filter.Eventually.of_forall
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
dist_nonneg
Filter.eventually_inf_principal
Filter.univ_mem'
Finset.sum_congr
Finset.mul_sum
Finset.sum_le_sum
dist_triangle
add_le_add
covariant_swap_add_of_covariant_add
dist_smulβ‚€
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
mul_comm
le_imp_le_of_le_of_le
dist_pair_smul
NormSMulClass.toIsBoundedSMul
le_refl
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
dist_zero_right
MulZeroClass.mul_zero
add_zero
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
sub πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedAddCommGroup.toPseudoMetricSpace
Pi.instSub
Real
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”sub_eq_add_neg
add
neg
tendsto_volume_restrict_totalLengthFilter_disjWithin_nhds_zero πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
DFunLike.coe
MeasureTheory.Measure
Real
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.uIoc
Real.linearOrder
Set.iUnion
Finset
Finset.instMembership
Finset.range
Filter
Filter.instInf
totalLengthFilter
Real.pseudoMetricSpace
Filter.principal
disjWithin
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
β€”tendsto_of_tendsto_of_tendsto_of_le_of_le
ENNReal.instOrderTopology
tendsto_const_nhds
Filter.Tendsto.mono_left
tendsto_volume_totalLengthFilter_nhds_zero
Set.iUnion_congr_Prop
ENNReal.instCanonicallyOrderedAdd
MeasureTheory.Measure.restrict_le_self
tendsto_volume_totalLengthFilter_nhds_zero πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
DFunLike.coe
MeasureTheory.Measure
Real
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
Set.iUnion
Finset
Finset.instMembership
Finset.range
Set.uIoc
Real.linearOrder
totalLengthFilter
Real.pseudoMetricSpace
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
β€”tendsto_of_tendsto_of_tendsto_of_le_of_le
ENNReal.instOrderTopology
tendsto_const_nhds
ENNReal.ofReal_zero
ENNReal.tendsto_ofReal
Filter.tendsto_comap
Set.iUnion_congr_Prop
ENNReal.instCanonicallyOrderedAdd
le_imp_le_of_le_of_le
MeasureTheory.measure_biUnion_finset_le
MeasureTheory.Measure.instOuterMeasureClass
le_refl
ENNReal.ofReal_sum_of_nonneg
dist_nonneg
Eq.le
Finset.sum_congr
Real.volume_Ioc
max_sub_min_eq_abs'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
uIoc_subset_of_mem_disjWithin πŸ“–mathematicalSet
Set.instMembership
disjWithin
Real
Set.instHasSubset
Set.uIoc
Real.linearOrder
β€”Set.Ioc_subset_Ioc
uniformContinuousOn πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedAddCommGroup.toPseudoMetricSpace
UniformContinuousOn
Real
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.uIcc
Real.lattice
β€”uniformity_eq_comap_totalLengthFilter
Filter.comap_inf
Filter.comap_principal
Set.ext
Finset.coe_singleton
Filter.comap_comap
Finset.sum_congr
Finset.sum_const
Finset.card_singleton
one_smul
Filter.comap_mono
uniformity_eq_comap_totalLengthFilter πŸ“–mathematicalβ€”uniformity
PseudoMetricSpace.toUniformSpace
Filter.comap
totalLengthFilter
β€”Filter.HasBasis.eq_of_same_basis
Metric.uniformity_basis_dist
Finset.sum_congr
Finset.sum_const
Finset.card_singleton
one_smul
Filter.HasBasis.comap
hasBasis_totalLengthFilter
uniformlyContinuousOn πŸ“–mathematicalAbsolutelyContinuousOnInterval
SeminormedAddCommGroup.toPseudoMetricSpace
UniformContinuousOn
Real
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.uIcc
Real.lattice
β€”uniformContinuousOn

IntervalIntegrable

Theorems

NameKindAssumesProvesValidatesDepends On
absolutelyContinuousOnInterval_intervalIntegral πŸ“–mathematicalIntervalIntegrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NormedAddGroup.toENormedAddMonoid
NormedAddCommGroup.toNormedAddGroup
Real.normedAddCommGroup
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Set
Set.instMembership
Set.uIcc
Real.lattice
AbsolutelyContinuousOnInterval
intervalIntegral
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
β€”MeasureTheory.tendsto_setLIntegral_zero
ne_of_lt
MeasureTheory.Integrable.hasFiniteIntegral
intervalIntegrable_iff
PseudoEMetricSpace.pseudoMetrizableSpace
AbsolutelyContinuousOnInterval.tendsto_volume_restrict_totalLengthFilter_disjWithin_nhds_zero
Filter.Tendsto.comp
ContinuousAt.tendsto
ENNReal.continuousAt_toReal
ENNReal.toReal_zero
squeeze_zero'
Filter.univ_mem'
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
dist_nonneg
Finset.sum_congr
Filter.eventually_inf_principal
Filter.mp_mem
Set.mem_setOf_eq
Set.iUnion_congr_Prop
MeasureTheory.integral_norm_eq_lintegral_enorm
MeasureTheory.AEStronglyMeasurable.restrict
aestronglyMeasurable_restrict_uIoc
MeasureTheory.integral_biUnion_finset
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
AbsolutelyContinuousOnInterval.uIoc_subset_of_mem_disjWithin
Finset.mem_range
MeasureTheory.Measure.restrict_restrict_of_subset
MeasureTheory.IntegrableOn.integrable
MeasureTheory.IntegrableOn.mono_set
MeasureTheory.Integrable.norm
def'
Finset.sum_le_sum
Real.dist_eq
intervalIntegral.integral_interval_sub_left
mono_set'
intervalIntegral.integral_symm
abs_neg
intervalIntegral.abs_intervalIntegral_eq
MeasureTheory.abs_integral_le_integral_abs

LipschitzOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
absolutelyContinuousOnInterval πŸ“–mathematicalLipschitzOnWith
Real
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
Real.metricSpace
PseudoMetricSpace.toPseudoEMetricSpace
Set.uIcc
Real.lattice
AbsolutelyContinuousOnIntervalβ€”absolutelyContinuousOnInterval_iff
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
NNReal.coe_nonneg
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Finset.sum_le_sum
dist_edist
ENNReal.toReal_mul
ENNReal.toReal_mono
instLawfulBCmpCompare_mathlib
Finset.mul_sum
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
le_of_lt
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial

(root)

Definitions

NameCategoryTheorems
AbsolutelyContinuousOnInterval πŸ“–MathDef
3 mathmath: IntervalIntegrable.absolutelyContinuousOnInterval_intervalIntegral, LipschitzOnWith.absolutelyContinuousOnInterval, absolutelyContinuousOnInterval_iff

Theorems

NameKindAssumesProvesValidatesDepends On
absolutelyContinuousOnInterval_iff πŸ“–mathematicalβ€”AbsolutelyContinuousOnInterval
Real
Real.instLT
Real.instZero
Finset.sum
Real.instAddCommMonoid
Finset.range
Dist.dist
PseudoMetricSpace.toDist
β€”dist_zero_right
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Finset.sum_nonneg
dist_nonneg
Filter.HasBasis.eventually_iff
Filter.HasBasis.inf_principal
AbsolutelyContinuousOnInterval.hasBasis_totalLengthFilter
Finset.sum_congr

---

← Back to Index