Documentation Verification Report

Real

šŸ“ Source: Mathlib/MeasureTheory/Function/ConditionalExpectation/Real.lean

Statistics

MetricCount
Definitions0
TheoremsuniformIntegrable_condExp, ae_bdd_condExp_of_ae_bdd, eLpNorm_one_condExp_le_eLpNorm, integral_abs_condExp_le, rnDeriv_ae_eq_condExp, setIntegral_abs_condExp_le
6
Total6

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
ae_bdd_condExp_of_ae_bdd šŸ“–mathematicalFilter.Eventually
Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
NNReal.toReal
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
condExp
Real.normedAddCommGroup
Real.instCompleteSpace
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
—Measure.instOuterMeasureClass
Real.instCompleteSpace
lt_of_lt_of_le
setIntegral_gt_gt
NNReal.coe_nonneg
Integrable.integrableOn
Integrable.abs
instHasSolidNormReal
Real.instIsOrderedAddMonoid
integrable_condExp
LT.lt.ne'
ENNReal.instCanonicallyOrderedAdd
LE.le.trans
setIntegral_abs_condExp_le
measurableSet_lt
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
HasSolidNorm.orderClosedTopology
measurable_const
StronglyMeasurable.measurable
PseudoEMetricSpace.pseudoMetrizableSpace
StronglyMeasurable.norm
stronglyMeasurable_condExp
setIntegral_mono_ae
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
instClosedIciTopology
aestronglyMeasurable_const
lt_of_le_of_lt
setLIntegral_mono
Measurable.coe_nnreal_ennreal
Measurable.nnnorm
StronglyMeasurable.mono
enorm_eq_nnnorm
ENNReal.coe_le_coe
Real.nnnorm_of_nonneg
norm_nonneg
le_of_lt
LT.lt.ne
condExp_of_not_integrable
Filter.mp_mem
Filter.univ_mem'
Pi.zero_apply
abs_zero
IsOrderedAddMonoid.toAddLeftMono
abs_nonneg
covariant_swap_add_of_covariant_add
condExp_of_not_le
Filter.Eventually.of_forall
eLpNorm_one_condExp_le_eLpNorm šŸ“–mathematical—ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
eLpNorm
Real
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
SeminormedAddGroup.toContinuousENorm
condExp
Real.normedAddCommGroup
Real.instCompleteSpace
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
—Real.instCompleteSpace
eLpNorm_mono_ae
Filter.mp_mem
Measure.instOuterMeasureClass
Filter.EventuallyLE.trans
Filter.EventuallyEq.le
Filter.EventuallyEq.symm
condExp_neg
condExp_mono
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
Integrable.neg
Integrable.abs
ae_of_all
neg_le_abs
le_abs_self
Filter.univ_mem'
abs_le_abs
eLpNorm_one_eq_lintegral_enorm
ENNReal.toReal_eq_toReal_iff'
LT.lt.ne
hasFiniteIntegral_iff_enorm
integrable_condExp
integral_norm_eq_lintegral_enorm
StronglyMeasurable.aestronglyMeasurable
StronglyMeasurable.mono
stronglyMeasurable_condExp
integral_condExp
integral_congr_ae
condExp_zero
integrable_zero
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
abs_eq_self
condExp_of_not_sigmaFinite
eLpNorm_zero
zero_le
ENNReal.instCanonicallyOrderedAdd
condExp_of_not_le
condExp_of_not_integrable
integral_abs_condExp_le šŸ“–mathematical—Real
Real.instLE
integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
abs
Real.lattice
Real.instAddGroup
condExp
Real.instCompleteSpace
—Real.instCompleteSpace
integral_eq_lintegral_of_nonneg_ae
Filter.univ_mem'
Measure.instOuterMeasureClass
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
AEStronglyMeasurable.norm
StronglyMeasurable.aestronglyMeasurable
StronglyMeasurable.mono
stronglyMeasurable_condExp
ENNReal.toReal_mono
ofReal_norm_eq_enorm
LT.lt.ne
eLpNorm_one_eq_lintegral_enorm
eLpNorm_one_condExp_le_eLpNorm
condExp_of_not_integrable
abs_zero
integral_const
MulZeroClass.mul_zero
integral_nonneg
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
condExp_of_not_le
integral_zero
rnDeriv_ae_eq_condExp šŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Filter.EventuallyEq
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
SignedMeasure.rnDeriv
VectorMeasure.trim
ESeminormedAddCommMonoid.toAddCommMonoid
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.normedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Measure.withDensityᵄ
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
Measure.trim
condExp
Real.instCompleteSpace
—ae_eq_condExp_of_forall_setIntegral_eq
Real.instCompleteSpace
Integrable.integrableOn
integrable_of_integrable_trim
SignedMeasure.integrable_rnDeriv
Integrable.withDensityᵄ_trim_eq_integral
SignedMeasure.withDensityᵄ_rnDeriv_eq
Integrable.withDensityᵄ_trim_absolutelyContinuous
withDensityᵄ_apply
setIntegral_trim
Measurable.stronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
SignedMeasure.measurable_rnDeriv
StronglyMeasurable.aestronglyMeasurable
setIntegral_abs_condExp_le šŸ“–mathematicalMeasurableSetReal
Real.instLE
integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Measure.restrict
abs
Real.lattice
Real.instAddGroup
condExp
Real.instCompleteSpace
—Real.instCompleteSpace
integral_indicator
integral_congr_ae
Measure.instOuterMeasureClass
Filter.EventuallyEq.fun_comp
condExp_indicator
Filter.EventuallyEq.trans
Filter.Eventually.of_forall
Real.norm_eq_abs
norm_indicator_eq_indicator_norm
Filter.EventuallyEq.symm
LE.le.trans
integral_abs_condExp_le
le_of_eq
condExp_of_not_integrable
abs_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
integral_const
MulZeroClass.mul_zero
integral_nonneg
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
abs_nonneg
covariant_swap_add_of_covariant_add
condExp_of_not_le
integral_zero

MeasureTheory.Integrable

Theorems

NameKindAssumesProvesValidatesDepends On
uniformIntegrable_condExp šŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasurableSpace
MeasurableSpace.instLE
MeasureTheory.UniformIntegrable
Real.normedAddCommGroup
MeasureTheory.condExp
Real.instCompleteSpace
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
—Real.instCompleteSpace
measurableSet_le
BorelSpace.opensMeasurable
NNReal.borelSpace
OrderTopology.to_orderClosedTopology
NNReal.instOrderTopology
NNReal.instSecondCountableTopology
measurable_const
Measurable.nnnorm
Real.borelSpace
MeasureTheory.StronglyMeasurable.measurable
PseudoEMetricSpace.pseudoMetrizableSpace
MeasureTheory.StronglyMeasurable.mono
MeasureTheory.stronglyMeasurable_condExp
MeasureTheory.memLp_one_iff_integrable
MeasureTheory.uniformIntegrable_of
le_rfl
ENNReal.one_ne_top
MeasureTheory.StronglyMeasurable.aestronglyMeasurable
LE.le.trans
le_of_eq
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.eLpNorm_eq_zero_iff
MeasureTheory.AEStronglyMeasurable.indicator
one_ne_zero
NeZero.charZero_one
ENNReal.instCharZero
Filter.mp_mem
MeasureTheory.condExp_congr_ae
Filter.univ_mem'
Set.indicator_univ
MeasureTheory.condExp_zero
zero_le
ENNReal.instCanonicallyOrderedAdd
MeasureTheory.MemLp.eLpNorm_indicator_le
LT.lt.le
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
ENNReal.toNNReal_pos
LT.lt.ne
MeasureTheory.MemLp.eLpNorm_lt_top
ENNReal.toReal_one
ENNReal.rpow_one
enorm_eq_nnnorm
MeasureTheory.mul_meas_ge_le_pow_eLpNorm
ENNReal.le_div_iff_mul_le
ENNReal.coe_ne_zero
LT.lt.ne'
ENNReal.coe_lt_top
mul_comm
ENNReal.div_le_iff_le_mul
inv_nonneg
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
ENNReal.coe_mul
ENNReal.coe_toNNReal
mul_assoc
ENNReal.ofReal_eq_coe_nnreal
ENNReal.ofReal_mul
mul_inv_cancelā‚€
ENNReal.ofReal_one
one_mul
MeasureTheory.eLpNorm_one_condExp_le_eLpNorm
le_trans
MeasureTheory.eLpNorm_congr_ae
MeasureTheory.condExp_indicator

---

← Back to Index