Documentation Verification Report

ConvergenceInDistribution

πŸ“ Source: Mathlib/MeasureTheory/Function/ConvergenceInDistribution.lean

Statistics

MetricCount
DefinitionsTendstoInDistribution
1
Theoremsadd_of_tendstoInMeasure_const, aemeasurable_limit, continuous_comp, continuous_comp_prodMk_of_tendstoInMeasure_const, forall_aemeasurable, prodMk_of_tendstoInMeasure_const, tendsto, tendstoInDistribution, tendstoInDistribution_of_aemeasurable, tendstoInDistribution_const, tendstoInDistribution_of_isEmpty, tendstoInDistribution_of_tendstoInMeasure_sub, tendstoInDistribution_unique
13
Total14

MeasureTheory

Definitions

NameCategoryTheorems
TendstoInDistribution πŸ“–CompData
4 mathmath: tendstoInDistribution_const, tendstoInDistribution_of_isEmpty, TendstoInMeasure.tendstoInDistribution, TendstoInMeasure.tendstoInDistribution_of_aemeasurable

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoInDistribution_const πŸ“–mathematicalAEMeasurableTendstoInDistributionβ€”tendsto_const_nhds
Measure.isProbabilityMeasure_map
tendstoInDistribution_of_isEmpty πŸ“–mathematicalβ€”TendstoInDistribution
BorelSpace.opensMeasurable
DiscreteMeasurableSpace.toBorelSpace
Subsingleton.discreteTopology
IsEmpty.instSubsingleton
MeasurableSingletonClass.toDiscreteMeasurableSpace
Subsingleton.measurableSingletonClass
Encodable.countable
IsEmpty.toEncodable
β€”BorelSpace.opensMeasurable
DiscreteMeasurableSpace.toBorelSpace
Subsingleton.discreteTopology
IsEmpty.instSubsingleton
MeasurableSingletonClass.toDiscreteMeasurableSpace
Subsingleton.measurableSingletonClass
Encodable.countable
Measurable.aemeasurable
measurable_of_subsingleton_codomain
Measure.isProbabilityMeasure_map
Measure.instSubsingleton
tendsto_const_nhds
tendstoInDistribution_of_tendstoInMeasure_sub πŸ“–β€”TendstoInDistribution
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
BorelSpace.opensMeasurable
TendstoInMeasure
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
AEMeasurable
β€”β€”BorelSpace.opensMeasurable
TendstoInDistribution.aemeasurable_limit
TendstoInDistribution.forall_aemeasurable
isEmpty_or_nonempty
DiscreteMeasurableSpace.toBorelSpace
Subsingleton.discreteTopology
IsEmpty.instSubsingleton
MeasurableSingletonClass.toDiscreteMeasurableSpace
Subsingleton.measurableSingletonClass
Encodable.countable
LipschitzWith.continuous
eq_zero_or_pos
NNReal.instCanonicallyOrderedAdd
integral_const
Real.instCompleteSpace
Measure.isProbabilityMeasure_map
probReal_univ
one_mul
tendsto_const_nhds
Nat.instAtLeastTwoHAddOfNat
LE.le.trans
abs_sub_le
Real.instIsOrderedAddMonoid
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Integrable.of_bound
IsZeroOrProbabilityMeasure.toIsFiniteMeasure
instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
Continuous.comp_aestronglyMeasurable
AEMeasurable.aestronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
ae_of_all
Measure.instOuterMeasureClass
sub_le_iff_le_add'
abs_sub_abs_le_abs_sub
integrable_norm_iff
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
Continuous.fst
continuous_id'
Continuous.snd
AEStronglyMeasurable.prodMk
Integrable.sub
integral_map
Continuous.aestronglyMeasurable
secondCountableTopologyEither_of_right
instSecondCountableTopologyReal
integral_sub
Real.norm_eq_abs
norm_integral_le_integral_norm
integral_add_complβ‚€
nullMeasurableSet_lt
Real.borelSpace
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Measurable.comp_aemeasurable'
Continuous.measurable
Continuous.norm
AEMeasurable.sub
ContinuousSub.measurableSubβ‚‚
SeminormedAddCommGroup.toIsTopologicalAddGroup
aemeasurable_const
add_le_add
setIntegral_mono_onβ‚€
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
instClosedIciTopology
Integrable.integrableOn
integrableOn_const
measure_ne_top
enorm_ne_top
LipschitzWith.norm_sub_le_of_le
LT.lt.le
setIntegral_mono
dist_eq_norm
measureReal_restrict_apply
Set.univ_inter
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_one
mul_assoc
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_imp_le_of_le_of_le
measureReal_le_one
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
le_refl
mul_one
Mathlib.Meta.Positivity.nnreal_coe_pos
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
mul_div_assoc
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
sub_zero
TendstoInDistribution.tendsto
dist_zero_right
abs_abs
abs_dist
MulZeroClass.mul_zero
add_zero
half_lt_self
mul_pos
Filter.mp_mem
Filter.Tendsto.eventually_lt_const
Filter.univ_mem'
LE.le.trans_lt
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
tendsto_iff_forall_lipschitz_integral_tendsto
tendstoInDistribution_unique πŸ“–mathematicalTendstoInDistribution
BorelSpace.opensMeasurable
Measure.mapβ€”BorelSpace.opensMeasurable
Measure.isProbabilityMeasure_map
TendstoInDistribution.aemeasurable_limit
tendsto_nhds_unique
ProbabilityMeasure.t2Space
TendstoInDistribution.forall_aemeasurable
TendstoInDistribution.tendsto

MeasureTheory.TendstoInDistribution

Theorems

NameKindAssumesProvesValidatesDepends On
add_of_tendstoInMeasure_const πŸ“–mathematicalMeasureTheory.TendstoInDistribution
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
BorelSpace.opensMeasurable
MeasureTheory.TendstoInMeasure
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
AEMeasurable
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”BorelSpace.opensMeasurable
continuous_comp_prodMk_of_tendstoInMeasure_const
Continuous.fun_add
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Continuous.fst
continuous_id'
Continuous.snd
aemeasurable_limit πŸ“–mathematicalMeasureTheory.TendstoInDistributionAEMeasurableβ€”β€”
continuous_comp πŸ“–mathematicalContinuous
MeasureTheory.TendstoInDistribution
BorelSpace.opensMeasurableβ€”BorelSpace.opensMeasurable
Measurable.comp_aemeasurable
Continuous.measurable
forall_aemeasurable
aemeasurable_limit
MeasureTheory.Measure.isProbabilityMeasure_map
Measurable.aemeasurable
AEMeasurable.map_map_of_aemeasurable
Continuous.aemeasurable
MeasureTheory.ProbabilityMeasure.tendsto_map_of_tendsto_of_continuous
tendsto
continuous_comp_prodMk_of_tendstoInMeasure_const πŸ“–β€”Continuous
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
MeasureTheory.TendstoInDistribution
BorelSpace.opensMeasurable
MeasureTheory.TendstoInMeasure
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
AEMeasurable
β€”β€”BorelSpace.opensMeasurable
continuous_comp
Prod.opensMeasurableSpace
secondCountableTopologyEither_of_right
prodMk_of_tendstoInMeasure_const
forall_aemeasurable πŸ“–mathematicalMeasureTheory.TendstoInDistributionAEMeasurableβ€”β€”
prodMk_of_tendstoInMeasure_const πŸ“–mathematicalMeasureTheory.TendstoInDistribution
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
BorelSpace.opensMeasurable
MeasureTheory.TendstoInMeasure
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
AEMeasurable
Prod.instMeasurableSpace
instTopologicalSpaceProd
Prod.opensMeasurableSpace
secondCountableTopologyEither_of_right
β€”BorelSpace.opensMeasurable
forall_aemeasurable
aemeasurable_limit
MeasureTheory.tendstoInDistribution_of_tendstoInMeasure_sub
TopologicalSpace.instSecondCountableTopologyProd
Prod.borelSpace
secondCountableTopologyEither_of_right
MeasureTheory.Measure.isProbabilityMeasure_map
tendsto
AEMeasurable.prodMk
aemeasurable_const
MeasureTheory.ProbabilityMeasure.tendsto_iff_forall_integral_tendsto
Continuous.comp'
ContinuousMapClass.map_continuous
BoundedContinuousMapClass.toContinuousMapClass
BoundedContinuousFunction.instBoundedContinuousMapClass
Continuous.prodMk
continuous_id'
continuous_const
BoundedContinuousFunction.map_bounded'
MeasureTheory.integral_map
Continuous.aestronglyMeasurable
Prod.opensMeasurableSpace
PseudoEMetricSpace.pseudoMetrizableSpace
instSecondCountableTopologyReal
Continuous.comp_aestronglyMeasurable
MeasureTheory.AEStronglyMeasurable.prodMk
aestronglyMeasurable_id
MeasureTheory.aestronglyMeasurable_const
sub_zero
norm_zero
sup_of_le_right
sub_self
tendsto πŸ“–mathematicalMeasureTheory.TendstoInDistributionFilter.Tendsto
MeasureTheory.ProbabilityMeasure
MeasureTheory.Measure
MeasureTheory.IsProbabilityMeasure
MeasureTheory.Measure.map
MeasureTheory.Measure.isProbabilityMeasure_map
forall_aemeasurable
nhds
MeasureTheory.ProbabilityMeasure.instTopologicalSpace
aemeasurable_limit
β€”β€”

MeasureTheory.TendstoInMeasure

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoInDistribution πŸ“–mathematicalMeasureTheory.TendstoInMeasure
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AEMeasurable
MeasureTheory.TendstoInDistribution
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
BorelSpace.opensMeasurable
β€”tendstoInDistribution_of_aemeasurable
aemeasurable
tendstoInDistribution_of_aemeasurable πŸ“–mathematicalMeasureTheory.TendstoInMeasure
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AEMeasurable
MeasureTheory.TendstoInDistribution
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
BorelSpace.opensMeasurable
β€”MeasureTheory.tendstoInDistribution_of_tendstoInMeasure_sub
MeasureTheory.tendstoInDistribution_const
BorelSpace.opensMeasurable
sub_zero

---

← Back to Index