Documentation Verification Report

Egorov

πŸ“ Source: Mathlib/MeasureTheory/Function/Egorov.lean

Statistics

MetricCount
DefinitionsiUnionNotConvergentSeq, notConvergentSeq, notConvergentSeqLTIndex
3
Theoremsexists_notConvergentSeq_lt, iUnionNotConvergentSeq_measurableSet, iUnionNotConvergentSeq_subset, measure_iUnionNotConvergentSeq, measure_inter_notConvergentSeq_eq_zero, measure_notConvergentSeq_tendsto_zero, mem_notConvergentSeq_iff, notConvergentSeqLTIndex_spec, notConvergentSeq_antitone, notConvergentSeq_measurableSet, tendstoUniformlyOn_diff_iUnionNotConvergentSeq, tendstoUniformlyOn_of_ae_tendsto, tendstoUniformlyOn_of_ae_tendsto', tendstoUniformlyOn_of_ae_tendsto_of_measurable_edist, tendstoUniformlyOn_of_ae_tendsto_of_measurable_edist'
15
Total18

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
tendstoUniformlyOn_of_ae_tendsto πŸ“–mathematicalStronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
MeasurableSet
Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Real
Real.instLT
Real.instZero
Set
Set.instHasSubset
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
ENNReal.ofReal
TendstoUniformlyOn
Filter.atTop
SemilatticeSup.toPartialOrder
Set.instSDiff
β€”Measure.instOuterMeasureClass
tendstoUniformlyOn_of_ae_tendsto_of_measurable_edist
StronglyMeasurable.measurable
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
ENNReal.instMetrizableSpace
ENNReal.borelSpace
StronglyMeasurable.edist
tendstoUniformlyOn_of_ae_tendsto' πŸ“–mathematicalStronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Filter.Eventually
Filter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
nhds
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Real
Real.instLT
Real.instZero
MeasurableSet
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
DFunLike.coe
Set
ENNReal.ofReal
TendstoUniformlyOn
Compl.compl
Set.instCompl
β€”Measure.instOuterMeasureClass
tendstoUniformlyOn_of_ae_tendsto_of_measurable_edist'
StronglyMeasurable.measurable
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
ENNReal.instMetrizableSpace
ENNReal.borelSpace
StronglyMeasurable.edist
tendstoUniformlyOn_of_ae_tendsto_of_measurable_edist πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
EDist.edist
PseudoEMetricSpace.toEDist
MeasurableSet
Filter.Eventually
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Real
Real.instLT
Real.instZero
Set
Set.instHasSubset
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
ENNReal.ofReal
TendstoUniformlyOn
PseudoEMetricSpace.toUniformSpace
Filter.atTop
SemilatticeSup.toPartialOrder
Set.instSDiff
β€”Measure.instOuterMeasureClass
Egorov.iUnionNotConvergentSeq_subset
Egorov.iUnionNotConvergentSeq_measurableSet
Egorov.measure_iUnionNotConvergentSeq
Egorov.tendstoUniformlyOn_diff_iUnionNotConvergentSeq
tendstoUniformlyOn_of_ae_tendsto_of_measurable_edist' πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
EDist.edist
PseudoEMetricSpace.toEDist
Filter.Eventually
Filter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ae
Measure
Measure.instFunLike
Measure.instOuterMeasureClass
Real
Real.instLT
Real.instZero
MeasurableSet
Preorder.toLE
ENNReal.instPartialOrder
DFunLike.coe
Set
ENNReal.ofReal
TendstoUniformlyOn
Compl.compl
Set.instCompl
β€”Measure.instOuterMeasureClass
tendstoUniformlyOn_of_ae_tendsto_of_measurable_edist
MeasurableSet.univ
measure_ne_top
Filter.mp_mem
Filter.univ_mem'
Set.compl_eq_univ_diff

MeasureTheory.Egorov

Definitions

NameCategoryTheorems
iUnionNotConvergentSeq πŸ“–CompOp
4 mathmath: tendstoUniformlyOn_diff_iUnionNotConvergentSeq, iUnionNotConvergentSeq_subset, iUnionNotConvergentSeq_measurableSet, measure_iUnionNotConvergentSeq
notConvergentSeq πŸ“–CompOp
7 mathmath: measure_inter_notConvergentSeq_eq_zero, notConvergentSeqLTIndex_spec, notConvergentSeq_antitone, notConvergentSeq_measurableSet, mem_notConvergentSeq_iff, measure_notConvergentSeq_tendsto_zero, exists_notConvergentSeq_lt
notConvergentSeqLTIndex πŸ“–CompOp
1 mathmath: notConvergentSeqLTIndex_spec

Theorems

NameKindAssumesProvesValidatesDepends On
exists_notConvergentSeq_lt πŸ“–mathematicalReal
Real.instLT
Real.instZero
Measurable
ENNReal
ENNReal.measurableSpace
EDist.edist
PseudoEMetricSpace.toEDist
MeasurableSet
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Set
Set.instInter
notConvergentSeq
SemilatticeSup.toPartialOrder
ENNReal.ofReal
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”MeasureTheory.Measure.instOuterMeasureClass
Nat.instAtLeastTwoHAddOfNat
ENNReal.tendsto_atTop
ENNReal.zero_ne_top
measure_notConvergentSeq_tendsto_zero
ENNReal.ofReal_pos
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
zero_add
le_rfl
iUnionNotConvergentSeq_measurableSet πŸ“–mathematicalReal
Real.instLT
Real.instZero
Measurable
ENNReal
ENNReal.measurableSpace
EDist.edist
PseudoEMetricSpace.toEDist
MeasurableSet
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
iUnionNotConvergentSeqβ€”MeasureTheory.Measure.instOuterMeasureClass
MeasurableSet.iUnion
instCountableNat
MeasurableSet.inter
notConvergentSeq_measurableSet
iUnionNotConvergentSeq_subset πŸ“–mathematicalReal
Real.instLT
Real.instZero
Measurable
ENNReal
ENNReal.measurableSpace
EDist.edist
PseudoEMetricSpace.toEDist
MeasurableSet
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Set
Set.instHasSubset
iUnionNotConvergentSeq
β€”MeasureTheory.Measure.instOuterMeasureClass
iUnionNotConvergentSeq.eq_1
Set.inter_iUnion
Set.inter_subset_left
measure_iUnionNotConvergentSeq πŸ“–mathematicalReal
Real.instLT
Real.instZero
Measurable
ENNReal
ENNReal.measurableSpace
EDist.edist
PseudoEMetricSpace.toEDist
MeasurableSet
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Set
iUnionNotConvergentSeq
ENNReal.ofReal
β€”MeasureTheory.Measure.instOuterMeasureClass
le_trans
MeasureTheory.measure_iUnion_le
instCountableNat
Nat.instAtLeastTwoHAddOfNat
ENNReal.tsum_le_tsum
notConvergentSeqLTIndex_spec
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
ENNReal.ofReal_mul
LT.lt.le
ENNReal.tsum_mul_left
ENNReal.ofReal_tsum_of_nonneg
le_of_lt
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
inv_pos_of_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
inv_eq_one_div
summable_geometric_two
tsum_geometric_two
div_mul_cancelβ‚€
two_ne_zero
ZeroLEOneClass.neZero.two
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_refl
measure_inter_notConvergentSeq_eq_zero πŸ“–mathematicalFilter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
Set
ENNReal
Set.instInter
Set.iInter
notConvergentSeq
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
instZeroENNReal
β€”MeasureTheory.Measure.instOuterMeasureClass
nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
MeasureTheory.measure_mono
Mathlib.Tactic.Push.not_forall_eq
LT.lt.le
measure_notConvergentSeq_tendsto_zero πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
EDist.edist
PseudoEMetricSpace.toEDist
MeasurableSet
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Filter.Tendsto
DFunLike.coe
Set
Set.instInter
notConvergentSeq
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Filter.atTop
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
β€”MeasureTheory.Measure.instOuterMeasureClass
isEmpty_or_nonempty
Unique.instSubsingleton
tendsto_const_nhds
measure_inter_notConvergentSeq_eq_zero
Set.inter_iInter
MeasureTheory.tendsto_measure_iInter_atTop
Filter.atTop.isCountablyGenerated
MeasurableSet.nullMeasurableSet
MeasurableSet.inter
notConvergentSeq_measurableSet
Set.inter_subset_inter_right
notConvergentSeq_antitone
ne_top_of_le_ne_top
MeasureTheory.measure_mono
Set.inter_subset_left
mem_notConvergentSeq_iff πŸ“–mathematicalβ€”Set
Set.instMembership
notConvergentSeq
Preorder.toLE
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
EDist.edist
PseudoEMetricSpace.toEDist
β€”β€”
notConvergentSeqLTIndex_spec πŸ“–mathematicalReal
Real.instLT
Real.instZero
Measurable
ENNReal
ENNReal.measurableSpace
EDist.edist
PseudoEMetricSpace.toEDist
MeasurableSet
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
Set
Set.instInter
notConvergentSeq
SemilatticeSup.toPartialOrder
notConvergentSeqLTIndex
ENNReal.ofReal
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”MeasureTheory.Measure.instOuterMeasureClass
Nat.instAtLeastTwoHAddOfNat
exists_notConvergentSeq_lt
notConvergentSeq_antitone πŸ“–mathematicalβ€”Antitone
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
notConvergentSeq
β€”Set.iUnionβ‚‚_mono'
le_trans
Set.Subset.rfl
notConvergentSeq_measurableSet πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
EDist.edist
PseudoEMetricSpace.toEDist
MeasurableSet
notConvergentSeq
β€”MeasurableSet.iUnion
Prop.countable
measurableSet_lt
BorelSpace.opensMeasurable
ENNReal.borelSpace
ENNReal.instSecondCountableTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
measurable_const
tendstoUniformlyOn_diff_iUnionNotConvergentSeq πŸ“–mathematicalReal
Real.instLT
Real.instZero
Measurable
ENNReal
ENNReal.measurableSpace
EDist.edist
PseudoEMetricSpace.toEDist
MeasurableSet
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
TendstoUniformlyOn
PseudoEMetricSpace.toUniformSpace
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Set
Set.instSDiff
iUnionNotConvergentSeq
β€”MeasureTheory.Measure.instOuterMeasureClass
EMetric.tendstoUniformlyOn_iff
ENNReal.exists_inv_nat_lt
LT.lt.ne'
Filter.eventually_atTop
SemilatticeSup.instIsDirectedOrder
Nat.instAtLeastTwoHAddOfNat
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
PseudoEMetricSpace.edist_comm
lt_of_le_of_lt
Mathlib.Tactic.Push.not_and_eq
mem_notConvergentSeq_iff

---

← Back to Index