Documentation Verification Report

Intersectivity

šŸ“ Source: Mathlib/MeasureTheory/Function/Intersectivity.lean

Statistics

MetricCount
Definitions0
Theoremsbergelson, bergelson'
2
Total2

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
bergelson šŸ“–mathematicalMeasurableSet
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.Infinite
Preorder.toLT
instZeroENNReal
Set.iInter
Set.instMembership
—bergelson'
Set.Infinite.image
Function.Injective.injOn
Function.Embedding.injective
LT.lt.trans_le
Set.preimage_subset_of_surjOn
Set.Finite.preimage
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.subset_iInterā‚‚
Set.iInterā‚‚_subset
bergelson' šŸ“–mathematicalMeasurableSet
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.Infinite
Preorder.toLT
instZeroENNReal
Set.iInter
Set.instMembership
—MeasureTheory.measure_iUnion_null
MeasureTheory.Measure.instOuterMeasureClass
Finset.countable
instCountableNat
MeasureTheory.meas_eLpNormEssSup_lt
ENNReal.instCanonicallyOrderedAdd
Set.mem_iUnion
Set.mem_setOf
Set.indicator_of_mem
MeasureTheory.eLpNormEssSup_eq_zero_iff
Set.indicator_ae_eq_zero
Function.support_one
NeZero.charZero_one
RCLike.charZero_rclike
Set.inter_univ
nnnorm_one
NormedDivisionRing.to_normOneClass
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
ENNReal.instCharZero
Finset.sum_apply
Measurable.const_smul
MeasurableSMul.toMeasurableConstSMul
measurableSMul_of_mul
MeasurableMulā‚‚.toMeasurableMul
ENNReal.instMeasurableMulā‚‚
Finset.measurable_sum_apply
ContinuousAdd.measurableMulā‚‚
ENNReal.borelSpace
ENNReal.instSecondCountableTopology
ENNReal.instContinuousAdd
Measurable.fun_comp
Measurable.indicator
measurable_one
Measurable.snd
measurable_id'
ENNReal.div_eq_inv_mul
ENNReal.div_le_iff_le_mul
Nat.cast_ne_zero
one_ne_zero
mul_comm
nsmul_eq_mul
Finset.card_range
Finset.sum_le_card_nsmul
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
Set.indicator_le
le_rfl
MeasureTheory.lintegral_const_mul
Finset.measurable_fun_sum
MeasureTheory.lintegral_finset_sum
Finset.sum_congr
MeasureTheory.lintegral_indicator_one
ENNReal.le_div_iff_mul_le
Nat.cast_add
Nat.cast_one
Unique.instSubsingleton
Nat.instNoMaxOrder
nsmul_eq_mul'
Finset.card_nsmul_le_sum
le_bot_iff
MeasureTheory.lintegral_one
MeasureTheory.lintegral_mono
Filter.limsup_le_of_le
bot_le
Filter.Eventually.of_forall
MeasureTheory.exists_notMem_null_laverage_le
ne_top_of_le_ne_top
MeasureTheory.measure_ne_top
Filter.le_limsup_of_le
Filter.eventually_map
eq_zero_or_neZero
MeasureTheory.laverage_zero_measure
MeasureTheory.laverage_const
Filter.Eventually.exists
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
LE.le.trans
ENNReal.div_le_div_right
MeasureTheory.laverage_eq
MeasureTheory.limsup_lintegral_le
MeasureTheory.ae_of_all
MeasureTheory.lintegral_const
one_mul
ENNReal.div_ne_zero
eq_bot_mono
Filter.Tendsto.limsup_eq
ENNReal.instOrderTopology
tendsto_of_tendsto_of_tendsto_of_le_of_le
tendsto_const_nhds
bot_eq_zero'
MulZeroClass.zero_mul
ENNReal.Tendsto.mul_const
Filter.Tendsto.comp
ENNReal.tendsto_inv_nat_nhds_zero
Filter.tendsto_add_atTop_nat
ENNReal.natCast_ne_top
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
Set.indicator_apply
Finset.sum_boole
Finset.card_le_card
Set.Finite.mem_toFinset
Finset.mem_filter
Set.iInter_congr_Prop
Set.mem_iInterā‚‚

---

← Back to Index