Documentation Verification Report

ChebyshevMarkov

πŸ“ Source: Mathlib/MeasureTheory/Function/LpSeminorm/ChebyshevMarkov.lean

Statistics

MetricCount
Definitions0
Theoremsmeas_ge_lt_top, meas_ge_lt_top', meas_ge_lt_top'_enorm, meas_ge_lt_top_enorm, meas_ge_le_mul_pow_eLpNorm_enorm, mul_meas_ge_le_pow_eLpNorm, mul_meas_ge_le_pow_eLpNorm', pow_mul_meas_ge_le_eLpNorm
8
Total8

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
meas_ge_le_mul_pow_eLpNorm_enorm πŸ“–mathematicalAEStronglyMeasurable
DFunLike.coe
Measure
Set
ENNReal
Measure.instFunLike
setOf
ENorm.enorm
ContinuousENorm.toENorm
Top.top
instTopENNReal
instZeroENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Real
ENNReal.instPowReal
ENNReal.instInv
ENNReal.toReal
eLpNorm
β€”ENNReal.zero_rpow_of_pos
ENNReal.toReal_pos
ENNReal.inv_top
MulZeroClass.zero_mul
LT.lt.ne
ENNReal.rpow_pos
pos_iff_ne_zero
ENNReal.instCanonicallyOrderedAdd
ENNReal.rpow_ne_top_of_nonneg'
lt_of_le_of_ne'
zero_le
ENNReal.inv_rpow
ENNReal.mul_le_mul_iff_right
mul_assoc
ENNReal.mul_inv_cancel
one_mul
mul_meas_ge_le_pow_eLpNorm'
mul_meas_ge_le_pow_eLpNorm πŸ“–mathematicalAEStronglyMeasurableENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
Measure
Set
Measure.instFunLike
setOf
Real
ENNReal.instPowReal
ENorm.enorm
ContinuousENorm.toENorm
ENNReal.toReal
eLpNorm
β€”one_div_mul_cancel
ENNReal.toReal_eq_zero_iff
ENNReal.rpow_one
ENNReal.rpow_mul
ENNReal.rpow_le_rpow
pow_mul_meas_ge_le_eLpNorm
ENNReal.toReal_nonneg
mul_meas_ge_le_pow_eLpNorm' πŸ“–mathematicalAEStronglyMeasurableENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Real
ENNReal.instPowReal
ENNReal.toReal
DFunLike.coe
Measure
Set
Measure.instFunLike
setOf
ENorm.enorm
ContinuousENorm.toENorm
eLpNorm
β€”ENNReal.rpow_le_rpow_iff
ENNReal.toReal_pos
mul_meas_ge_le_pow_eLpNorm
pow_mul_meas_ge_le_eLpNorm πŸ“–mathematicalAEStronglyMeasurableENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Real
ENNReal.instPowReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
Measure
Set
Measure.instFunLike
setOf
ENorm.enorm
ContinuousENorm.toENorm
ENNReal.toReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
eLpNorm
β€”eLpNorm_eq_lintegral_rpow_enorm_toReal
ENNReal.rpow_le_rpow
mul_meas_ge_le_lintegralβ‚€
AEMeasurable.pow_const
ENNReal.hasMeasurablePow
AEStronglyMeasurable.enorm
Mathlib.Meta.Positivity.div_nonneg_of_pos_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
ENNReal.toReal_nonneg

MeasureTheory.MemLp

Theorems

NameKindAssumesProvesValidatesDepends On
meas_ge_lt_top πŸ“–mathematicalMeasureTheory.MemLp
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toPseudoMetricSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
setOf
NNReal
Preorder.toLE
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
Top.top
instTopENNReal
β€”meas_ge_lt_top'
meas_ge_lt_top' πŸ“–mathematicalMeasureTheory.MemLp
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toPseudoMetricSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
setOf
Preorder.toLE
ENNReal.ofNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
Top.top
instTopENNReal
β€”MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
meas_ge_lt_top'_enorm
meas_ge_lt_top'_enorm πŸ“–mathematicalMeasureTheory.MemLp
ContinuousENorm.toENorm
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
setOf
ENorm.enorm
Top.top
instTopENNReal
instZeroENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
Preorder.toLE
β€”LE.le.trans_lt
MeasureTheory.meas_ge_le_mul_pow_eLpNorm_enorm
aestronglyMeasurable
ENNReal.mul_lt_top
LT.lt.ne
eLpNorm_lt_top
meas_ge_lt_top_enorm πŸ“–mathematicalMeasureTheory.MemLp
ContinuousENorm.toENorm
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
setOf
Preorder.toLE
ENNReal.ofNNReal
ENorm.enorm
Top.top
instTopENNReal
β€”meas_ge_lt_top'_enorm
instIsEmptyFalse

---

← Back to Index