Documentation Verification Report

Indicator

πŸ“ Source: Mathlib/MeasureTheory/Function/LpSeminorm/Indicator.lean

Statistics

MetricCount
Definitions0
Theoremsexists_eLpNorm_indicator_compl_lt, indicator, piecewise, eLpNormEssSup_indicator_const_eq, eLpNormEssSup_indicator_const_le, eLpNormEssSup_indicator_eq_eLpNormEssSup_restrict, eLpNormEssSup_indicator_le, eLpNormEssSup_piecewise, eLpNorm_indicator_const, eLpNorm_indicator_const', eLpNorm_indicator_const_le, eLpNorm_indicator_constβ‚€, eLpNorm_indicator_eq_eLpNorm_restrict, eLpNorm_indicator_le, eLpNorm_indicator_sub_le_of_dist_bdd, eLpNorm_restrict_le, eLpNorm_sub_le_of_dist_bdd, eLpNorm_top_piecewise, memLp_indicator_const, memLp_indicator_iff_restrict
20
Total20

MeasureTheory

Theorems

NameKindAssumesProvesValidatesDepends On
eLpNormEssSup_indicator_const_eq πŸ“–mathematicalβ€”eLpNormEssSup
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ENorm.enorm
β€”le_antisymm
eLpNormEssSup_indicator_const_le
Measure.instOuterMeasureClass
ae_iff
ae_lt_of_essSup_lt
Filter.isBounded_le_of_top
measure_mono_null
Set.mem_setOf_eq
Set.indicator_of_mem
le_refl
eLpNormEssSup_indicator_const_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
eLpNormEssSup
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ENorm.enorm
β€”eLpNormEssSup_measure_zero
zero_le
ENNReal.instCanonicallyOrderedAdd
LE.le.trans
eLpNormEssSup_indicator_le
Eq.le
eLpNormEssSup_const
eLpNormEssSup_indicator_eq_eLpNormEssSup_restrict πŸ“–mathematicalMeasurableSeteLpNormEssSup
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
Set.indicator
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Measure.restrict
β€”eLpNorm_indicator_eq_eLpNorm_restrict
eLpNormEssSup_indicator_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
eLpNormEssSup
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
β€”essSup_mono_ae
Filter.Eventually.of_forall
Measure.instOuterMeasureClass
enorm_indicator_eq_indicator_enorm
Set.indicator_le_self
ENNReal.instCanonicallyOrderedAdd
eLpNormEssSup_piecewise πŸ“–mathematicalMeasurableSeteLpNormEssSup
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
Set.piecewise
ENNReal
ENNReal.instMax
Measure.restrict
Compl.compl
Set
Set.instCompl
β€”ENNReal.essSup_piecewise
Set.piecewise_eq_of_mem
Set.piecewise_eq_of_notMem
eLpNorm_indicator_const πŸ“–mathematicalMeasurableSeteLpNorm
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENorm.enorm
Real
ENNReal.instPowReal
DFunLike.coe
Measure
Set
Measure.instFunLike
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
ENNReal.toReal
β€”eLpNorm_indicator_constβ‚€
MeasurableSet.nullMeasurableSet
eLpNorm_indicator_const' πŸ“–mathematicalMeasurableSeteLpNorm
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENorm.enorm
Real
ENNReal.instPowReal
DFunLike.coe
Measure
Set
Measure.instFunLike
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
ENNReal.toReal
β€”eLpNorm_exponent_top
eLpNormEssSup_indicator_const_eq
div_zero
ENNReal.rpow_zero
mul_one
eLpNorm_indicator_const
eLpNorm_indicator_const_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
eLpNorm
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENorm.enorm
Real
ENNReal.instPowReal
DFunLike.coe
Measure
Set
Measure.instFunLike
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
ENNReal.toReal
β€”eq_or_ne
eLpNorm_exponent_zero
div_zero
ENNReal.rpow_zero
mul_one
ENNReal.instCanonicallyOrderedAdd
eLpNorm_exponent_top
eLpNormEssSup_indicator_const_le
eLpNorm_mono_enorm
enorm_indicator_le_of_subset
subset_toMeasurable
eLpNorm_indicator_const
measurableSet_toMeasurable
measure_toMeasurable
eLpNorm_indicator_constβ‚€ πŸ“–mathematicalNullMeasurableSeteLpNorm
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENorm.enorm
Real
ENNReal.instPowReal
DFunLike.coe
Measure
Set
Measure.instFunLike
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
ENNReal.toReal
β€”ENNReal.toReal_pos
eLpNorm_eq_lintegral_rpow_enorm_toReal
Set.comp_indicator_const
enorm_zero
ENNReal.zero_rpow_of_pos
lintegral_indicator_constβ‚€
ENNReal.mul_rpow_of_nonneg
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
ENNReal.rpow_mul
mul_one_div_cancel
LT.lt.ne'
ENNReal.rpow_one
eLpNorm_indicator_eq_eLpNorm_restrict πŸ“–mathematicalMeasurableSeteLpNorm
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
Measure.restrict
β€”eLpNorm_exponent_zero
eLpNorm_exponent_top
enorm_indicator_eq_indicator_enorm
ENNReal.essSup_indicator_eq_essSup_restrict
eLpNorm_eq_lintegral_rpow_enorm_toReal
lintegral_indicator
Set.indicator_comp_of_zero
ENNReal.zero_rpow_of_pos
ENNReal.toReal_pos
eLpNorm_indicator_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
eLpNorm
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
β€”eLpNorm_mono_ae'
Filter.Eventually.of_forall
Measure.instOuterMeasureClass
enorm_indicator_eq_indicator_enorm
Set.indicator_le_self
ENNReal.instCanonicallyOrderedAdd
eLpNorm_indicator_sub_le_of_dist_bdd πŸ“–mathematicalMeasurableSet
Real
Real.instLE
Real.instZero
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
eLpNorm
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
SeminormedAddGroup.toContinuousENorm
Set.indicator
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofReal
ENNReal.instPowReal
DFunLike.coe
Measure
Set
Measure.instFunLike
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
ENNReal.toReal
β€”eLpNorm_exponent_zero
div_zero
ENNReal.rpow_zero
mul_one
ENNReal.instCanonicallyOrderedAdd
Set.indicator_of_mem
Pi.sub_apply
dist_eq_norm
Real.norm_eq_abs
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Set.indicator_of_notMem
norm_zero
le_imp_le_of_le_of_le
eLpNorm_mono
le_refl
eLpNorm_indicator_const
ofReal_norm_eq_enorm
eLpNorm_restrict_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
eLpNorm
ContinuousENorm.toENorm
Measure.restrict
β€”eLpNorm_mono_measure
Measure.restrict_le_self
eLpNorm_sub_le_of_dist_bdd πŸ“–mathematicalMeasurableSet
Real
Real.instLE
Real.instZero
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set
Set.instHasSubset
Function.support
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
eLpNorm
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
SeminormedAddGroup.toContinuousENorm
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofReal
ENNReal.instPowReal
DFunLike.coe
Measure
Measure.instFunLike
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
ENNReal.toReal
β€”Set.indicator_eq_self
HasSubset.Subset.trans
Set.instIsTransSubset
Function.support_sub
Set.union_subset
eLpNorm_indicator_sub_le_of_dist_bdd
eLpNorm_top_piecewise πŸ“–mathematicalMeasurableSeteLpNorm
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
Set.piecewise
Top.top
ENNReal
instTopENNReal
ENNReal.instMax
Measure.restrict
Compl.compl
Set
Set.instCompl
β€”eLpNormEssSup_piecewise
memLp_indicator_const πŸ“–mathematicalMeasurableSet
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
MemLp
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toPseudoMetricSpace
Set.indicator
β€”memLp_indicator_iff_restrict
MemLp.zero
Ne.lt_top
memLp_const
Restrict.isFiniteMeasure
memLp_indicator_iff_restrict πŸ“–mathematicalMeasurableSetMemLp
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
Measure.restrict
β€”aestronglyMeasurable_indicator_iff
eLpNorm_indicator_eq_eLpNorm_restrict

MeasureTheory.MemLp

Theorems

NameKindAssumesProvesValidatesDepends On
exists_eLpNorm_indicator_compl_lt πŸ“–mathematicalMeasureTheory.MemLp
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toPseudoMetricSpace
MeasurableSet
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Top.top
instTopENNReal
MeasureTheory.eLpNorm
Set.indicator
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Compl.compl
Set.instCompl
β€”eq_or_ne
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
Set.compl_empty
Set.indicator_univ
MeasureTheory.eLpNorm_exponent_zero
pos_iff_ne_zero
ENNReal.instCanonicallyOrderedAdd
MeasureTheory.exists_setLIntegral_compl_lt
LT.lt.ne
MeasureTheory.eLpNorm_lt_top_iff_lintegral_rpow_enorm_lt_top
MeasureTheory.eLpNorm_indicator_eq_eLpNorm_restrict
MeasurableSet.compl
MeasureTheory.eLpNorm_eq_lintegral_rpow_enorm_toReal
one_div
ENNReal.rpow_inv_lt_iff
indicator πŸ“–mathematicalMeasurableSet
MeasureTheory.MemLp
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
β€”MeasureTheory.AEStronglyMeasurable.indicator
aestronglyMeasurable
lt_of_le_of_lt
MeasureTheory.eLpNorm_indicator_le
Ne.lt_top
eLpNorm_ne_top
piecewise πŸ“–mathematicalMeasurableSet
MeasureTheory.MemLp
ContinuousENorm.toENorm
ESeminormedAddMonoid.toContinuousENorm
MeasureTheory.Measure.restrict
Compl.compl
Set
Set.instCompl
Set.piecewiseβ€”MeasureTheory.AEStronglyMeasurable.piecewise
eq_or_ne
MeasureTheory.eLpNorm_top_piecewise
max_lt
MeasureTheory.eLpNorm_lt_top_iff_lintegral_rpow_enorm_lt_top
MeasureTheory.lintegral_add_compl
ENNReal.add_lt_top
Set.piecewise_eq_of_mem
MeasureTheory.setLIntegral_congr_fun
MeasureTheory.lintegral_rpow_enorm_lt_top_of_eLpNorm_lt_top
Set.piecewise_eq_of_notMem
MeasurableSet.compl

---

← Back to Index