Documentation Verification Report

SimpleFunc

πŸ“ Source: Mathlib/MeasureTheory/Function/SimpleFunc.lean

Statistics

MetricCount
DefinitionsSimpleFunc, FinMeasSupp, approx, bind, comp, const, eapprox, eapproxDiff, ennrealRatEmbed, extend, hasIntPow, hasNatPow, hasNatSMul, instAdd, instAddCommGroup, instAddCommMonoid, instAddGroup, instAddMonoid, instAlgebra, instBoundedOrder, instCommGroup, instCommMonoid, instCommRing, instCommSemiring, instDiv, instFunLike, instGroup, instInf, instInhabited, instIntCast, instInv, instInvolutiveStar, instLE, instLattice, instModule, instMonoid, instMul, instMulAction, instNatCast, instNeg, instNonAssocRing, instNonAssocSemiring, instNonUnitalCommRing, instNonUnitalCommSemiring, instNonUnitalNonAssocSemiring, instNonUnitalRing, instNonUnitalSemiring, instOne, instOrderBot, instOrderTop, instPartialOrder, instPreorder, instRing, instSMul, instSemilatticeInf, instSemilatticeSup, instSemiring, instStar, instStarAddMonoid, instStarMul, instStarRing, instSub, instSup, instVAdd, instZero, lintegral, lintegralβ‚—, map, ofFinite, ofIsEmpty, pair, piecewise, range, restrict, seq, toFun
76
Theoremsadd_simpleFunc, ennreal_induction, ennreal_sigmaFinite_induction, simpleFunc_add, add, iff_lintegral_lt_top, lintegral_lt_top, map, map_iff, mapβ‚‚, meas_preimage_singleton_ne_zero, mul, of_lintegral_ne_top, of_map, pair, add_apply, add_eq_mapβ‚‚, add_lintegral, aemeasurable, apply_mk, approx_apply, approx_comp, bind_apply, bind_const, coe_add, coe_algebraMap, coe_comp, coe_const, coe_div, coe_inf, coe_injective, coe_intCast, coe_inv, coe_le, coe_le_coe, coe_lt_coe, coe_map, coe_mk, coe_mul, coe_natCast, coe_neg, coe_one, coe_piecewise, coe_pow, coe_range, coe_restrict, coe_smul, coe_star, coe_sub, coe_sup, coe_vadd, coe_zero, coe_zpow, const_add_eq_map, const_algebraMap, const_apply, const_lintegral, const_lintegral_restrict, const_mul_eq_map, const_mul_lintegral, const_one, const_zero, div_apply, eapprox_comp, eapprox_lt_top, ennrealRatEmbed_encode, eq_zero_of_mem_range_zero, exists_forall_le, exists_range_iff, ext, ext_iff, extend_apply, extend_apply', extend_comp_eq, extend_comp_eq', finMeasSupp_iff, finMeasSupp_iff_support, finite_range, finite_range', finset_sup_apply, forall_mem_range, iSup_approx_apply, iSup_coe_eapprox, iSup_eapprox_apply, induction, induction', inf_apply, instIsOrderedAddMonoid, instIsOrderedMonoid, instIsScalarTower, instSMulCommClass, inv_apply, le_sup_lintegral, lintegral_add, lintegral_congr, lintegral_eq_of_measure_preimage, lintegral_eq_of_subset, lintegral_eq_of_subset', lintegral_finset_sum, lintegral_map, lintegral_map', lintegral_mono, lintegral_mono_fun, lintegral_mono_measure, lintegral_restrict, lintegral_restrict_iUnion_of_directed, lintegral_smul, lintegral_sum, lintegral_zero, map_add, map_apply, map_coe_ennreal_restrict, map_coe_nnreal_restrict, map_const, map_fst_pair, map_lintegral, map_map, map_mul, map_preimage, map_preimage_singleton, map_restrict_of_zero, map_snd_pair, measurable, measurableSet_cut, measurableSet_fiber, measurableSet_fiber', measurableSet_preimage, measurableSet_support, measurable_bind, measure_support_lt_top, measure_support_lt_top_of_lintegral_ne_top, mem_image_of_mem_range_restrict, mem_range, mem_range_of_measure_ne_zero, mem_range_self, mem_restrict_range, mk_le_mk, mk_lt_mk, monotone_approx, monotone_eapprox, mul_apply, mul_eq_mapβ‚‚, neg_apply, pair_apply, pair_preimage, pair_preimage_singleton, piecewise_apply, piecewise_compl, piecewise_empty, piecewise_mono, piecewise_same, piecewise_univ, pow_apply, preimage_eq_empty_iff, range_comp_subset_range, range_const, range_const_subset, range_eq_empty_of_isEmpty, range_indicator, range_map, range_one, range_zero, restrict_apply, restrict_const_lintegral, restrict_empty, restrict_lintegral, restrict_lintegral_eq_lintegral_restrict, restrict_mono, restrict_of_not_measurable, restrict_preimage, restrict_preimage_singleton, restrict_univ, seq_apply, simpleFunc_bot, simpleFunc_bot', smul_apply, smul_const, smul_eq_map, sub_apply, sum_eapproxDiff, sum_measure_preimage_singleton, sum_range_measure_preimage_singleton, sup_apply, sup_eq_mapβ‚‚, support_eq, support_indicator, tendsto_eapprox, tsum_eapproxDiff, vadd_apply, zero_lintegral, zpow_apply
191
Total267

Measurable

Theorems

NameKindAssumesProvesValidatesDepends On
add_simpleFunc πŸ“–mathematicalMeasurablePi.instAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddRightCancelMonoid.toAddMonoid
AddCancelMonoid.toAddRightCancelMonoid
DFunLike.coe
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instFunLike
β€”MeasureTheory.SimpleFunc.induction
Set.piecewise_same
Set.piecewise_add
piecewise
add_const
Set.piecewise_eq_of_mem
AddLeftCancelSemigroup.toIsLeftCancelAdd
Set.disjoint_left
Set.piecewise_eq_of_notMem
AddRightCancelSemigroup.toIsRightCancelAdd
MeasureTheory.SimpleFunc.measurableSet_support
ennreal_induction πŸ“–β€”Set.indicator
ENNReal
instZeroENNReal
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Measurable
ENNReal.measurableSpace
β€”β€”MeasureTheory.SimpleFunc.iSup_eapprox_apply
MeasureTheory.SimpleFunc.measurable
MeasureTheory.SimpleFunc.monotone_eapprox
MeasureTheory.SimpleFunc.induction
ennreal_sigmaFinite_induction πŸ“–β€”Set.indicator
ENNReal
instZeroENNReal
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Measurable
ENNReal.measurableSpace
β€”β€”ennreal_induction
Set.indicator_iUnion_apply
MeasureTheory.iUnion_spanningSets
Set.inter_univ
indicator
measurable_const
MeasurableSet.inter
MeasureTheory.measurableSet_spanningSets
le_imp_le_of_le_of_le
Set.indicator_le_indicator_apply_of_subset
Set.inter_subset_inter
subset_refl
Set.instReflSubset
MeasureTheory.spanningSets_mono
zero_le
ENNReal.instCanonicallyOrderedAdd
le_refl
MeasureTheory.measure_inter_lt_top_of_right_ne_top
LT.lt.ne
MeasureTheory.measure_spanningSets_lt_top
simpleFunc_add πŸ“–mathematicalMeasurablePi.instAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddRightCancelMonoid.toAddMonoid
AddCancelMonoid.toAddRightCancelMonoid
DFunLike.coe
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instFunLike
β€”MeasureTheory.SimpleFunc.induction
Set.piecewise_same
Set.piecewise_add
piecewise
const_add
Set.piecewise_eq_of_mem
AddRightCancelSemigroup.toIsRightCancelAdd
AddLeftCancelSemigroup.toIsLeftCancelAdd
Set.disjoint_left
Set.piecewise_eq_of_notMem
MeasureTheory.SimpleFunc.measurableSet_support

MeasureTheory

Definitions

NameCategoryTheorems
SimpleFunc πŸ“–CompData
221 math, 2 bridgemath: SimpleFunc.coe_range, SimpleFunc.exists_forall_le, SimpleFunc.posPart_sub_negPart, lintegral_def, SimpleFunc.sum_measure_preimage_singleton, SimpleFunc.integral_piecewise_zero, SimpleFunc.coe_zpow, SimpleFunc.coe_lt_coe, Lp.simpleFunc.toSimpleFunc_indicatorConst, MemLp.exists_simpleFunc_eLpNorm_sub_lt, StronglyMeasurable.tendsto_approxBounded_ae, SimpleFunc.forall_mem_range, Measurable.add_simpleFunc, SimpleFunc.coe_sup, Integrable.simpleFunc_mul', SimpleFunc.tendsto_approxOn_range_L1_enorm, measure_support_eapprox_lt_top, SimpleFunc.nearestPtInd_succ, SimpleFunc.const_apply, SimpleFunc.map_mul, SimpleFunc.measurable_bind, SimpleFunc.memLp_zero, SimpleFunc.instIsOrderedAddMonoid, SimpleFunc.apply_mk, FinStronglyMeasurable.tendsto_approx, Integrable.simpleFunc_mul, SimpleFunc.piecewise_apply, SimpleFunc.iSup_coe_eapprox, SimpleFunc.restrict_lintegral, SimpleFunc.integral_eq_sum_filter, SimpleFunc.mem_range, SimpleFunc.const_add_eq_map, SimpleFunc.setToSimpleFunc_zero_apply, SimpleFunc.coe_add, SimpleFunc.memLp_iff_integrable, Lp.simpleFunc.stronglyMeasurable, Lp.simpleFunc.sub_toSimpleFunc, SimpleFunc.mul_eq_mapβ‚‚, SimpleFunc.tendsto_eapprox, SimpleFunc.finite_range, Lp.simpleFunc.smul_toSimpleFunc, SimpleFunc.coe_piecewise, SimpleFunc.coe_star, SimpleFunc.coe_le, SimpleFunc.nnnorm_approxOn_le, SimpleFunc.exists_forall_norm_le, SimpleFunc.map_add, SimpleFunc.pair_preimage_singleton, SimpleFunc.preimage_eq_empty_iff, SimpleFunc.measurable, SimpleFunc.coe_zero, SimpleFunc.memLp_iff_finMeasSupp, exists_simpleFunc_forall_lintegral_sub_lt_of_pos, SimpleFunc.lintegral_restrict, condExp_stronglyMeasurable_simpleFunc_mul, Lp.simpleFunc.add_toSimpleFunc, SimpleFunc.norm_approxOn_yβ‚€_le, SimpleFunc.le_sup_lintegral, SimpleFunc.eapprox_comp, SimpleFunc.nearestPtInd_le, SimpleFunc.map_lintegral, SimpleFunc.coe_mul, SimpleFunc.memLp_approxOn_range, SimpleFunc.mk_le_mk, SimpleFunc.memLp_iff, tendsto_setToFun_approxOn_of_measurable_of_range_subset, SimpleFunc.edist_approxOn_y0_le, SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm, SimpleFunc.coe_map, SimpleFunc.const_one, SimpleFunc.edist_approxOn_mono, condExp_stronglyMeasurable_simpleFunc_bilin, SimpleFunc.approxOn_mem, SimpleFunc.sum_eapproxDiff, SimpleFunc.support_indicator, SimpleFunc.coe_pow, SimpleFunc.coe_natCast, SimpleFunc.range_zero, L1.SimpleFunc.norm_eq_sum_mul, SimpleFunc.exists_range_iff, SimpleFunc.lintegral_eq_of_subset', SimpleFunc.norm_setToSimpleFunc_le_sum_opNorm, SimpleFunc.FinMeasSupp.mul, SimpleFunc.FinMeasSupp.integrable, SimpleFunc.pair_preimage, exists_lt_lintegral_simpleFunc_of_lt_lintegral, SimpleFunc.coe_toLargerSpace_eq, SimpleFunc.vadd_apply, SimpleFunc.FinMeasSupp.meas_preimage_singleton_ne_zero, SimpleFunc.memLp_top, SimpleFunc.coe_vadd, SimpleFunc.integrable_iff, SimpleFunc.neg_apply, SimpleFunc.tendsto_approxOn, SimpleFunc.const_mul_eq_map, SimpleFunc.add_lintegral, SimpleFunc.inv_apply, Lp.simpleFunc.neg_toSimpleFunc, SimpleFunc.ext_iff, L1.SimpleFunc.integrable, SimpleFunc.coe_le_coe, Lp.simpleFunc.memLp, Lp.simpleFunc.norm_toSimpleFunc, L1.SimpleFunc.negPart_toSimpleFunc, SimpleFunc.measurableSet_support, SimpleFunc.memLp_approxOn, SimpleFunc.restrict_empty, SimpleFunc.monotone_eapprox, Measurable.simpleFunc_add, SimpleFunc.coe_smul, Lp.simpleFunc.toLp_zero, SimpleFunc.bind_apply, L1.SimpleFunc.posPart_toSimpleFunc, SimpleFunc.sup_apply, lintegral_eq_nnreal, SimpleFunc.measure_support_lt_top_of_lintegral_ne_top, SimpleFunc.coe_mk, SimpleFunc.coe_neg, SimpleFunc.integrable_approxOn_range, SimpleFunc.exists_le_lowerSemicontinuous_lintegral_ge, SimpleFunc.div_apply, SimpleFunc.coe_sub, SimpleFunc.coe_restrict, SimpleFunc.integral_eq_sum_of_subset, SimpleFunc.restrict_of_not_measurable, SimpleFunc.seq_apply, SimpleFunc.mem_restrict_range, SimpleFunc.eLpNorm'_eq, SimpleFunc.measurableSet_preimage, SimpleFunc.const_algebraMap, Lp.simpleFunc.exists_simpleFunc_nonneg_ae_eq, SimpleFunc.tendsto_nearestPt, SimpleFunc.memLp_of_isFiniteMeasure, SimpleFunc.smul_eq_map, SimpleFunc.coe_comp, SimpleFunc.sub_apply, SimpleFunc.range_one, SimpleFunc.integrable_approxOn, SimpleFunc.pair_apply, StronglyMeasurable.tendsto_approx, SimpleFunc.integrable_of_isFiniteMeasure, SimpleFunc.coe_div, SimpleFunc.measurableSet_fiber, SimpleFunc.pow_apply, SimpleFunc.restrict_apply, SimpleFunc.smul_const, SimpleFunc.stronglyMeasurable, SimpleFunc.coe_inf, SimpleFunc.setToSimpleFunc_eq_sum_filter, SimpleFunc.simpleFunc_bot, SimpleFunc.norm_approxOn_zero_le, SimpleFunc.aemeasurable, SimpleFunc.const_mul_lintegral, SimpleFunc.iSup_eapprox_apply, SimpleFunc.zpow_apply, Lp.simpleFunc.aestronglyMeasurable, ProbabilityTheory.strong_law_ae_simpleFunc_comp, SimpleFunc.mem_image_of_mem_range_restrict, SimpleFunc.exists_upperSemicontinuous_le_lintegral_le, SimpleFunc.aestronglyMeasurable, SimpleFunc.measurableSet_cut, SimpleFunc.coe_intCast, Lp.simpleFunc.measurable, SimpleFunc.mk_lt_mk, StronglyMeasurable.stronglyMeasurable_in_set, SimpleFunc.integrable_iff_finMeasSupp, HasCompactSupport.exists_simpleFunc_approx_of_prod, SimpleFunc.integral_eq, tendsto_setToFun_approxOn_of_measurable, SimpleFunc.extend_apply', SimpleFunc.tsum_eapproxDiff, SimpleFunc.iSup_approx_apply, SimpleFunc.const_zero, FinStronglyMeasurable.fin_support_approx, SimpleFunc.map_apply, SimpleFunc.eapprox_lt_top, SimpleFunc.inf_apply, SimpleFunc.mem_range_self, SimpleFunc.FinMeasSupp.add, SimpleFunc.support_eq, SimpleFunc.tendsto_approxOn_L1_enorm, SimpleFunc.approx_comp, SimpleFunc.instIsScalarTower, SimpleFunc.edist_nearestPt_le, SimpleFunc.restrict_preimage, SimpleFunc.approx_apply, SimpleFunc.coe_one, SimpleFunc.finMeasSupp_iff, SimpleFunc.finset_sup_apply, SimpleFunc.map_preimage, tendsto_integral_norm_approxOn_sub, SimpleFunc.sup_eq_mapβ‚‚, SimpleFunc.edist_approxOn_le, SimpleFunc.add_eq_mapβ‚‚, Lp.simpleFunc.toSimpleFunc_eq_toFun, SimpleFunc.coe_algebraMap, SimpleFunc.coe_const, SimpleFunc.coe_inv, SimpleFunc.smul_apply, SimpleFunc.tendsto_approxOn_range_Lp, SimpleFunc.monotone_approx, SimpleFunc.extend_comp_eq', SimpleFunc.add_apply, StronglyMeasurable.norm_approxBounded_le, Lp.simpleFunc.aemeasurable, SimpleFunc.mul_apply, SimpleFunc.tendsto_approxOn_Lp_eLpNorm, SimpleFunc.approxOn_zero, StronglyMeasurable.tendsto_approxBounded_of_norm_le, SimpleFunc.extend_apply, SimpleFunc.restrict_preimage_singleton, SimpleFunc.finMeasSupp_iff_support, SimpleFunc.lintegral_eq_lintegral, Lp.simpleFunc.zero_toSimpleFunc, SimpleFunc.zero_lintegral, SimpleFunc.instSMulCommClass, SimpleFunc.tendsto_approxOn_range_Lp_eLpNorm, SimpleFunc.instIsOrderedMonoid, SimpleFunc.map_preimage_singleton, SimpleFunc.sum_range_measure_preimage_singleton, SimpleFunc.approxOn_range_nonneg
bridge: SimpleFunc.hasBoxIntegral, SimpleFunc.box_integral_eq_integral

MeasureTheory.SimpleFunc

Definitions

NameCategoryTheorems
FinMeasSupp πŸ“–MathDef
7 mathmath: FinMeasSupp.of_lintegral_ne_top, FinMeasSupp.map_iff, memLp_iff_finMeasSupp, FinMeasSupp.iff_lintegral_lt_top, integrable_iff_finMeasSupp, finMeasSupp_iff, finMeasSupp_iff_support
approx πŸ“–CompOp
4 mathmath: iSup_approx_apply, approx_comp, approx_apply, monotone_approx
bind πŸ“–CompOp
2 mathmath: bind_apply, bind_const
comp πŸ“–CompOp
5 mathmath: range_comp_subset_range, approxOn_comp, coe_comp, extend_comp_eq, lintegral_map
const πŸ“–CompOp
26 mathmath: range_indicator, MeasureTheory.Lp.simpleFunc.toSimpleFunc_indicatorConst, const_apply, setToSimpleFunc_const, const_add_eq_map, const_lintegral_restrict, restrict_const_lintegral, map_const, const_one, support_indicator, const_mul_eq_map, const_lintegral, simpleFunc_bot', setToSimpleFunc_indicator, const_algebraMap, nearestPt_zero, range_const, smul_const, const_mul_lintegral, integral_const, range_const_subset, setToSimpleFunc_const', const_zero, bind_const, coe_const, nearestPtInd_zero
eapprox πŸ“–CompOp
10 mathmath: MeasureTheory.measure_support_eapprox_lt_top, iSup_coe_eapprox, tendsto_eapprox, MeasureTheory.lintegral_eapprox_le_lintegral, eapprox_comp, sum_eapproxDiff, monotone_eapprox, iSup_eapprox_apply, eapprox_lt_top, MeasureTheory.lintegral_eq_iSup_eapprox_lintegral
eapproxDiff πŸ“–CompOp
2 mathmath: sum_eapproxDiff, tsum_eapproxDiff
ennrealRatEmbed πŸ“–CompOp
1 mathmath: ennrealRatEmbed_encode
extend πŸ“–CompOp
4 mathmath: extend_apply', extend_comp_eq, extend_comp_eq', extend_apply
hasIntPow πŸ“–CompOp
2 mathmath: coe_zpow, zpow_apply
hasNatPow πŸ“–CompOp
2 mathmath: coe_pow, pow_apply
hasNatSMul πŸ“–CompOpβ€”
instAdd πŸ“–CompOp
10 mathmath: const_add_eq_map, coe_add, map_add, setToSimpleFunc_add, add_lintegral, FinMeasSupp.add, integral_add, add_eq_mapβ‚‚, add_apply, MeasureTheory.Lp.simpleFunc.toLp_add
instAddCommGroup πŸ“–CompOpβ€”
instAddCommMonoid πŸ“–CompOp
1 mathmath: instIsOrderedAddMonoid
instAddGroup πŸ“–CompOpβ€”
instAddMonoid πŸ“–CompOpβ€”
instAlgebra πŸ“–CompOp
2 mathmath: const_algebraMap, coe_algebraMap
instBoundedOrder πŸ“–CompOpβ€”
instCommGroup πŸ“–CompOpβ€”
instCommMonoid πŸ“–CompOp
1 mathmath: instIsOrderedMonoid
instCommRing πŸ“–CompOpβ€”
instCommSemiring πŸ“–CompOpβ€”
instDiv πŸ“–CompOp
2 mathmath: div_apply, coe_div
instFunLike πŸ“–CompOp
185 math, 2 bridgemath: coe_range, exists_forall_le, MeasureTheory.lintegral_def, sum_measure_preimage_singleton, coe_zpow, coe_lt_coe, MeasureTheory.Lp.simpleFunc.toSimpleFunc_indicatorConst, MeasureTheory.MemLp.exists_simpleFunc_eLpNorm_sub_lt, MeasureTheory.StronglyMeasurable.tendsto_approxBounded_ae, forall_mem_range, Measurable.add_simpleFunc, coe_sup, MeasureTheory.Integrable.simpleFunc_mul', tendsto_approxOn_range_L1_enorm, MeasureTheory.measure_support_eapprox_lt_top, nearestPtInd_succ, const_apply, measurable_bind, memLp_zero, apply_mk, MeasureTheory.FinStronglyMeasurable.tendsto_approx, MeasureTheory.Integrable.simpleFunc_mul, piecewise_apply, iSup_coe_eapprox, restrict_lintegral, integral_eq_sum_filter, mem_range, coe_add, memLp_iff_integrable, MeasureTheory.Lp.simpleFunc.stronglyMeasurable, MeasureTheory.Lp.simpleFunc.sub_toSimpleFunc, tendsto_eapprox, finite_range, MeasureTheory.Lp.simpleFunc.smul_toSimpleFunc, coe_piecewise, coe_star, coe_le, nnnorm_approxOn_le, exists_forall_norm_le, pair_preimage_singleton, preimage_eq_empty_iff, measurable, coe_zero, memLp_iff_finMeasSupp, MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_pos, lintegral_restrict, MeasureTheory.condExp_stronglyMeasurable_simpleFunc_mul, MeasureTheory.Lp.simpleFunc.add_toSimpleFunc, norm_approxOn_yβ‚€_le, eapprox_comp, nearestPtInd_le, map_lintegral, coe_mul, memLp_approxOn_range, memLp_iff, MeasureTheory.tendsto_setToFun_approxOn_of_measurable_of_range_subset, edist_approxOn_y0_le, norm_setToSimpleFunc_le_sum_mul_norm, coe_map, edist_approxOn_mono, MeasureTheory.condExp_stronglyMeasurable_simpleFunc_bilin, approxOn_mem, sum_eapproxDiff, support_indicator, coe_pow, coe_natCast, MeasureTheory.L1.SimpleFunc.norm_eq_sum_mul, exists_range_iff, lintegral_eq_of_subset', norm_setToSimpleFunc_le_sum_opNorm, FinMeasSupp.integrable, pair_preimage, MeasureTheory.exists_lt_lintegral_simpleFunc_of_lt_lintegral, coe_toLargerSpace_eq, vadd_apply, FinMeasSupp.meas_preimage_singleton_ne_zero, memLp_top, coe_vadd, integrable_iff, neg_apply, tendsto_approxOn, inv_apply, MeasureTheory.Lp.simpleFunc.neg_toSimpleFunc, ext_iff, MeasureTheory.L1.SimpleFunc.integrable, coe_le_coe, MeasureTheory.Lp.simpleFunc.memLp, MeasureTheory.Lp.simpleFunc.norm_toSimpleFunc, MeasureTheory.L1.SimpleFunc.negPart_toSimpleFunc, measurableSet_support, memLp_approxOn, Measurable.simpleFunc_add, coe_smul, bind_apply, MeasureTheory.L1.SimpleFunc.posPart_toSimpleFunc, sup_apply, measure_support_lt_top_of_lintegral_ne_top, coe_mk, coe_neg, integrable_approxOn_range, exists_le_lowerSemicontinuous_lintegral_ge, div_apply, coe_sub, coe_restrict, integral_eq_sum_of_subset, seq_apply, mem_restrict_range, eLpNorm'_eq, measurableSet_preimage, MeasureTheory.Lp.simpleFunc.exists_simpleFunc_nonneg_ae_eq, tendsto_nearestPt, memLp_of_isFiniteMeasure, coe_comp, sub_apply, integrable_approxOn, pair_apply, MeasureTheory.StronglyMeasurable.tendsto_approx, integrable_of_isFiniteMeasure, coe_div, measurableSet_fiber, pow_apply, restrict_apply, stronglyMeasurable, coe_inf, setToSimpleFunc_eq_sum_filter, simpleFunc_bot, norm_approxOn_zero_le, aemeasurable, iSup_eapprox_apply, zpow_apply, MeasureTheory.Lp.simpleFunc.aestronglyMeasurable, ProbabilityTheory.strong_law_ae_simpleFunc_comp, mem_image_of_mem_range_restrict, exists_upperSemicontinuous_le_lintegral_le, aestronglyMeasurable, measurableSet_cut, coe_intCast, MeasureTheory.Lp.simpleFunc.measurable, MeasureTheory.StronglyMeasurable.stronglyMeasurable_in_set, integrable_iff_finMeasSupp, HasCompactSupport.exists_simpleFunc_approx_of_prod, integral_eq, MeasureTheory.tendsto_setToFun_approxOn_of_measurable, extend_apply', tsum_eapproxDiff, iSup_approx_apply, MeasureTheory.FinStronglyMeasurable.fin_support_approx, map_apply, eapprox_lt_top, inf_apply, mem_range_self, support_eq, tendsto_approxOn_L1_enorm, approx_comp, edist_nearestPt_le, restrict_preimage, approx_apply, coe_one, finMeasSupp_iff, finset_sup_apply, map_preimage, MeasureTheory.tendsto_integral_norm_approxOn_sub, edist_approxOn_le, MeasureTheory.Lp.simpleFunc.toSimpleFunc_eq_toFun, coe_algebraMap, coe_const, coe_inv, smul_apply, tendsto_approxOn_range_Lp, extend_comp_eq', add_apply, MeasureTheory.StronglyMeasurable.norm_approxBounded_le, MeasureTheory.Lp.simpleFunc.aemeasurable, mul_apply, tendsto_approxOn_Lp_eLpNorm, approxOn_zero, MeasureTheory.StronglyMeasurable.tendsto_approxBounded_of_norm_le, extend_apply, restrict_preimage_singleton, finMeasSupp_iff_support, lintegral_eq_lintegral, MeasureTheory.Lp.simpleFunc.zero_toSimpleFunc, tendsto_approxOn_range_Lp_eLpNorm, map_preimage_singleton, sum_range_measure_preimage_singleton
bridge: hasBoxIntegral, box_integral_eq_integral
instGroup πŸ“–CompOpβ€”
instInf πŸ“–CompOp
2 mathmath: coe_inf, inf_apply
instInhabited πŸ“–CompOpβ€”
instIntCast πŸ“–CompOp
1 mathmath: coe_intCast
instInv πŸ“–CompOp
2 mathmath: inv_apply, coe_inv
instInvolutiveStar πŸ“–CompOpβ€”
instLE πŸ“–CompOp
6 mathmath: coe_le, piecewise_mono, mk_le_mk, coe_le_coe, MeasureTheory.Lp.simpleFunc.exists_simpleFunc_nonneg_ae_eq, approxOn_range_nonneg
instLattice πŸ“–CompOpβ€”
instModule πŸ“–CompOpβ€”
instMonoid πŸ“–CompOpβ€”
instMul πŸ“–CompOp
7 mathmath: map_mul, mul_eq_mapβ‚‚, coe_mul, FinMeasSupp.mul, const_mul_eq_map, const_mul_lintegral, mul_apply
instMulAction πŸ“–CompOpβ€”
instNatCast πŸ“–CompOp
1 mathmath: coe_natCast
instNeg πŸ“–CompOp
5 mathmath: integral_neg, setToSimpleFunc_neg, neg_apply, coe_neg, MeasureTheory.Lp.simpleFunc.toLp_neg
instNonAssocRing πŸ“–CompOpβ€”
instNonAssocSemiring πŸ“–CompOpβ€”
instNonUnitalCommRing πŸ“–CompOpβ€”
instNonUnitalCommSemiring πŸ“–CompOpβ€”
instNonUnitalNonAssocSemiring πŸ“–CompOpβ€”
instNonUnitalRing πŸ“–CompOpβ€”
instNonUnitalSemiring πŸ“–CompOpβ€”
instOne πŸ“–CompOp
3 mathmath: const_one, range_one, coe_one
instOrderBot πŸ“–CompOp
1 mathmath: finset_sup_apply
instOrderTop πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
2 mathmath: instIsOrderedAddMonoid, instIsOrderedMonoid
instPreorder πŸ“–CompOp
4 mathmath: coe_lt_coe, monotone_eapprox, mk_lt_mk, monotone_approx
instRing πŸ“–CompOpβ€”
instSMul πŸ“–CompOp
10 mathmath: setToSimpleFunc_smul, coe_smul, smul_eq_map, smul_const, MeasureTheory.Lp.simpleFunc.toLp_smul, integral_smul, instIsScalarTower, setToSimpleFunc_smul_real, smul_apply, instSMulCommClass
instSemilatticeInf πŸ“–CompOpβ€”
instSemilatticeSup πŸ“–CompOp
1 mathmath: finset_sup_apply
instSemiring πŸ“–CompOp
2 mathmath: const_algebraMap, coe_algebraMap
instStar πŸ“–CompOp
1 mathmath: coe_star
instStarAddMonoid πŸ“–CompOpβ€”
instStarMul πŸ“–CompOpβ€”
instStarRing πŸ“–CompOpβ€”
instSub πŸ“–CompOp
7 mathmath: posPart_sub_negPart, MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_pos, setToSimpleFunc_sub, integral_sub, coe_sub, MeasureTheory.Lp.simpleFunc.toLp_sub, sub_apply
instSup πŸ“–CompOp
4 mathmath: coe_sup, le_sup_lintegral, sup_apply, sup_eq_mapβ‚‚
instVAdd πŸ“–CompOp
2 mathmath: vadd_apply, coe_vadd
instZero πŸ“–CompOp
11 mathmath: integral_piecewise_zero, setToSimpleFunc_zero_apply, coe_zero, range_zero, restrict_empty, MeasureTheory.Lp.simpleFunc.toLp_zero, restrict_of_not_measurable, MeasureTheory.Lp.simpleFunc.exists_simpleFunc_nonneg_ae_eq, const_zero, zero_lintegral, approxOn_range_nonneg
lintegral πŸ“–CompOp
34 mathmath: MeasureTheory.lintegral_def, lintegral_mono_fun, lintegral_sum, restrict_lintegral, lintegral_congr, const_lintegral_restrict, restrict_const_lintegral, MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_pos, lintegral_restrict, MeasureTheory.lintegral_eapprox_le_lintegral, le_sup_lintegral, map_lintegral, FinMeasSupp.iff_lintegral_lt_top, lintegral_eq_of_subset', lintegral_zero, add_lintegral, lintegral_eq_of_measure_preimage, lintegral_smul, const_lintegral, FinMeasSupp.lintegral_lt_top, MeasureTheory.lintegral_eq_nnreal, lintegral_restrict_iUnion_of_directed, lintegral_map', lintegral_mono, restrict_lintegral_eq_lintegral_restrict, lintegral_add, lintegral_eq_of_subset, const_mul_lintegral, lintegral_finset_sum, lintegral_map, MeasureTheory.lintegral_eq_iSup_eapprox_lintegral, lintegral_mono_measure, lintegral_eq_lintegral, zero_lintegral
lintegralβ‚— πŸ“–CompOpβ€”
map πŸ“–CompOp
34 mathmath: posPart_map_norm, map_mul, const_add_eq_map, FinMeasSupp.map_iff, map_fst_pair, mul_eq_mapβ‚‚, map_add, MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_pos, map_restrict_of_zero, map_const, map_lintegral, coe_map, negPart_map_norm, const_mul_eq_map, map_snd_pair, norm_integral_le_integral_norm, MeasureTheory.lintegral_eq_nnreal, map_coe_nnreal_restrict, map_map, smul_eq_map, MeasureTheory.L1.SimpleFunc.norm_eq_integral, FinMeasSupp.mapβ‚‚, map_integral, map_apply, norm_setToSimpleFunc_le_integral_norm, FinMeasSupp.map, map_preimage, sup_eq_mapβ‚‚, add_eq_mapβ‚‚, integral_eq_lintegral', range_map, map_coe_ennreal_restrict, map_setToSimpleFunc, map_preimage_singleton
ofFinite πŸ“–CompOpβ€”
ofIsEmpty πŸ“–CompOpβ€”
pair πŸ“–CompOp
11 mathmath: map_fst_pair, mul_eq_mapβ‚‚, pair_preimage_singleton, pair_preimage, map_snd_pair, integrable_pair, pair_apply, FinMeasSupp.mapβ‚‚, FinMeasSupp.pair, sup_eq_mapβ‚‚, add_eq_mapβ‚‚
piecewise πŸ“–CompOp
12 mathmath: range_indicator, integral_piecewise_zero, MeasureTheory.Lp.simpleFunc.toSimpleFunc_indicatorConst, piecewise_compl, piecewise_apply, coe_piecewise, piecewise_mono, support_indicator, setToSimpleFunc_indicator, piecewise_empty, piecewise_same, piecewise_univ
range πŸ“–CompOp
34 mathmath: coe_range, range_indicator, range_comp_subset_range, restrict_lintegral, integral_eq_sum_filter, mem_range, mem_range_of_measure_ne_zero, preimage_eq_empty_iff, lintegral_restrict, integral_eq_sum, map_lintegral, norm_setToSimpleFunc_le_sum_mul_norm, range_zero, MeasureTheory.L1.SimpleFunc.norm_eq_sum_mul, exists_range_iff, norm_setToSimpleFunc_le_sum_opNorm, MeasureTheory.integral_simpleFunc_larger_space, mem_restrict_range, eLpNorm'_eq, range_eq_empty_of_isEmpty, range_one, range_const, setToSimpleFunc_eq_sum_filter, norm_setToSimpleFunc_le_sum_mul_norm_of_integrable, range_const_subset, integral_eq, map_integral, mem_range_self, support_eq, map_preimage, range_map, map_setToSimpleFunc, map_preimage_singleton, sum_range_measure_preimage_singleton
restrict πŸ“–CompOp
15 mathmath: restrict_univ, restrict_lintegral, restrict_const_lintegral, map_restrict_of_zero, restrict_mono, restrict_empty, coe_restrict, restrict_of_not_measurable, map_coe_nnreal_restrict, mem_restrict_range, restrict_lintegral_eq_lintegral_restrict, restrict_apply, restrict_preimage, restrict_preimage_singleton, map_coe_ennreal_restrict
seq πŸ“–CompOp
1 mathmath: seq_apply
toFun πŸ“–CompOp
2 mathmath: finite_range', measurableSet_fiber'

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instAdd
β€”β€”
add_eq_mapβ‚‚ πŸ“–mathematicalβ€”MeasureTheory.SimpleFunc
instAdd
map
pair
β€”β€”
add_lintegral πŸ“–mathematicalβ€”lintegral
MeasureTheory.SimpleFunc
ENNReal
instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”add_eq_mapβ‚‚
map_lintegral
Finset.sum_congr
add_mul
Distrib.rightDistribClass
Finset.sum_add_distrib
aemeasurable πŸ“–mathematicalβ€”AEMeasurable
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”Measurable.aemeasurable
measurable
apply_mk πŸ“–mathematicalMeasurableSet
Set.preimage
Set
Set.instSingletonSet
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”β€”
approx_apply πŸ“–mathematicalMeasurableDFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
approx
Finset.sup
Finset.range
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”finset_sup_apply
restrict_apply
measurableSet_Ici
instClosedIciTopology
Set.indicator_apply
approx_comp πŸ“–mathematicalMeasurableDFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
approx
β€”approx_apply
Measurable.comp
bind_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
bind
β€”β€”
bind_const πŸ“–mathematicalβ€”bind
const
β€”ext
coe_add πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instAdd
Pi.instAdd
β€”β€”
coe_algebraMap πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instSemiring
RingHom.instFunLike
algebraMap
instAlgebra
Pi.semiring
Function.algebra
β€”β€”
coe_comp πŸ“–mathematicalMeasurableDFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
comp
β€”β€”
coe_const πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
const
β€”β€”
coe_div πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instDiv
Pi.instDiv
β€”β€”
coe_inf πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instInf
Pi.instMinForall_mathlib
β€”β€”
coe_injective πŸ“–β€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”β€”DFunLike.ext'
coe_intCast πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instIntCast
β€”β€”
coe_inv πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instInv
Pi.instInv
β€”β€”
coe_le πŸ“–mathematicalβ€”Pi.hasLe
Preorder.toLE
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instLE
β€”coe_le_coe
coe_le_coe πŸ“–mathematicalβ€”Pi.hasLe
Preorder.toLE
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instLE
β€”β€”
coe_lt_coe πŸ“–mathematicalβ€”Preorder.toLT
Pi.preorder
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instPreorder
β€”β€”
coe_map πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
map
β€”β€”
coe_mk πŸ“–mathematicalMeasurableSet
Set.preimage
Set
Set.instSingletonSet
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”β€”
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instMul
Pi.instMul
β€”β€”
coe_natCast πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instNatCast
β€”β€”
coe_neg πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instNeg
Pi.instNeg
β€”β€”
coe_one πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instOne
Pi.instOne
β€”β€”
coe_piecewise πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
piecewise
Set.piecewise
Set
Set.instMembership
β€”β€”
coe_pow πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
hasNatPow
Pi.instPow
Monoid.toNatPow
β€”β€”
coe_range πŸ“–mathematicalβ€”SetLike.coe
Finset
Finset.instSetLike
range
Set.range
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”Set.Finite.coe_toFinset
finite_range
coe_restrict πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
restrict
Set.indicator
β€”restrict.eq_1
coe_piecewise
coe_zero
Set.piecewise_eq_indicator
coe_smul πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instSMul
Function.hasSMul
β€”β€”
coe_star πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
Star.star
instStar
Pi.instStarForall
β€”β€”
coe_sub πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instSub
Pi.instSub
β€”β€”
coe_sup πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instSup
Pi.instMaxForall_mathlib
β€”β€”
coe_vadd πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
HVAdd.hVAdd
instHVAdd
instVAdd
Function.hasVAdd
β€”β€”
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instZero
Pi.instZero
β€”β€”
coe_zpow πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
hasIntPow
Pi.instPow
DivInvMonoid.toZPow
β€”β€”
const_add_eq_map πŸ“–mathematicalβ€”MeasureTheory.SimpleFunc
instAdd
const
map
β€”β€”
const_algebraMap πŸ“–mathematicalβ€”const
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
MeasureTheory.SimpleFunc
instSemiring
instAlgebra
β€”β€”
const_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
const
β€”β€”
const_lintegral πŸ“–mathematicalβ€”lintegral
const
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.univ
β€”lintegral.eq_1
isEmpty_or_nonempty
Finset.sum_congr
range_eq_empty_of_isEmpty
MeasureTheory.Measure.eq_zero_of_isEmpty
MulZeroClass.mul_zero
Finset.sum_const_zero
range_const
Finset.sum_singleton
Set.preimage_const_of_mem
Set.mem_singleton
const_lintegral_restrict πŸ“–mathematicalβ€”lintegral
const
ENNReal
MeasureTheory.Measure.restrict
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
β€”const_lintegral
MeasureTheory.Measure.restrict_apply
MeasurableSet.univ
Set.univ_inter
const_mul_eq_map πŸ“–mathematicalβ€”MeasureTheory.SimpleFunc
instMul
const
map
β€”β€”
const_mul_lintegral πŸ“–mathematicalβ€”lintegral
MeasureTheory.SimpleFunc
ENNReal
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
const
β€”map_lintegral
Finset.mul_sum
Finset.sum_congr
mul_assoc
const_one πŸ“–mathematicalβ€”const
MeasureTheory.SimpleFunc
instOne
β€”β€”
const_zero πŸ“–mathematicalβ€”const
MeasureTheory.SimpleFunc
instZero
β€”β€”
div_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instDiv
β€”β€”
eapprox_comp πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
eapprox
β€”approx_comp
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
BorelSpace.opensMeasurable
ENNReal.borelSpace
eapprox_lt_top πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
eapprox
Top.top
instTopENNReal
β€”finset_sup_apply
Finset.sup_lt_iff
WithTop.top_pos
Set.piecewise_eq_indicator
Set.indicator_le_self
ENNReal.instCanonicallyOrderedAdd
ENNReal.coe_lt_top
ennrealRatEmbed_encode πŸ“–mathematicalβ€”ennrealRatEmbed
Encodable.encode
Rat.instEncodable
ENNReal.ofNNReal
Real.toNNReal
Real
Real.instRatCast
β€”ennrealRatEmbed.eq_1
Encodable.encodek
eq_zero_of_mem_range_zero πŸ“–β€”Finset
Finset.instMembership
range
MeasureTheory.SimpleFunc
instZero
β€”β€”forall_mem_range
exists_forall_le πŸ“–mathematicalβ€”Preorder.toLE
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”forall_mem_range
Finset.exists_le
exists_range_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
range
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”Set.exists_range_iff
ext πŸ“–β€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”ext
extend_apply πŸ“–mathematicalMeasurableEmbeddingDFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
extend
β€”Function.Injective.extend_apply
MeasurableEmbedding.injective
extend_apply' πŸ“–mathematicalMeasurableEmbeddingDFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
extend
β€”Function.extend_apply'
extend_comp_eq πŸ“–mathematicalMeasurableEmbeddingcomp
extend
MeasurableEmbedding.measurable
β€”coe_injective
MeasurableEmbedding.measurable
extend_comp_eq'
extend_comp_eq' πŸ“–mathematicalMeasurableEmbeddingDFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
extend
β€”extend_apply
finMeasSupp_iff πŸ“–mathematicalβ€”FinMeasSupp
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.preimage
MeasureTheory.SimpleFunc
instFunLike
Set.instSingletonSet
Top.top
instTopENNReal
β€”lt_of_le_of_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
finMeasSupp_iff_support
support_eq
MeasureTheory.measure_biUnion_lt_top
Finset.finite_toSet
Finset.mem_filter
finMeasSupp_iff_support πŸ“–mathematicalβ€”FinMeasSupp
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Function.support
MeasureTheory.SimpleFunc
instFunLike
Top.top
instTopENNReal
β€”β€”
finite_range πŸ“–mathematicalβ€”Set.Finite
Set.range
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”finite_range'
finite_range' πŸ“–mathematicalβ€”Set.Finite
Set.range
toFun
β€”β€”
finset_sup_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
Finset.sup
instSemilatticeSup
instOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”Finset.induction_on
Finset.sup_insert
sup_apply
forall_mem_range πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”β€”
iSup_approx_apply πŸ“–mathematicalMeasurable
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
approx
ConditionallyCompleteLattice.toLattice
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
β€”le_antisymm
iSup_le
approx_apply
Finset.sup_le
le_iSup_of_le
le_iSup
bot_le
Finset.mem_range
le_trans
le_of_eq
Finset.le_sup
iSup_coe_eapprox πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
iSup
Pi.supSet
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
eapprox
β€”iSup_apply
iSup_eapprox_apply
iSup_eapprox_apply πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
eapprox
β€”eapprox.eq_1
iSup_approx_apply
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
BorelSpace.opensMeasurable
ENNReal.borelSpace
le_antisymm
iSup_le
le_of_not_gt
ENNReal.lt_iff_exists_rat_btwn
le_iSup_of_le
ennrealRatEmbed_encode
le_of_lt
le_rfl
lt_irrefl
lt_of_le_of_lt
induction πŸ“–β€”piecewise
const
AddZero.toZero
AddZeroClass.toAddZero
MeasureTheory.SimpleFunc
instAdd
AddZero.toAdd
β€”β€”Finset.induction
MeasurableSet.univ
ext
Set.range_subset_singleton
Set.diff_eq_empty
Finset.coe_empty
piecewise_same
measurableSet_preimage
Set.range_piecewise
Set.image_compl_preimage
Set.union_diff_distrib
Set.diff_diff_comm
Finset.coe_insert
Set.insert_diff_self_of_notMem
Finset.mem_coe
Set.image_subset_iff
Set.preimage_const_of_mem
Set.mem_singleton
Set.subset_univ
Set.empty_union
Set.piecewise_eq_indicator
Set.piecewise_eq_of_mem
Set.indicator_of_mem
zero_add
Set.piecewise_eq_of_notMem
Set.indicator_of_notMem
add_zero
disjoint_iff_inf_le
Set.support_indicator
coe_range
Finset.coe_singleton
Finset.coe_sdiff
induction' πŸ“–β€”const
piecewise
β€”β€”Finset.induction
ext
Set.range_subset_singleton
Set.diff_eq_empty
Finset.coe_empty
measurableSet_preimage
Set.range_piecewise
Set.image_compl_preimage
Set.union_diff_distrib
Set.diff_diff_comm
Finset.coe_insert
Set.insert_diff_self_of_notMem
Finset.mem_coe
Set.image_subset_iff
Set.preimage_const_of_mem
Set.mem_singleton
Set.subset_univ
Set.empty_union
MeasurableSet.compl
MeasurableSet.of_compl
piecewise_compl
Set.piecewise_eq_of_mem
Set.piecewise_eq_of_notMem
coe_range
Finset.coe_singleton
Finset.coe_sdiff
inf_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instInf
β€”β€”
instIsOrderedAddMonoid πŸ“–mathematicalβ€”IsOrderedAddMonoid
MeasureTheory.SimpleFunc
instAddCommMonoid
instPartialOrder
β€”add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedMonoid πŸ“–mathematicalβ€”IsOrderedMonoid
MeasureTheory.SimpleFunc
instCommMonoid
instPartialOrder
β€”mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
MeasureTheory.SimpleFunc
instSMul
β€”ext
smul_assoc
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
MeasureTheory.SimpleFunc
instSMul
β€”ext
SMulCommClass.smul_comm
inv_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instInv
β€”β€”
le_sup_lintegral πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.instMax
lintegral
MeasureTheory.SimpleFunc
instSup
β€”Monotone.le_map_sup
lintegral_mono_fun
lintegral_add πŸ“–mathematicalβ€”lintegral
MeasureTheory.Measure
MeasureTheory.Measure.instAdd
ENNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”LinearMap.map_add
IsScalarTower.right
Algebra.to_smulCommClass
lintegral_congr πŸ“–mathematicalFilter.EventuallyEq
ENNReal
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
lintegralβ€”MeasureTheory.Measure.instOuterMeasureClass
lintegral_eq_of_measure_preimage
MeasureTheory.measure_congr
Filter.Eventually.set_eq
Filter.Eventually.mono
lintegral_eq_of_measure_preimage πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
Set.preimage
MeasureTheory.SimpleFunc
instFunLike
Set.instSingletonSet
lintegralβ€”Finset.sum_congr
lintegral_eq_of_subset
mem_range_of_measure_ne_zero
lintegral_eq_of_subset πŸ“–mathematicalENNReal
Finset
Finset.instMembership
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
lintegral
Finset.sum
ENNReal.instAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.preimage
Set.instSingletonSet
β€”Finset.sum_bij_ne_zero
ENNReal.instNoZeroDivisors
mem_range
Set.preimage_singleton_nonempty
MeasureTheory.nonempty_of_measure_ne_zero
mul_ne_zero_iff
lintegral_eq_of_subset' πŸ“–mathematicalFinset
ENNReal
Finset.instHasSubset
Finset.instSDiff
LinearOrder.toDecidableEq
ENNReal.instLinearOrder
range
Finset.instSingleton
instZeroENNReal
lintegral
Finset.sum
ENNReal.instAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.preimage
MeasureTheory.SimpleFunc
instFunLike
Set.instSingletonSet
β€”lintegral_eq_of_subset
Finset.mem_sdiff
mem_range_self
Finset.mem_singleton
lintegral_finset_sum πŸ“–mathematicalβ€”lintegral
Finset.sum
MeasureTheory.Measure
MeasureTheory.Measure.instAddCommMonoid
ENNReal
ENNReal.instAddCommMonoid
β€”map_sum
IsScalarTower.right
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Algebra.to_smulCommClass
lintegral_map πŸ“–mathematicalMeasurablelintegral
MeasureTheory.Measure.map
comp
ENNReal
β€”lintegral_map'
MeasureTheory.Measure.map_apply
lintegral_map' πŸ“–mathematicalDFunLike.coe
MeasureTheory.SimpleFunc
ENNReal
instFunLike
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.preimage
lintegralβ€”lintegral_eq_of_measure_preimage
measurableSet_preimage
lintegral_mono πŸ“–mathematicalMeasureTheory.SimpleFunc
ENNReal
instLE
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
MeasureTheory.Measure
MeasureTheory.Measure.instPartialOrder
lintegralβ€”LE.le.trans
lintegral_mono_fun
lintegral_mono_measure
lintegral_mono_fun πŸ“–mathematicalMeasureTheory.SimpleFunc
ENNReal
instLE
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
lintegralβ€”Monotone.of_left_le_map_sup
map_fst_pair
map_lintegral
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
le_sup_left
lintegral_mono_measure πŸ“–mathematicalMeasureTheory.Measure
Preorder.toLE
PartialOrder.toPreorder
MeasureTheory.Measure.instPartialOrder
ENNReal
ENNReal.instPartialOrder
lintegral
β€”Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
MeasureTheory.Measure.measure_mono_left
lintegral_restrict πŸ“–mathematicalβ€”lintegral
MeasureTheory.Measure.restrict
Finset.sum
ENNReal
ENNReal.instAddCommMonoid
range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.instInter
Set.preimage
MeasureTheory.SimpleFunc
instFunLike
Set.instSingletonSet
β€”Finset.sum_congr
MeasureTheory.Measure.restrict_apply
measurableSet_preimage
lintegral_restrict_iUnion_of_directed πŸ“–mathematicalDirected
Set
Set.instHasSubset
lintegral
MeasureTheory.Measure.restrict
Set.iUnion
iSup
ENNReal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
β€”Finset.sum_congr
MeasureTheory.Measure.restrict_iUnion_apply_eq_iSup
measurableSet_preimage
ENNReal.mul_iSup
ENNReal.finsetSum_iSup
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
MeasureTheory.Measure.measure_mono_left
MeasureTheory.Measure.restrict_mono
le_refl
lintegral_smul πŸ“–mathematicalβ€”lintegral
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
ENNReal
β€”IsScalarTower.right
Algebra.to_smulCommClass
smul_one_smul
MeasureTheory.Measure.instIsScalarTower
LinearMap.map_smul
lintegral_sum πŸ“–mathematicalβ€”lintegral
MeasureTheory.Measure.sum
tsum
ENNReal
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
SummationFilter.unconditional
β€”Finset.sum_congr
MeasureTheory.Measure.sum_apply
measurableSet_preimage
ENNReal.tsum_comm
lintegral_zero πŸ“–mathematicalβ€”lintegral
MeasureTheory.Measure
MeasureTheory.Measure.instZero
ENNReal
instZeroENNReal
β€”LinearMap.map_zero
IsScalarTower.right
Algebra.to_smulCommClass
map_add πŸ“–mathematicalβ€”map
MeasureTheory.SimpleFunc
instAdd
β€”ext
map_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
map
β€”β€”
map_coe_ennreal_restrict πŸ“–mathematicalβ€”map
NNReal
ENNReal
ENNReal.ofNNReal
restrict
instZeroNNReal
instZeroENNReal
β€”map_restrict_of_zero
ENNReal.coe_zero
map_coe_nnreal_restrict πŸ“–mathematicalβ€”map
NNReal
Real
NNReal.toReal
restrict
instZeroNNReal
Real.instZero
β€”map_restrict_of_zero
NNReal.coe_zero
map_const πŸ“–mathematicalβ€”map
const
β€”β€”
map_fst_pair πŸ“–mathematicalβ€”map
pair
β€”β€”
map_lintegral πŸ“–mathematicalβ€”lintegral
map
ENNReal
Finset.sum
ENNReal.instAddCommMonoid
range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.preimage
MeasureTheory.SimpleFunc
instFunLike
Set.instSingletonSet
β€”Finset.sum_congr
range_map
Finset.sum_image'
mem_range
map_preimage_singleton
sum_measure_preimage_singleton
Finset.mul_sum
map_map πŸ“–mathematicalβ€”mapβ€”β€”
map_mul πŸ“–mathematicalβ€”map
MeasureTheory.SimpleFunc
instMul
β€”ext
map_preimage πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
map
SetLike.coe
Finset
Finset.instSetLike
Finset.filter
Set
Set.instMembership
range
β€”Finset.filter.congr_simp
Finset.coe_filter
coe_range
Set.inter_comm
Set.preimage_inter_range
Set.preimage_comp
map_preimage_singleton πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
map
Set
Set.instSingletonSet
SetLike.coe
Finset
Finset.instSetLike
Finset.filter
range
β€”map_preimage
map_restrict_of_zero πŸ“–mathematicalβ€”map
restrict
β€”ext
coe_restrict
Set.indicator_comp_of_zero
restrict_of_not_measurable
map_snd_pair πŸ“–mathematicalβ€”map
pair
β€”β€”
measurable πŸ“–mathematicalβ€”Measurable
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”measurableSet_preimage
measurableSet_cut πŸ“–mathematicalMeasurableSet
setOf
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”Set.ext
Set.iUnion_congr_Prop
Set.iUnion_exists
Set.iUnion_iUnion_eq'
MeasurableSet.biUnion
Set.Finite.countable
finite_range
MeasurableSet.inter
measurableSet_fiber
measurableSet_fiber πŸ“–mathematicalβ€”MeasurableSet
Set.preimage
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
Set
Set.instSingletonSet
β€”measurableSet_fiber'
measurableSet_fiber' πŸ“–mathematicalβ€”MeasurableSet
Set.preimage
toFun
Set
Set.instSingletonSet
β€”β€”
measurableSet_preimage πŸ“–mathematicalβ€”MeasurableSet
Set.preimage
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”measurableSet_cut
MeasurableSet.const
measurableSet_support πŸ“–mathematicalβ€”MeasurableSet
Function.support
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”support_eq
Finset.measurableSet_biUnion
measurableSet_fiber
measurable_bind πŸ“–mathematicalMeasurableDFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”measurableSet_cut
measure_support_lt_top πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.preimage
MeasureTheory.SimpleFunc
instFunLike
Set.instSingletonSet
Top.top
instTopENNReal
Function.supportβ€”support_eq
LE.le.trans_lt
MeasureTheory.measure_biUnion_finset_le
MeasureTheory.Measure.instOuterMeasureClass
ENNReal.sum_lt_top
Finset.mem_filter
measure_support_lt_top_of_lintegral_ne_top πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Function.support
instZeroENNReal
MeasureTheory.SimpleFunc
instFunLike
Top.top
instTopENNReal
β€”measure_support_lt_top
finMeasSupp_iff
FinMeasSupp.of_lintegral_ne_top
mem_image_of_mem_range_restrict πŸ“–mathematicalFinset
Finset.instMembership
range
restrict
Set
Set.instMembership
Set.image
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”mem_restrict_range
eq_zero_of_mem_range_zero
restrict_of_not_measurable
mem_range πŸ“–mathematicalβ€”Finset
Finset.instMembership
range
Set
Set.instMembership
Set.range
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”Set.Finite.mem_toFinset
finite_range
mem_range_of_measure_ne_zero πŸ“–mathematicalβ€”Finset
Finset.instMembership
range
β€”MeasureTheory.nonempty_of_measure_ne_zero
mem_range
mem_range_self πŸ“–mathematicalβ€”Finset
Finset.instMembership
range
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”mem_range
mem_restrict_range πŸ“–mathematicalMeasurableSetFinset
Finset.instMembership
range
restrict
Set
Set.instMembership
Set.image
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”Finset.mem_coe
coe_range
coe_restrict
Set.mem_range_indicator
mk_le_mk πŸ“–mathematicalMeasurableSet
Set.preimage
Set
Set.instSingletonSet
MeasureTheory.SimpleFunc
instLE
Preorder.toLE
Pi.hasLe
β€”β€”
mk_lt_mk πŸ“–mathematicalMeasurableSet
Set.preimage
Set
Set.instSingletonSet
MeasureTheory.SimpleFunc
Preorder.toLT
instPreorder
Pi.preorder
β€”β€”
monotone_approx πŸ“–mathematicalβ€”Monotone
MeasureTheory.SimpleFunc
Nat.instPreorder
instPreorder
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
approx
β€”Finset.sup_mono
Finset.range_subset_range
monotone_eapprox πŸ“–mathematicalβ€”Monotone
MeasureTheory.SimpleFunc
ENNReal
Nat.instPreorder
instPreorder
PartialOrder.toPreorder
ENNReal.instPartialOrder
eapprox
β€”monotone_approx
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instMul
β€”β€”
mul_eq_mapβ‚‚ πŸ“–mathematicalβ€”MeasureTheory.SimpleFunc
instMul
map
pair
β€”β€”
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instNeg
β€”β€”
pair_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
pair
β€”β€”
pair_preimage πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
pair
SProd.sprod
Set
Set.instSProd
Set.instInter
β€”β€”
pair_preimage_singleton πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
pair
Set
Set.instSingletonSet
Set.instInter
β€”Set.singleton_prod_singleton
pair_preimage
piecewise_apply πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
piecewise
Set
Set.instMembership
β€”β€”
piecewise_compl πŸ“–mathematicalMeasurableSet
Compl.compl
Set
Set.instCompl
piecewise
MeasurableSet.of_compl
β€”coe_injective
MeasurableSet.of_compl
Set.piecewise_compl
piecewise_empty πŸ“–mathematicalβ€”piecewise
Set
Set.instEmptyCollection
MeasurableSet.empty
β€”coe_injective
MeasurableSet.empty
Set.piecewise_empty
piecewise_mono πŸ“–mathematicalMeasurableSet
Preorder.toLE
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instLE
piecewise
β€”Set.piecewise_mono
piecewise_same πŸ“–mathematicalMeasurableSetpiecewiseβ€”coe_injective
Set.piecewise_same
piecewise_univ πŸ“–mathematicalβ€”piecewise
Set.univ
MeasurableSet.univ
β€”coe_injective
MeasurableSet.univ
Set.piecewise_univ
pow_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
hasNatPow
Monoid.toNatPow
β€”β€”
preimage_eq_empty_iff πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
Set
Set.instSingletonSet
Set.instEmptyCollection
Finset
Finset.instMembership
range
β€”Set.preimage_singleton_eq_empty
mem_range
range_comp_subset_range πŸ“–mathematicalMeasurableFinset
Finset.instHasSubset
range
comp
β€”Finset.coe_subset
coe_range
range_const πŸ“–mathematicalβ€”range
const
Finset
Finset.instSingleton
β€”Finset.coe_injective
coe_range
Set.range_const
Finset.coe_singleton
range_const_subset πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
range
const
Finset.instSingleton
β€”Finset.coe_subset
coe_range
Finset.coe_singleton
range_eq_empty_of_isEmpty πŸ“–mathematicalβ€”range
Finset
Finset.instEmptyCollection
β€”Finset.ext
range_indicator πŸ“–mathematicalMeasurableSet
Set.Nonempty
range
piecewise
const
Finset
Finset.instInsert
Finset.instSingleton
β€”coe_range
Set.range_piecewise
Set.image_congr
Set.Nonempty.image_const
Set.nonempty_compl
Finset.coe_insert
Finset.coe_singleton
range_map πŸ“–mathematicalβ€”range
map
Finset.image
β€”Finset.coe_injective
coe_range
Set.range_comp
Finset.coe_image
range_one πŸ“–mathematicalβ€”range
MeasureTheory.SimpleFunc
instOne
Finset
Finset.instSingleton
β€”Finset.ext
Set.range_one
range_zero πŸ“–mathematicalβ€”range
MeasureTheory.SimpleFunc
instZero
Finset
Finset.instSingleton
β€”Finset.ext
mem_range
Set.range_zero
Set.mem_singleton_iff
Finset.mem_singleton
restrict_apply πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
restrict
Set.indicator
β€”coe_restrict
restrict_const_lintegral πŸ“–mathematicalMeasurableSetlintegral
restrict
ENNReal
instZeroENNReal
const
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
β€”restrict_lintegral_eq_lintegral_restrict
const_lintegral_restrict
restrict_empty πŸ“–mathematicalβ€”restrict
Set
Set.instEmptyCollection
MeasureTheory.SimpleFunc
instZero
β€”piecewise_empty
restrict_lintegral πŸ“–mathematicalMeasurableSetlintegral
restrict
ENNReal
instZeroENNReal
Finset.sum
ENNReal.instAddCommMonoid
range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.instInter
Set.preimage
MeasureTheory.SimpleFunc
instFunLike
Set.instSingletonSet
β€”lintegral_eq_of_subset
restrict_apply
Set.indicator_of_mem
coe_restrict
Set.indicator_of_notMem
Finset.sum_congr
forall_mem_range
MulZeroClass.zero_mul
restrict_preimage_singleton
Set.inter_comm
restrict_lintegral_eq_lintegral_restrict πŸ“–mathematicalMeasurableSetlintegral
restrict
ENNReal
instZeroENNReal
MeasureTheory.Measure.restrict
β€”restrict_lintegral
lintegral_restrict
restrict_mono πŸ“–mathematicalMeasureTheory.SimpleFunc
instLE
Preorder.toLE
restrictβ€”coe_restrict
Set.indicator_le_indicator
restrict_of_not_measurable
restrict_of_not_measurable πŸ“–mathematicalMeasurableSetrestrict
MeasureTheory.SimpleFunc
instZero
β€”β€”
restrict_preimage πŸ“–mathematicalMeasurableSet
Set
Set.instMembership
Set.preimage
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
restrict
Set.instInter
β€”coe_restrict
Set.indicator_preimage_of_notMem
Set.inter_comm
restrict_preimage_singleton πŸ“–mathematicalMeasurableSetSet.preimage
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
restrict
Set
Set.instSingletonSet
Set.instInter
β€”restrict_preimage
restrict_univ πŸ“–mathematicalβ€”restrict
Set.univ
β€”piecewise_univ
seq_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
seq
β€”β€”
simpleFunc_bot πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
Bot.bot
MeasurableSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
MeasurableSpace.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
instFunLike
β€”measurableSet_fiber
Set.exists_eq_const_of_preimage_singleton
simpleFunc_bot' πŸ“–mathematicalβ€”const
Bot.bot
MeasurableSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
MeasurableSpace.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”ext
simpleFunc_bot
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instSMul
β€”β€”
smul_const πŸ“–mathematicalβ€”MeasureTheory.SimpleFunc
instSMul
const
β€”ext
smul_eq_map πŸ“–mathematicalβ€”MeasureTheory.SimpleFunc
instSMul
map
β€”β€”
sub_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instSub
β€”β€”
sum_eapproxDiff πŸ“–mathematicalβ€”Finset.sum
ENNReal
ENNReal.instAddCommMonoid
Finset.range
ENNReal.ofNNReal
DFunLike.coe
MeasureTheory.SimpleFunc
NNReal
instFunLike
eapproxDiff
eapprox
β€”Finset.sum_congr
zero_add
Finset.sum_singleton
ENNReal.coe_toNNReal
LT.lt.ne
eapprox_lt_top
Finset.sum_range_succ
eapproxDiff.eq_2
coe_map
coe_sub
Pi.sub_apply
lt_of_le_of_lt
tsub_le_iff_right
ENNReal.instOrderedSub
le_self_add
ENNReal.instCanonicallyOrderedAdd
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
monotone_eapprox
sum_measure_preimage_singleton πŸ“–mathematicalβ€”Finset.sum
ENNReal
ENNReal.instAddCommMonoid
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.preimage
MeasureTheory.SimpleFunc
instFunLike
Set.instSingletonSet
SetLike.coe
Finset
Finset.instSetLike
β€”MeasureTheory.sum_measure_preimage_singleton
measurableSet_fiber
sum_range_measure_preimage_singleton πŸ“–mathematicalβ€”Finset.sum
ENNReal
ENNReal.instAddCommMonoid
range
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.preimage
MeasureTheory.SimpleFunc
instFunLike
Set.instSingletonSet
Set.univ
β€”sum_measure_preimage_singleton
coe_range
Set.preimage_range
sup_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
instSup
β€”β€”
sup_eq_mapβ‚‚ πŸ“–mathematicalβ€”MeasureTheory.SimpleFunc
instSup
map
pair
β€”β€”
support_eq πŸ“–mathematicalβ€”Function.support
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
Set.iUnion
Finset
Finset.instMembership
Finset.filter
range
Set.preimage
Set
Set.instSingletonSet
β€”Set.ext
Set.iUnion_congr_Prop
support_indicator πŸ“–mathematicalMeasurableSetFunction.support
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
piecewise
const
Set
Set.instInter
β€”Set.support_indicator
tendsto_eapprox πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
Filter.Tendsto
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
eapprox
Filter.atTop
Nat.instPreorder
nhds
ENNReal.instTopologicalSpace
β€”iSup_coe_eapprox
iSup_apply
tendsto_atTop_iSup
LinearOrder.supConvergenceClass
ENNReal.instOrderTopology
monotone_eapprox
tsum_eapproxDiff πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
ENNReal.ofNNReal
DFunLike.coe
MeasureTheory.SimpleFunc
NNReal
instFunLike
eapproxDiff
SummationFilter.unconditional
β€”ENNReal.tsum_eq_iSup_nat'
Filter.tendsto_add_atTop_nat
sum_eapproxDiff
iSup_eapprox_apply
vadd_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
HVAdd.hVAdd
instHVAdd
instVAdd
β€”β€”
zero_lintegral πŸ“–mathematicalβ€”lintegral
MeasureTheory.SimpleFunc
ENNReal
instZero
instZeroENNReal
β€”IsScalarTower.right
Algebra.to_smulCommClass
LinearMap.ext_iff
LinearMap.map_zero
zpow_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
hasIntPow
DivInvMonoid.toZPow
β€”β€”

MeasureTheory.SimpleFunc.FinMeasSupp

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalMeasureTheory.SimpleFunc.FinMeasSupp
AddZero.toZero
AddZeroClass.toAddZero
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instAdd
AddZero.toAdd
β€”MeasureTheory.SimpleFunc.add_eq_mapβ‚‚
mapβ‚‚
zero_add
iff_lintegral_lt_top πŸ“–mathematicalFilter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instFunLike
Top.top
instTopENNReal
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.SimpleFunc.FinMeasSupp
instZeroENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
MeasureTheory.SimpleFunc.lintegral
β€”MeasureTheory.Measure.instOuterMeasureClass
lintegral_lt_top
of_lintegral_ne_top
LT.lt.ne
lintegral_lt_top πŸ“–mathematicalMeasureTheory.SimpleFunc.FinMeasSupp
ENNReal
instZeroENNReal
Filter.Eventually
DFunLike.coe
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instFunLike
Top.top
instTopENNReal
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
MeasureTheory.SimpleFunc.lintegral
β€”MeasureTheory.Measure.instOuterMeasureClass
ENNReal.sum_lt_top
eq_or_ne
MulZeroClass.mul_zero
MulZeroClass.zero_mul
ENNReal.mul_lt_top
Ne.lt_top
MeasureTheory.SimpleFunc.finMeasSupp_iff
map πŸ“–mathematicalMeasureTheory.SimpleFunc.FinMeasSuppMeasureTheory.SimpleFunc.mapβ€”lt_of_le_of_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Function.support_comp_subset
map_iff πŸ“–mathematicalβ€”MeasureTheory.SimpleFunc.FinMeasSupp
MeasureTheory.SimpleFunc.map
β€”of_map
map
mapβ‚‚ πŸ“–mathematicalMeasureTheory.SimpleFunc.FinMeasSuppMeasureTheory.SimpleFunc.map
MeasureTheory.SimpleFunc.pair
β€”map
pair
meas_preimage_singleton_ne_zero πŸ“–mathematicalMeasureTheory.SimpleFunc.FinMeasSuppENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.preimage
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instFunLike
Set.instSingletonSet
Top.top
instTopENNReal
β€”MeasureTheory.SimpleFunc.finMeasSupp_iff
mul πŸ“–mathematicalMeasureTheory.SimpleFunc.FinMeasSupp
MulZeroClass.toZero
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instMul
MulZeroClass.toMul
β€”MeasureTheory.SimpleFunc.mul_eq_mapβ‚‚
mapβ‚‚
MulZeroClass.zero_mul
of_lintegral_ne_top πŸ“–mathematicalβ€”MeasureTheory.SimpleFunc.FinMeasSupp
ENNReal
instZeroENNReal
β€”MeasureTheory.SimpleFunc.finMeasSupp_iff
ENNReal.lt_top_of_mul_ne_top_right
LT.lt.ne
ENNReal.lt_top_of_sum_ne_top
MeasureTheory.SimpleFunc.lintegral_eq_of_subset'
Finset.subset_insert
Finset.mem_insert_self
of_map πŸ“–β€”MeasureTheory.SimpleFunc.FinMeasSupp
MeasureTheory.SimpleFunc.map
β€”β€”lt_of_le_of_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Function.support_subset_comp
pair πŸ“–mathematicalMeasureTheory.SimpleFunc.FinMeasSuppProd.instZero
MeasureTheory.SimpleFunc.pair
β€”Function.support_prodMk
MeasureTheory.measure_union_le
MeasureTheory.Measure.instOuterMeasureClass
ENNReal.add_lt_top

---

← Back to Index