Documentation Verification Report

SimpleFuncDense

πŸ“ Source: Mathlib/MeasureTheory/Function/SimpleFuncDense.lean

Statistics

MetricCount
DefinitionsapproxOn, nearestPt, nearestPtInd
3
Theoremsexists_simpleFunc_approx_of_prod, measurable_of_prod, approxOn_comp, approxOn_mem, approxOn_range_nonneg, approxOn_zero, edist_approxOn_le, edist_approxOn_mono, edist_approxOn_y0_le, edist_nearestPt_le, nearestPtInd_le, nearestPtInd_succ, nearestPtInd_zero, nearestPt_zero, tendsto_approxOn, tendsto_nearestPt
16
Total19

HasCompactSupport

Theorems

NameKindAssumesProvesValidatesDepends On
exists_simpleFunc_approx_of_prod πŸ“–mathematicalContinuous
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
HasCompactSupport
Real
Real.instLT
Real.instZero
Dist.dist
PseudoMetricSpace.toDist
DFunLike.coe
MeasureTheory.SimpleFunc
Prod.instMeasurableSpace
MeasureTheory.SimpleFunc.instFunLike
β€”IsCompact.induction_on
Set.instReflSubset
instIsEmptyFalse
HasSubset.Subset.trans
Set.instIsTransSubset
MeasurableSet.union
Set.union_subset_union
Set.mem_union
mem_nhds_prod_iff'
Metric.continuousAt_iff'
Continuous.continuousAt
nhdsWithin_le_nhds
IsOpen.mem_nhds
IsOpen.prod
Set.mk_mem_prod
MeasurableSet.prod
IsOpen.measurableSet
Set.Subset.rfl
Mathlib.Tactic.Contrapose.contraposeβ‚‚
subset_tsupport
Function.mem_support
dist_self
measurable_of_prod πŸ“–mathematicalContinuous
instTopologicalSpaceProd
HasCompactSupport
Measurable
Prod.instMeasurableSpace
β€”exists_seq_strictAnti_tendsto
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
PseudoEMetricSpace.pseudoMetrizableSpace
exists_simpleFunc_approx_of_prod
tendsto_iff_dist_tendsto_zero
squeeze_zero
dist_nonneg
dist_comm
LT.lt.le
measurable_of_tendsto_metrizable
MeasureTheory.SimpleFunc.measurable
tendsto_pi_nhds

MeasureTheory.SimpleFunc

Definitions

NameCategoryTheorems
approxOn πŸ“–CompOp
25 mathmath: tendsto_approxOn_range_L1_enorm, MeasureTheory.tendsto_integral_approxOn_of_measurable, approxOn_comp, nnnorm_approxOn_le, MeasureTheory.tendsto_integral_approxOn_of_measurable_of_range_subset, norm_approxOn_yβ‚€_le, memLp_approxOn_range, MeasureTheory.tendsto_setToFun_approxOn_of_measurable_of_range_subset, edist_approxOn_y0_le, edist_approxOn_mono, approxOn_mem, tendsto_approxOn, memLp_approxOn, integrable_approxOn_range, integrable_approxOn, norm_approxOn_zero_le, MeasureTheory.tendsto_setToFun_approxOn_of_measurable, tendsto_approxOn_L1_enorm, MeasureTheory.tendsto_integral_norm_approxOn_sub, edist_approxOn_le, tendsto_approxOn_range_Lp, tendsto_approxOn_Lp_eLpNorm, approxOn_zero, tendsto_approxOn_range_Lp_eLpNorm, approxOn_range_nonneg
nearestPt πŸ“–CompOp
3 mathmath: tendsto_nearestPt, nearestPt_zero, edist_nearestPt_le
nearestPtInd πŸ“–CompOp
3 mathmath: nearestPtInd_succ, nearestPtInd_le, nearestPtInd_zero

Theorems

NameKindAssumesProvesValidatesDepends On
approxOn_comp πŸ“–mathematicalMeasurable
Set
Set.instMembership
approxOn
Measurable.comp
comp
β€”Measurable.comp
approxOn_mem πŸ“–mathematicalMeasurable
Set
Set.instMembership
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
approxOn
β€”Subtype.mem
approxOn_range_nonneg πŸ“–mathematicalPi.hasLe
Preorder.toLE
Pi.instZero
Measurable
MeasureTheory.SimpleFunc
instLE
instZero
approxOn
Set
Set.instUnion
Set.range
Set.instSingletonSet
β€”Set.union_singleton
approxOn_mem
approxOn_zero πŸ“–mathematicalMeasurable
Set
Set.instMembership
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
approxOn
β€”β€”
edist_approxOn_le πŸ“–mathematicalMeasurable
Set
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
approxOn
β€”edist_approxOn_mono
zero_le
Nat.instCanonicallyOrderedAdd
edist_approxOn_mono πŸ“–mathematicalMeasurable
Set
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
approxOn
β€”edist_nearestPt_le
LE.le.trans
nearestPtInd_le
edist_approxOn_y0_le πŸ“–mathematicalMeasurable
Set
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
approxOn
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”edist_triangle_right
le_imp_le_of_le_of_le
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
edist_approxOn_le
le_refl
edist_nearestPt_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
nearestPt
β€”nonpos_iff_eq_zero
Nat.instCanonicallyOrderedAdd
nearestPtInd_succ
LE.le.eq_or_lt
le_rfl
LT.lt.le
Mathlib.Tactic.Push.not_forall_eq
LE.le.trans
nearestPtInd_le πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
nearestPtInd
β€”nearestPtInd_succ
le_rfl
LE.le.trans
nearestPtInd_succ πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
nearestPtInd
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
β€”β€”
nearestPtInd_zero πŸ“–mathematicalβ€”nearestPtInd
const
β€”β€”
nearestPt_zero πŸ“–mathematicalβ€”nearestPt
const
β€”β€”
tendsto_approxOn πŸ“–mathematicalMeasurable
Set
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Filter.Tendsto
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
approxOn
Filter.atTop
Nat.instPreorder
nhds
β€”tendsto_nearestPt
closure_minimal
Set.range_comp
closure_union
Set.Subset.trans
image_closure_subset_closure_image
continuous_subtype_val
Set.subset_union_right
isClosed_closure
Dense.closure_eq
TopologicalSpace.denseRange_denseSeq
Set.image_univ
Subtype.range_coe
tendsto_nearestPt πŸ“–mathematicalSet
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set.range
Filter.Tendsto
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
nearestPt
Filter.atTop
Nat.instPreorder
nhds
β€”Filter.HasBasis.tendsto_iff
Filter.atTop_basis
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Metric.nhds_basis_eball
EMetric.mem_closure_iff
LE.le.trans_lt
edist_nearestPt_le
PseudoEMetricSpace.edist_comm

---

← Back to Index