Documentation Verification Report

Basic

πŸ“ Source: Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean

Statistics

MetricCount
DefinitionsFinStronglyMeasurable, approx, approx, approxBounded, Β«termStronglyMeasurable[_]Β»
5
Theoremscomp_stronglyMeasurable, stronglyMeasurable, stronglyMeasurable_of_hasCompactMulSupport, stronglyMeasurable_of_hasCompactSupport, stronglyMeasurable_of_mulSupport_subset_isCompact, stronglyMeasurable_of_support_subset_isCompact, comp_stronglyMeasurable_iff, stronglyMeasurable_fun_prod, stronglyMeasurable_fun_sum, stronglyMeasurable_prod, stronglyMeasurable_sum, stronglyMeasurable_of_prod, stronglyMeasurable_const_smul_iff, stronglyMeasurable_fun_prod, stronglyMeasurable_fun_sum, stronglyMeasurable_prod, stronglyMeasurable_sum, add_stronglyMeasurable, stronglyMeasurable, stronglyMeasurable_add, sub_stronglyMeasurable, exists_stronglyMeasurable_extend, stronglyMeasurable_extend, add, const_smul, exists_set_sigmaFinite, fin_support_approx, inf, measurable, mul, neg, stronglyMeasurable, sub, sup, tendsto_approx, stronglyMeasurable, stronglyMeasurable_prod_apply, stronglyMeasurable_sum_apply, add, add_const, add_iff_left, add_iff_right, ae_eq_trim_iff, ae_eq_trim_of_stronglyMeasurable, ae_le_trim_iff, ae_le_trim_of_stronglyMeasurable, aemeasurable, comp_fst, comp_measurable, comp_snd, const_add, const_mul, const_nsmul, const_smul, const_smul', const_vadd, const_vadd', dist, div, edist, enorm, exists_spanning_measurableSet_norm_le, finStronglyMeasurable, finStronglyMeasurable_of_set_sigmaFinite, fst, indicator, induction, induction', inf, inv, isSeparable_range, ite, measurable, measurableSet_eq_fun, measurableSet_le, measurableSet_lt, measurableSet_mulSupport, measurableSet_support, mono, mul, mul_const, mul_iff_left, mul_iff_right, neg, nnnorm, norm, norm_approxBounded_le, of_discrete, of_subsingleton_cod, of_subsingleton_dom, of_uncurry_left, of_uncurry_right, piecewise, pow, prodMk, prod_swap, real_toNNReal, separableSpace_range_union_singleton, smul, smul_const, snd, stronglyMeasurable_in_set, stronglyMeasurable_of_measurableSpace_le_on, sub, sup, tendsto_approx, tendsto_approxBounded_ae, tendsto_approxBounded_of_norm_le, vadd, vadd_const, finStronglyMeasurable_iff_measurable, finStronglyMeasurable_iff_stronglyMeasurable_and_exists_set_sigmaFinite, finStronglyMeasurable_of_measurable, finStronglyMeasurable_zero, measurable_uncurry_of_continuous_of_measurable, stronglyMeasurable_const, stronglyMeasurable_const', stronglyMeasurable_one, stronglyMeasurable_uncurry_of_continuous_of_stronglyMeasurable, stronglyMeasurable_zero, stronglyMeasurable_fun_prod, stronglyMeasurable_fun_sum, stronglyMeasurable_prod, stronglyMeasurable_sum, stronglyMeasurable_bot_iff, stronglyMeasurable_const_smul_iff, stronglyMeasurable_const_smul_iffβ‚€, stronglyMeasurable_id, stronglyMeasurable_iff_measurable, stronglyMeasurable_iff_measurable_separable, stronglyMeasurable_of_restrict_of_restrict_compl, stronglyMeasurable_of_stronglyMeasurable_union_cover, stronglyMeasurable_of_tendsto
133
Total138

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
comp_stronglyMeasurable πŸ“–β€”Continuous
MeasureTheory.StronglyMeasurable
β€”β€”Filter.Tendsto.comp
tendsto
MeasureTheory.StronglyMeasurable.tendsto_approx
stronglyMeasurable πŸ“–mathematicalContinuousMeasureTheory.StronglyMeasurableβ€”SecondCountableTopologyEither.out
stronglyMeasurable_iff_measurable_separable
measurable
TopologicalSpace.isSeparable_range
TopologicalSpace.SecondCountableTopology.to_separableSpace
Measurable.stronglyMeasurable
BorelSpace.opensMeasurable
stronglyMeasurable_of_hasCompactMulSupport πŸ“–mathematicalContinuous
HasCompactMulSupport
MeasureTheory.StronglyMeasurableβ€”stronglyMeasurable_of_mulSupport_subset_isCompact
subset_mulTSupport
stronglyMeasurable_of_hasCompactSupport πŸ“–mathematicalContinuous
HasCompactSupport
MeasureTheory.StronglyMeasurableβ€”stronglyMeasurable_of_support_subset_isCompact
subset_tsupport
stronglyMeasurable_of_mulSupport_subset_isCompact πŸ“–mathematicalContinuous
IsCompact
Set
Set.instHasSubset
Function.mulSupport
MeasureTheory.StronglyMeasurableβ€”stronglyMeasurable_iff_measurable_separable
measurable
IsCompact.isSeparable
isCompact_range_of_mulSupport_subset_isCompact
stronglyMeasurable_of_support_subset_isCompact πŸ“–mathematicalContinuous
IsCompact
Set
Set.instHasSubset
Function.support
MeasureTheory.StronglyMeasurableβ€”stronglyMeasurable_iff_measurable_separable
measurable
IsCompact.isSeparable
isCompact_range_of_support_subset_isCompact

Embedding

Theorems

NameKindAssumesProvesValidatesDepends On
comp_stronglyMeasurable_iff πŸ“–mathematicalTopology.IsEmbeddingMeasureTheory.StronglyMeasurableβ€”stronglyMeasurable_iff_measurable_separable
Set.mem_range_self
Topology.IsEmbedding.codRestrict
Function.Surjective.range_eq
Set.rangeFactorization_surjective
isClosed_univ
MeasureTheory.StronglyMeasurable.measurable
MeasurableEmbedding.measurable_comp_iff
Topology.IsClosedEmbedding.measurableEmbedding
Subtype.borelSpace
Topology.IsEmbedding.isSeparable_preimage
MeasureTheory.StronglyMeasurable.isSeparable_range
Function.Injective.preimage_image
Topology.IsEmbedding.injective
Set.range_comp
Continuous.comp_stronglyMeasurable
Topology.IsEmbedding.continuous

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
stronglyMeasurable_fun_prod πŸ“–mathematicalMeasureTheory.StronglyMeasurableprodβ€”stronglyMeasurable_prod
stronglyMeasurable_fun_sum πŸ“–mathematicalMeasureTheory.StronglyMeasurablesumβ€”sum_apply
stronglyMeasurable_sum
stronglyMeasurable_prod πŸ“–mathematicalMeasureTheory.StronglyMeasurableprod
Pi.commMonoid
β€”prod_induction
MeasureTheory.StronglyMeasurable.mul
MeasureTheory.stronglyMeasurable_one
stronglyMeasurable_sum πŸ“–mathematicalMeasureTheory.StronglyMeasurablesum
Pi.addCommMonoid
β€”sum_induction
MeasureTheory.StronglyMeasurable.add
MeasureTheory.stronglyMeasurable_zero

HasCompactSupport

Theorems

NameKindAssumesProvesValidatesDepends On
stronglyMeasurable_of_prod πŸ“–mathematicalContinuous
instTopologicalSpaceProd
HasCompactSupport
MeasureTheory.StronglyMeasurable
Prod.instMeasurableSpace
β€”stronglyMeasurable_iff_measurable_separable
measurable_of_prod
IsCompact.isSeparable
isCompact_range

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
stronglyMeasurable_const_smul_iff πŸ“–mathematicalIsUnitMeasureTheory.StronglyMeasurable
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”stronglyMeasurable_const_smul_iff
Units.continuousConstSMul

List

Theorems

NameKindAssumesProvesValidatesDepends On
stronglyMeasurable_fun_prod πŸ“–mathematicalMeasureTheory.StronglyMeasurableMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
β€”stronglyMeasurable_prod
stronglyMeasurable_fun_sum πŸ“–mathematicalMeasureTheory.StronglyMeasurableAddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toZero
β€”Pi.list_sum_apply
stronglyMeasurable_sum
stronglyMeasurable_prod πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Pi.instOne
MulOne.toOne
β€”MeasureTheory.stronglyMeasurable_one
MeasureTheory.StronglyMeasurable.mul
stronglyMeasurable_sum πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Pi.instZero
AddZero.toZero
β€”MeasureTheory.stronglyMeasurable_zero
MeasureTheory.StronglyMeasurable.add

Measurable

Theorems

NameKindAssumesProvesValidatesDepends On
add_stronglyMeasurable πŸ“–mathematicalMeasurable
MeasureTheory.StronglyMeasurable
Pi.instAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddRightCancelMonoid.toAddMonoid
AddCancelMonoid.toAddRightCancelMonoid
β€”tendsto_pi_nhds
Filter.Tendsto.add
tendsto_const_nhds
measurable_of_tendsto_metrizable
add_simpleFunc
ContinuousAdd.measurableAdd
stronglyMeasurable πŸ“–mathematicalMeasurableMeasureTheory.StronglyMeasurableβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Nontrivial.to_nonempty
Set.mem_univ
separableSpace_univ
TopologicalSpace.SecondCountableTopology.to_separableSpace
MeasureTheory.SimpleFunc.tendsto_approxOn
IsClosed.closure_eq
stronglyMeasurable_add πŸ“–mathematicalMeasurable
MeasureTheory.StronglyMeasurable
Pi.instAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddRightCancelMonoid.toAddMonoid
AddCancelMonoid.toAddRightCancelMonoid
β€”tendsto_pi_nhds
Filter.Tendsto.add
tendsto_const_nhds
measurable_of_tendsto_metrizable
simpleFunc_add
ContinuousAdd.measurableAdd
sub_stronglyMeasurable πŸ“–mathematicalMeasurable
MeasureTheory.StronglyMeasurable
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”sub_eq_add_neg
add_stronglyMeasurable
MeasureTheory.StronglyMeasurable.neg

MeasurableEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
exists_stronglyMeasurable_extend πŸ“–β€”MeasurableEmbedding
MeasureTheory.StronglyMeasurable
β€”β€”stronglyMeasurable_extend
MeasureTheory.stronglyMeasurable_const'
Function.Injective.extend_apply
injective
stronglyMeasurable_extend πŸ“–mathematicalMeasurableEmbedding
MeasureTheory.StronglyMeasurable
Function.extendβ€”MeasureTheory.SimpleFunc.extend_apply
Function.Injective.extend_apply
injective
MeasureTheory.StronglyMeasurable.tendsto_approx
MeasureTheory.SimpleFunc.extend_apply'
Function.extend_apply'

MeasureTheory

Definitions

NameCategoryTheorems
FinStronglyMeasurable πŸ“–MathDef
11 mathmath: StronglyMeasurable.finStronglyMeasurable, finStronglyMeasurable_iff_stronglyMeasurable_and_exists_set_sigmaFinite, Lp.finStronglyMeasurable, ENNReal.finStronglyMeasurable_of_measurable, finStronglyMeasurable_zero, finStronglyMeasurable_of_measurable, finStronglyMeasurable_iff_measurable, MemLp.finStronglyMeasurable_of_stronglyMeasurable, StronglyMeasurable.finStronglyMeasurable_of_set_sigmaFinite, AEFinStronglyMeasurable.finStronglyMeasurable_mk, lpMeas.ae_fin_strongly_measurable'
Β«termStronglyMeasurable[_]Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
finStronglyMeasurable_iff_measurable πŸ“–mathematicalβ€”FinStronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Measurable
β€”FinStronglyMeasurable.measurable
PseudoEMetricSpace.pseudoMetrizableSpace
StronglyMeasurable.finStronglyMeasurable
Measurable.stronglyMeasurable
BorelSpace.opensMeasurable
finStronglyMeasurable_iff_stronglyMeasurable_and_exists_set_sigmaFinite πŸ“–mathematicalβ€”FinStronglyMeasurable
StronglyMeasurable
MeasurableSet
SigmaFinite
Measure.restrict
β€”FinStronglyMeasurable.stronglyMeasurable
FinStronglyMeasurable.exists_set_sigmaFinite
StronglyMeasurable.finStronglyMeasurable_of_set_sigmaFinite
finStronglyMeasurable_of_measurable πŸ“–mathematicalMeasurableFinStronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”finStronglyMeasurable_iff_measurable
finStronglyMeasurable_zero πŸ“–mathematicalβ€”FinStronglyMeasurable
Pi.instZero
β€”Function.support_zero
measure_empty
Measure.instOuterMeasureClass
tendsto_const_nhds
measurable_uncurry_of_continuous_of_measurable πŸ“–mathematicalContinuous
Measurable
Prod.instMeasurableSpaceβ€”stronglyMeasurable_id
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
Filter.Tendsto.comp
Continuous.tendsto
StronglyMeasurable.tendsto_approx
tendsto_pi_nhds
measurable_of_tendsto_metrizable
measurable_swap_iff
measurable_from_prod_countable_left
Finite.to_countable
Finite.of_fintype
Subtype.instMeasurableSingletonClass
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
TopologicalSpace.t2Space_of_metrizableSpace
SimpleFunc.mem_range_self
Measurable.comp
Measurable.prodMk
SimpleFunc.measurable
measurable_fst
measurable_snd
stronglyMeasurable_const πŸ“–mathematicalβ€”StronglyMeasurableβ€”tendsto_const_nhds
stronglyMeasurable_const' πŸ“–mathematicalβ€”StronglyMeasurableβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Nontrivial.to_nonempty
stronglyMeasurable_const
stronglyMeasurable_one πŸ“–mathematicalβ€”StronglyMeasurable
Pi.instOne
β€”stronglyMeasurable_const
stronglyMeasurable_uncurry_of_continuous_of_stronglyMeasurable πŸ“–mathematicalContinuous
StronglyMeasurable
Prod.instMeasurableSpaceβ€”stronglyMeasurable_id
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
Filter.Tendsto.comp
Continuous.tendsto
StronglyMeasurable.tendsto_approx
tendsto_pi_nhds
stronglyMeasurable_of_tendsto
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
instIsCountablyGenerated_atTop
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyNat
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountableNat
PseudoEMetricSpace.pseudoMetrizableSpace
stronglyMeasurable_iff_measurable_separable
measurable_swap_iff
measurable_from_prod_countable_left
Finite.to_countable
Finite.of_fintype
Subtype.instMeasurableSingletonClass
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
TopologicalSpace.t2Space_of_metrizableSpace
StronglyMeasurable.measurable
TopologicalSpace.IsSeparable.iUnion
StronglyMeasurable.isSeparable_range
TopologicalSpace.IsSeparable.mono
SimpleFunc.mem_range_self
StronglyMeasurable.comp_measurable
Measurable.prodMk
Measurable.comp
SimpleFunc.measurable
measurable_fst
measurable_snd
stronglyMeasurable_zero πŸ“–mathematicalβ€”StronglyMeasurable
Pi.instZero
β€”stronglyMeasurable_const

MeasureTheory.FinStronglyMeasurable

Definitions

NameCategoryTheorems
approx πŸ“–CompOp
2 mathmath: tendsto_approx, fin_support_approx

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalMeasureTheory.FinStronglyMeasurable
AddZero.toZero
AddZeroClass.toAddZero
Pi.instAdd
AddZero.toAdd
β€”LE.le.trans_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Function.support_add
MeasureTheory.measure_union_le
ENNReal.add_lt_top
fin_support_approx
Filter.Tendsto.add
tendsto_approx
const_smul πŸ“–mathematicalMeasureTheory.FinStronglyMeasurableFunction.hasSMul
SMulZeroClass.toSMul
β€”MeasureTheory.SimpleFunc.coe_smul
LE.le.trans_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Function.support_const_smul_subset
fin_support_approx
Filter.Tendsto.const_smul
ContinuousSMul.continuousConstSMul
tendsto_approx
exists_set_sigmaFinite πŸ“–mathematicalMeasureTheory.FinStronglyMeasurableMeasurableSet
MeasureTheory.SigmaFinite
MeasureTheory.Measure.restrict
β€”MeasureTheory.SimpleFunc.measurableSet_support
MeasurableSet.iUnion
instCountableNat
Set.mem_iUnion
Set.mem_compl_iff
tendsto_nhds_unique
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_const_nhds
MeasureTheory.Measure.restrict_apply'
Set.union_inter_distrib_right
Set.compl_inter_self
Set.empty_union
LE.le.trans_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.inter_subset_left
Set.union_iUnion
Set.compl_union_self
fin_support_approx πŸ“–mathematicalMeasureTheory.FinStronglyMeasurableENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Function.support
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instFunLike
approx
Top.top
instTopENNReal
β€”β€”
inf πŸ“–mathematicalMeasureTheory.FinStronglyMeasurablePi.instMinForall_mathlib
SemilatticeInf.toMin
β€”LE.le.trans_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Function.support_inf
MeasureTheory.measure_union_lt_top_iff
fin_support_approx
Filter.Tendsto.inf_nhds
tendsto_approx
measurable πŸ“–mathematicalMeasureTheory.FinStronglyMeasurableMeasurableβ€”MeasureTheory.StronglyMeasurable.measurable
stronglyMeasurable
mul πŸ“–mathematicalMeasureTheory.FinStronglyMeasurable
MulZeroClass.toZero
Pi.instMul
MulZeroClass.toMul
β€”LE.le.trans_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Function.support_mul_subset_left
fin_support_approx
Filter.Tendsto.mul
tendsto_approx
neg πŸ“–mathematicalMeasureTheory.FinStronglyMeasurable
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
Pi.instNeg
NegZeroClass.toNeg
β€”Function.support_fun_neg
fin_support_approx
Filter.Tendsto.neg
tendsto_approx
stronglyMeasurable πŸ“–mathematicalMeasureTheory.FinStronglyMeasurableMeasureTheory.StronglyMeasurableβ€”tendsto_approx
sub πŸ“–mathematicalMeasureTheory.FinStronglyMeasurable
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
Pi.instSub
SubNegMonoid.toSub
SubtractionMonoid.toSubNegMonoid
β€”LE.le.trans_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Function.support_sub
MeasureTheory.measure_union_le
ENNReal.add_lt_top
fin_support_approx
Filter.Tendsto.sub
tendsto_approx
sup πŸ“–mathematicalMeasureTheory.FinStronglyMeasurablePi.instMaxForall_mathlib
SemilatticeSup.toMax
β€”LE.le.trans_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Function.support_sup
MeasureTheory.measure_union_lt_top_iff
fin_support_approx
Filter.Tendsto.sup_nhds
tendsto_approx
tendsto_approx πŸ“–mathematicalMeasureTheory.FinStronglyMeasurableFilter.Tendsto
DFunLike.coe
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instFunLike
approx
Filter.atTop
Nat.instPreorder
nhds
β€”β€”

MeasureTheory.SimpleFunc

Theorems

NameKindAssumesProvesValidatesDepends On
stronglyMeasurable πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurable
DFunLike.coe
MeasureTheory.SimpleFunc
instFunLike
β€”tendsto_const_nhds

MeasureTheory.StronglyMeasurable

Definitions

NameCategoryTheorems
approx πŸ“–CompOp
1 mathmath: tendsto_approx
approxBounded πŸ“–CompOp
3 mathmath: tendsto_approxBounded_ae, norm_approxBounded_le, tendsto_approxBounded_of_norm_le

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instAddβ€”Filter.Tendsto.add
tendsto_approx
add_const πŸ“–β€”MeasureTheory.StronglyMeasurableβ€”β€”add
MeasureTheory.stronglyMeasurable_const
add_iff_left πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”add_iff_right
add_comm
add_iff_right πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instAdd
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”add
IsTopologicalAddGroup.toContinuousAdd
neg
IsTopologicalAddGroup.toContinuousNeg
add_neg_cancel_comm
ae_eq_trim_iff πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
MeasureTheory.StronglyMeasurable
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.trim
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_eq_of_ae_eq_trim
ae_eq_trim_of_stronglyMeasurable
ae_eq_trim_of_stronglyMeasurable πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
MeasureTheory.StronglyMeasurable
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.trimβ€”MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyEq.eq_1
MeasureTheory.ae_iff
MeasureTheory.trim_measurableSet_eq
MeasurableSet.compl
measurableSet_eq_fun
ae_le_trim_iff πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
MeasureTheory.StronglyMeasurable
Filter.EventuallyLE
Preorder.toLE
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.trim
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_le_of_ae_le_trim
ae_le_trim_of_stronglyMeasurable
ae_le_trim_of_stronglyMeasurable πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
MeasureTheory.StronglyMeasurable
Filter.EventuallyLE
Preorder.toLE
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.trimβ€”MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyLE.eq_1
MeasureTheory.ae_iff
MeasureTheory.trim_measurableSet_eq
MeasurableSet.compl
measurableSet_le
aemeasurable πŸ“–mathematicalMeasureTheory.StronglyMeasurableAEMeasurableβ€”Measurable.aemeasurable
measurable
comp_fst πŸ“–mathematicalMeasureTheory.StronglyMeasurableProd.instMeasurableSpaceβ€”comp_measurable
measurable_fst
comp_measurable πŸ“–β€”MeasureTheory.StronglyMeasurable
Measurable
β€”β€”tendsto_approx
comp_snd πŸ“–mathematicalMeasureTheory.StronglyMeasurableProd.instMeasurableSpaceβ€”comp_measurable
measurable_snd
const_add πŸ“–β€”MeasureTheory.StronglyMeasurableβ€”β€”add
MeasureTheory.stronglyMeasurable_const
const_mul πŸ“–β€”MeasureTheory.StronglyMeasurableβ€”β€”mul
MeasureTheory.stronglyMeasurable_const
const_nsmul πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instSMul
AddMonoid.toNatSMul
β€”Filter.Tendsto.nsmul
tendsto_approx
const_smul πŸ“–mathematicalMeasureTheory.StronglyMeasurableFunction.hasSMulβ€”Filter.Tendsto.const_smul
tendsto_approx
const_smul' πŸ“–β€”MeasureTheory.StronglyMeasurableβ€”β€”const_smul
const_vadd πŸ“–mathematicalMeasureTheory.StronglyMeasurableHVAdd.hVAdd
instHVAdd
Function.hasVAdd
β€”Filter.Tendsto.const_vadd
tendsto_approx
const_vadd' πŸ“–mathematicalMeasureTheory.StronglyMeasurableHVAdd.hVAdd
instHVAdd
β€”const_vadd
dist πŸ“–mathematicalMeasureTheory.StronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real
Real.pseudoMetricSpace
Dist.dist
PseudoMetricSpace.toDist
β€”Continuous.comp_stronglyMeasurable
continuous_dist
prodMk
div πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instDivβ€”Filter.Tendsto.div'
tendsto_approx
edist πŸ“–mathematicalMeasureTheory.StronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal
ENNReal.instTopologicalSpace
EDist.edist
PseudoEMetricSpace.toEDist
β€”Continuous.comp_stronglyMeasurable
continuous_edist
prodMk
enorm πŸ“–mathematicalMeasureTheory.StronglyMeasurableMeasurable
ENNReal
ENNReal.measurableSpace
ENorm.enorm
ContinuousENorm.toENorm
β€”measurable
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
ENNReal.instMetrizableSpace
ENNReal.borelSpace
Continuous.comp_stronglyMeasurable
continuous_enorm
exists_spanning_measurableSet_norm_le πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
MeasureTheory.StronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
MeasurableSet
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Top.top
instTopENNReal
Real
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
Real.instNatCast
Set.iUnion
Set.univ
β€”exists_spanning_measurableSet_le
measurable
PseudoEMetricSpace.pseudoMetrizableSpace
NNReal.borelSpace
nnnorm
LE.le.trans_lt
MeasureTheory.le_trim
coe_nnnorm
NNReal.coe_natCast
finStronglyMeasurable πŸ“–mathematicalMeasureTheory.StronglyMeasurableMeasureTheory.FinStronglyMeasurableβ€”finStronglyMeasurable_of_set_sigmaFinite
MeasurableSet.univ
Set.compl_univ
instIsEmptyFalse
MeasureTheory.Measure.restrict_univ
finStronglyMeasurable_of_set_sigmaFinite πŸ“–mathematicalMeasureTheory.StronglyMeasurable
MeasurableSet
MeasureTheory.FinStronglyMeasurableβ€”MeasureTheory.measurableSet_spanningSets
MeasureTheory.SimpleFunc.restrict_apply
MeasurableSet.inter
Set.indicator_of_notMem
MeasureTheory.SimpleFunc.support_eq
Set.iUnion_congr_Prop
MeasureTheory.measure_biUnion_lt_top
Finset.finite_toSet
MeasureTheory.SimpleFunc.restrict_preimage_singleton
Finset.mem_filter
Finset.mem_coe
LE.le.trans_lt
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.inter_subset_left
MeasureTheory.measure_spanningSets_lt_top
MeasureTheory.Measure.restrict_apply'
tendsto_approx
Set.mem_iUnion
MeasureTheory.iUnion_spanningSets
MeasureTheory.monotone_spanningSets
Set.mem_inter
Set.indicator_of_mem
Filter.tendsto_atTop'
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
LE.le.trans
le_max_left
GE.ge.le
le_max_right
tendsto_const_nhds
fst πŸ“–β€”MeasureTheory.StronglyMeasurable
instTopologicalSpaceProd
β€”β€”Continuous.comp_stronglyMeasurable
continuous_fst
indicator πŸ“–mathematicalMeasureTheory.StronglyMeasurable
MeasurableSet
Set.indicatorβ€”piecewise
MeasureTheory.stronglyMeasurable_const
induction πŸ“–β€”Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
indicator
MeasureTheory.stronglyMeasurable_const
Pi.instAdd
AddZero.toAdd
MeasureTheory.StronglyMeasurable
β€”β€”indicator
MeasureTheory.stronglyMeasurable_const
MeasureTheory.SimpleFunc.stronglyMeasurable
MeasureTheory.SimpleFunc.induction
tendsto_approx
induction' πŸ“–β€”MeasureTheory.stronglyMeasurable_const
Set.piecewise
Set
Set.instMembership
piecewise
MeasureTheory.StronglyMeasurable
β€”β€”MeasureTheory.stronglyMeasurable_const
piecewise
MeasureTheory.SimpleFunc.stronglyMeasurable
MeasureTheory.SimpleFunc.induction'
tendsto_approx
inf πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instMinForall_mathlibβ€”Filter.Tendsto.inf_nhds
tendsto_approx
inv πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instInvβ€”Filter.Tendsto.inv
tendsto_approx
isSeparable_range πŸ“–mathematicalMeasureTheory.StronglyMeasurableTopologicalSpace.IsSeparable
Set.range
β€”TopologicalSpace.IsSeparable.closure
TopologicalSpace.IsSeparable.iUnion
instCountableNat
Set.Finite.isSeparable
MeasureTheory.SimpleFunc.finite_range
TopologicalSpace.IsSeparable.mono
mem_closure_of_tendsto
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_approx
Filter.univ_mem'
Set.mem_iUnion_of_mem
Set.mem_range_self
ite πŸ“–β€”MeasurableSet
setOf
MeasureTheory.StronglyMeasurable
β€”β€”piecewise
measurable πŸ“–mathematicalMeasureTheory.StronglyMeasurableMeasurableβ€”measurable_of_tendsto_metrizable
MeasureTheory.SimpleFunc.measurable
tendsto_pi_nhds
tendsto_approx
measurableSet_eq_fun πŸ“–mathematicalMeasureTheory.StronglyMeasurableMeasurableSet
setOf
β€”measurable
TopologicalSpace.pseudoMetrizableSpace_prod
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
prodMk
IsClosed.measurableSet
BorelSpace.opensMeasurable
isClosed_diagonal
TopologicalSpace.t2Space_of_metrizableSpace
measurableSet_le πŸ“–mathematicalMeasureTheory.StronglyMeasurableMeasurableSet
setOf
Preorder.toLE
β€”measurable
TopologicalSpace.pseudoMetrizableSpace_prod
prodMk
IsClosed.measurableSet
BorelSpace.opensMeasurable
isClosed_le_prod
measurableSet_lt πŸ“–mathematicalMeasureTheory.StronglyMeasurableMeasurableSet
setOf
Preorder.toLT
β€”MeasurableSet.inter
measurableSet_le
MeasurableSet.compl
measurableSet_mulSupport πŸ“–mathematicalMeasureTheory.StronglyMeasurableMeasurableSet
Function.mulSupport
β€”measurableSet_mulSupport
OpensMeasurableSpace.toMeasurableSingletonClass
BorelSpace.opensMeasurable
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
measurable
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
measurableSet_support πŸ“–mathematicalMeasureTheory.StronglyMeasurableMeasurableSet
Function.support
β€”measurableSet_support
OpensMeasurableSpace.toMeasurableSingletonClass
BorelSpace.opensMeasurable
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
measurable
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
mono πŸ“–β€”MeasureTheory.StronglyMeasurable
MeasurableSpace
MeasurableSpace.instLE
β€”β€”MeasureTheory.SimpleFunc.measurableSet_fiber'
MeasureTheory.SimpleFunc.finite_range
tendsto_approx
mul πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instMulβ€”Filter.Tendsto.mul
tendsto_approx
mul_const πŸ“–β€”MeasureTheory.StronglyMeasurableβ€”β€”mul
MeasureTheory.stronglyMeasurable_const
mul_iff_left πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”mul_iff_right
mul_comm
mul_iff_right πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
β€”mul
IsTopologicalGroup.toContinuousMul
inv
IsTopologicalGroup.toContinuousInv
mul_inv_cancel_comm
neg πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instNegβ€”Filter.Tendsto.neg
tendsto_approx
nnnorm πŸ“–mathematicalMeasureTheory.StronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NNReal
NNReal.instTopologicalSpace
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
β€”Continuous.comp_stronglyMeasurable
continuous_nnnorm
norm πŸ“–mathematicalMeasureTheory.StronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Real
Real.pseudoMetricSpace
Norm.norm
SeminormedAddCommGroup.toNorm
β€”Continuous.comp_stronglyMeasurable
continuous_norm
norm_approxBounded_le πŸ“–mathematicalMeasureTheory.StronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Real
Real.instLE
Real.instZero
Norm.norm
SeminormedAddCommGroup.toNorm
DFunLike.coe
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instFunLike
approxBounded
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
β€”LE.le.trans
norm_smul_le
NormedSpace.toIsBoundedSMul
div_zero
min_eq_right
Real.instZeroLEOneClass
norm_zero
MulZeroClass.mul_zero
le_total
min_eq_left
one_le_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
lt_of_le_of_ne
norm_nonneg
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
one_mul
div_le_one
norm_div
norm_norm
mul_comm
mul_div
div_eq_mul_inv
mul_assoc
inv_mul_cancelβ‚€
Real.norm_of_nonneg
le_refl
of_discrete πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurableβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
exists_surjective_nat
Nontrivial.to_nonempty
Function.Surjective.forall
tendsto_nhds_of_eventually_eq
of_subsingleton_cod πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurableβ€”Set.Subsingleton.finite
Set.subsingleton_of_subsingleton
tendsto_const_nhds
of_subsingleton_dom πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurableβ€”Finite.of_subsingleton
Subsingleton.measurableSingletonClass
tendsto_const_nhds
of_uncurry_left πŸ“–β€”MeasureTheory.StronglyMeasurable
Prod.instMeasurableSpace
β€”β€”comp_measurable
measurable_prodMk_left
of_uncurry_right πŸ“–β€”MeasureTheory.StronglyMeasurable
Prod.instMeasurableSpace
β€”β€”comp_measurable
measurable_prodMk_right
piecewise πŸ“–mathematicalMeasurableSet
MeasureTheory.StronglyMeasurable
Set.piecewiseβ€”Set.piecewise_eq_of_mem
tendsto_approx
Set.piecewise_eq_of_notMem
pow πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instPow
Monoid.toNatPow
β€”Filter.Tendsto.pow
tendsto_approx
prodMk πŸ“–mathematicalMeasureTheory.StronglyMeasurableinstTopologicalSpaceProdβ€”nhds_prod_eq
Filter.Tendsto.prodMk
tendsto_approx
prod_swap πŸ“–β€”MeasureTheory.StronglyMeasurable
Prod.instMeasurableSpace
β€”β€”comp_measurable
measurable_swap
real_toNNReal πŸ“–mathematicalMeasureTheory.StronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NNReal
NNReal.instTopologicalSpace
Real.toNNReal
β€”Continuous.comp_stronglyMeasurable
continuous_real_toNNReal
separableSpace_range_union_singleton πŸ“–mathematicalMeasureTheory.StronglyMeasurableTopologicalSpace.SeparableSpace
Set.Elem
Set
Set.instUnion
Set.range
Set.instSingletonSet
instTopologicalSpaceSubtype
Set.instMembership
β€”TopologicalSpace.IsSeparable.separableSpace
TopologicalSpace.IsSeparable.union
isSeparable_range
Set.Finite.isSeparable
Set.finite_singleton
smul πŸ“–β€”MeasureTheory.StronglyMeasurableβ€”β€”Continuous.comp_stronglyMeasurable
ContinuousSMul.continuous_smul
prodMk
smul_const πŸ“–β€”MeasureTheory.StronglyMeasurableβ€”β€”Continuous.comp_stronglyMeasurable
ContinuousSMul.continuous_smul
prodMk
MeasureTheory.stronglyMeasurable_const
snd πŸ“–β€”MeasureTheory.StronglyMeasurable
instTopologicalSpaceProd
β€”β€”Continuous.comp_stronglyMeasurable
continuous_snd
stronglyMeasurable_in_set πŸ“–mathematicalMeasurableSet
MeasureTheory.StronglyMeasurable
Filter.Tendsto
DFunLike.coe
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instFunLike
Filter.atTop
Nat.instPreorder
nhds
β€”MeasureTheory.SimpleFunc.coe_restrict
Set.indicator_of_mem
Set.indicator_of_notMem
tendsto_approx
tendsto_const_nhds
stronglyMeasurable_of_measurableSpace_le_on πŸ“–β€”MeasurableSet
Set
Set.instInter
MeasureTheory.StronglyMeasurable
β€”β€”Set.inter_univ
stronglyMeasurable_in_set
Set.union_compl_self
Set.inter_union_distrib_left
Set.inter_comm
MeasurableSet.union
MeasurableSet.inter
MeasureTheory.SimpleFunc.measurableSet_fiber
Set.ext
Set.mem_inter_iff
Set.mem_preimage
Set.mem_singleton_iff
MeasurableSet.compl
Function.mtr
MeasurableSet.empty
MeasureTheory.SimpleFunc.finite_range
sub πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instSubβ€”Filter.Tendsto.sub
tendsto_approx
sup πŸ“–mathematicalMeasureTheory.StronglyMeasurablePi.instMaxForall_mathlibβ€”Filter.Tendsto.sup_nhds
tendsto_approx
tendsto_approx πŸ“–mathematicalMeasureTheory.StronglyMeasurableFilter.Tendsto
DFunLike.coe
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instFunLike
approx
Filter.atTop
Nat.instPreorder
nhds
β€”β€”
tendsto_approxBounded_ae πŸ“–mathematicalMeasureTheory.StronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.Eventually
Real
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Filter.Tendsto
DFunLike.coe
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instFunLike
approxBounded
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
Filter.atTop
Nat.instPreorder
nhds
β€”MeasureTheory.Measure.instOuterMeasureClass
Filter.mp_mem
Filter.univ_mem'
tendsto_approxBounded_of_norm_le
tendsto_approxBounded_of_norm_le πŸ“–mathematicalMeasureTheory.StronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
Filter.Tendsto
DFunLike.coe
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instFunLike
approxBounded
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
Filter.atTop
Nat.instPreorder
nhds
β€”tendsto_approx
norm_eq_zero
norm_zero
Filter.Tendsto.norm
squeeze_zero_norm
norm_smul
NormedSpace.toNormSMulClass
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
Real.norm_of_nonneg
le_min
zero_le_one
Real.instZeroLEOneClass
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
LE.le.trans
norm_nonneg
min_le_left
one_mul
one_smul
Filter.Tendsto.smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
min_eq_left_iff
one_le_div
lt_of_le_of_ne
Filter.Tendsto.min
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
tendsto_const_nhds
Filter.Tendsto.div
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
vadd πŸ“–mathematicalMeasureTheory.StronglyMeasurableHVAdd.hVAdd
instHVAdd
β€”Continuous.comp_stronglyMeasurable
ContinuousVAdd.continuous_vadd
prodMk
vadd_const πŸ“–mathematicalMeasureTheory.StronglyMeasurableHVAdd.hVAdd
instHVAdd
β€”Continuous.comp_stronglyMeasurable
ContinuousVAdd.continuous_vadd
prodMk
MeasureTheory.stronglyMeasurable_const

MeasureTheory.StronglyMeasurable.Finset

Theorems

NameKindAssumesProvesValidatesDepends On
stronglyMeasurable_prod_apply πŸ“–mathematicalMeasureTheory.StronglyMeasurable
Prod.instMeasurableSpace
Function.HasUncurry.uncurry
Function.hasUncurryInduction
Function.hasUncurryBase
Measurable
Finset.prod
Pi.commMonoid
β€”Finset.prod_apply
Finset.stronglyMeasurable_fun_prod
MeasureTheory.StronglyMeasurable.comp_measurable
Measurable.prodMk
measurable_id'
stronglyMeasurable_sum_apply πŸ“–mathematicalMeasureTheory.StronglyMeasurable
Prod.instMeasurableSpace
Function.HasUncurry.uncurry
Function.hasUncurryInduction
Function.hasUncurryBase
Measurable
Finset.sum
Pi.addCommMonoid
β€”Finset.sum_apply
Finset.stronglyMeasurable_fun_sum
MeasureTheory.StronglyMeasurable.comp_measurable
Measurable.prodMk
measurable_id'

Multiset

Theorems

NameKindAssumesProvesValidatesDepends On
stronglyMeasurable_fun_prod πŸ“–mathematicalMeasureTheory.StronglyMeasurableprod
map
β€”stronglyMeasurable_prod
stronglyMeasurable_fun_sum πŸ“–mathematicalMeasureTheory.StronglyMeasurablesum
map
β€”Pi.multiset_sum_apply
stronglyMeasurable_sum
stronglyMeasurable_prod πŸ“–mathematicalMeasureTheory.StronglyMeasurableprod
Pi.commMonoid
β€”List.stronglyMeasurable_prod
stronglyMeasurable_sum πŸ“–mathematicalMeasureTheory.StronglyMeasurablesum
Pi.addCommMonoid
β€”List.stronglyMeasurable_sum
mem_coe

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
stronglyMeasurable_bot_iff πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurable
Bot.bot
MeasurableSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
MeasurableSpace.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”isEmpty_or_nonempty
IsEmpty.instSubsingleton
Unique.instSubsingleton
MeasureTheory.StronglyMeasurable.tendsto_approx
MeasureTheory.SimpleFunc.simpleFunc_bot
tendsto_nhds_unique
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
MeasureTheory.stronglyMeasurable_const
stronglyMeasurable_const_smul_iff πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurable
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
β€”inv_smul_smul
MeasureTheory.StronglyMeasurable.const_smul'
MeasureTheory.StronglyMeasurable.const_smul
stronglyMeasurable_const_smul_iffβ‚€ πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurable
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
β€”IsUnit.stronglyMeasurable_const_smul_iff
stronglyMeasurable_id πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurableβ€”Measurable.stronglyMeasurable
measurable_id
stronglyMeasurable_iff_measurable πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurable
Measurable
β€”MeasureTheory.StronglyMeasurable.measurable
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
Measurable.stronglyMeasurable
BorelSpace.opensMeasurable
stronglyMeasurable_iff_measurable_separable πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurable
Measurable
TopologicalSpace.IsSeparable
Set.range
β€”MeasureTheory.StronglyMeasurable.measurable
MeasureTheory.StronglyMeasurable.isSeparable_range
TopologicalSpace.IsSeparable.secondCountableTopology
Measurable.stronglyMeasurable
Set.mem_range_self
TopologicalSpace.PseudoMetrizableSpace.subtype
Subtype.opensMeasurableSpace
BorelSpace.opensMeasurable
Continuous.comp_stronglyMeasurable
continuous_subtype_val
stronglyMeasurable_of_restrict_of_restrict_compl πŸ“–β€”MeasurableSet
MeasureTheory.StronglyMeasurable
Set.Elem
Subtype.instMeasurableSpace
Set
Set.instMembership
Set.restrict
Compl.compl
Set.instCompl
β€”β€”stronglyMeasurable_of_stronglyMeasurable_union_cover
MeasurableSet.compl
Eq.ge
Set.union_compl_self
stronglyMeasurable_of_stronglyMeasurable_union_cover πŸ“–β€”MeasurableSet
Set
Set.instHasSubset
Set.univ
Set.instUnion
MeasureTheory.StronglyMeasurable
Set.Elem
Subtype.instMeasurableSpace
Set.instMembership
β€”β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Nontrivial.to_nonempty
CanLift.prf
Subtype.canLift
Function.Injective.extend_apply
Function.extend_apply'
Subtype.coe_injective
MeasurableEmbedding.stronglyMeasurable_extend
MeasurableEmbedding.subtype_coe
MeasureTheory.stronglyMeasurable_const
stronglyMeasurable_of_tendsto πŸ“–β€”MeasureTheory.StronglyMeasurable
Filter.Tendsto
nhds
Pi.topologicalSpace
β€”β€”stronglyMeasurable_iff_measurable_separable
measurable_of_tendsto_metrizable'
MeasureTheory.StronglyMeasurable.measurable
Filter.exists_seq_tendsto
TopologicalSpace.IsSeparable.closure
TopologicalSpace.IsSeparable.iUnion
instCountableNat
MeasureTheory.StronglyMeasurable.isSeparable_range
TopologicalSpace.IsSeparable.mono
mem_closure_of_tendsto
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.comp
tendsto_pi_nhds
Filter.univ_mem'
Set.mem_iUnion_of_mem
Set.mem_range_self

---

← Back to Index