Action 📖 | CompData | 395 mathmath: Action.resCongr_inv, Action.forget_η, Rep.resCoindHomEquiv_symm_apply_hom, Rep.resCoindHomEquiv_apply_hom, DiscreteContAction.instDiscreteTopologyCarrierObjTopCatForget₂ContinuousMap, Rep.coe_linearization_obj_ρ, groupHomology.mapCycles₂_comp_assoc, Action.instIsEquivalenceFunctorSingleObjInverse, Action.leftRegularTensorIso_inv_hom, Action.neg_hom, groupHomology.map₁_quotientGroupMk'_epi, ContinuousCohomology.I_obj_V_isAddCommGroup, Action.inv_hom_hom_assoc, CategoryTheory.FintypeCat.instPreservesFiniteLimitsActionFintypeCatForgetHomSubtypeHomCarrierV, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, Action.sum_hom, groupCohomology.cocyclesMap_id_comp_assoc, Rep.coindResAdjunction_counit_app, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, ContinuousCohomology.I_obj_V_carrier, Rep.resCoindAdjunction_counit_app_hom_hom, groupHomology.mapCycles₁_comp_apply, groupHomology.mapShortComplexH1_zero, groupHomology.cyclesMap_id_comp, groupHomology.mapShortComplexH2_zero, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget, Action.diagonalSuccIsoTensorDiagonal_inv_hom, Rep.coe_res_obj_ρ, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, CategoryTheory.Functor.mapAction_δ_hom, Action.Functor.mapActionPreservesLimitsOfShapeOfPreserves, Action.tensorObj_V, Action.functorCategoryEquivalence_inverse, Action.instHasLimits, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, Action.FunctorCategoryEquivalence.counitIso_inv_app_app, Action.functorCategoryEquivalence_unitIso, groupHomology.mapCycles₁_comp_assoc, Action.leftUnitor_inv_hom, Action.comp_hom, Action.instHasFiniteProducts, groupHomology.H0π_comp_map, Action.rightDual_ρ, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, Action.instHasFiniteCoproducts, groupCohomology.cochainsMap_comp, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, Rep.linearization_single, Action.whiskerRight_hom, groupHomology.coresNatTrans_app, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.congr, CategoryTheory.Functor.mapActionComp_hom, Action.FunctorCategoryEquivalence.functor_obj_obj, Action.instReflectsLimitsOfShapeForget, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, groupHomology.π_comp_H0Iso_hom_assoc, Rep.resCoindAdjunction_unit_app_hom_hom, groupHomology.H1CoresCoinfOfTrivial_X₁, Rep.homEquiv_apply_hom, groupCohomology.mapShortComplexH2_comp_assoc, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocycles₂_comp_i_apply, Action.Functor.mapActionPreservesLimit_of_preserves, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, Action.forget₂_preservesZeroMorphisms, Action.smul_hom, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_apply, groupHomology.d₁₀_comp_coinvariantsMk_apply, Action.forget_preservesZeroMorphisms, Rep.instPreservesProjectiveObjectsActionModuleCatSubtypeMemSubgroupResSubtype, groupHomology.mapCycles₁_id_comp_assoc, groupHomology.mapCycles₁_comp, groupHomology.map_comp, Action.FunctorCategoryEquivalence.unitIso_inv_app_hom, CategoryTheory.Functor.mapActionComp_inv, Action.FunctorCategoryEquivalence.functor_map_app, Rep.MonoidalClosed.linearHomEquivComm_hom, Rep.coe_linearization_obj, groupCohomology.map_comp, groupHomology.map_id_comp, ContinuousCohomology.I_obj_ρ_apply, Rep.coinvariantsTensorIndIso_inv, Action.instPreservesColimitForgetOfHasColimitComp, Action.FunctorCategoryEquivalence.functor_δ, ContAction.resEquiv_inverse, Rep.coindVEquiv_symm_apply_coe, Action.hom_inv_hom, CategoryTheory.PreGaloisCategory.instFaithfulActionFintypeCatAutFunctorFunctorToAction, groupHomology.H1CoresCoinf_X₁, CategoryTheory.FintypeCat.instMonoActionFintypeCatImageComplementIncl, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_assoc, ContinuousCohomology.instLinearActionTopModuleCatInvariants, groupHomology.mapCycles₂_id_comp, groupHomology.cyclesMap_comp_assoc, Rep.instIsLeftAdjointActionModuleCatRes, Action.Functor.mapActionPreservesColimit_of_preserves, groupHomology.cyclesMap_comp_cyclesIso₀_hom_apply, Action.isIso_of_hom_isIso, groupHomology.chainsMap_f_single, CategoryTheory.PreGaloisCategory.instFullContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, Action.mkIso_hom_hom, Action.preservesColimits_forget, groupHomology.coinvariantsMk_comp_H0Iso_inv, CategoryTheory.PreGaloisCategory.functorToContAction_map, Rep.coinvariantsTensorIndIso_hom, groupCohomology.map_H0Iso_hom_f, CategoryTheory.Equivalence.mapAction_functor, Action.resId_inv_app_hom, groupCohomology.cochainsMap_zero, groupHomology.map_comp_assoc, Rep.coinvariantsTensorIndNatIso_inv_app, ContinuousCohomology.I_obj_V_isModule, CategoryTheory.PreGaloisCategory.instPreservesIsConnectedActionFintypeCatAutFunctorFunctorToAction, Rep.coindResAdjunction_unit_app, Action.instIsIsoHomInv, groupHomology.mapCycles₁_id_comp_apply, Action.tensorUnit_ρ, groupCohomology.cochainsMap_id_comp, Action.functorCategoryEquivalence_functor, CategoryTheory.PreGaloisCategory.instIsEquivalenceContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, groupCohomology.mapShortComplexH2_comp, Action.Functor.instPreservesFiniteLimitsMapActionOfHasFiniteLimits, CategoryTheory.PreGaloisCategory.exists_lift_of_continuous, CategoryTheory.Functor.mapAction_η_hom, groupCohomology.cochainsMap_comp_assoc, Action.instPreservesFiniteLimitsForgetOfHasFiniteLimits, CategoryTheory.Functor.mapAction_obj_ρ_apply, Action.FintypeCat.toEndHom_apply, groupHomology.mapCycles₁_comp_i_apply, groupHomology.mapCycles₂_comp, groupHomology.cyclesIso₀_inv_comp_cyclesMap_apply, ContAction.resCongr_hom, Rep.resIndAdjunction_homEquiv_symm_apply, Rep.coinvariantsFunctor_hom_ext_iff, ContinuousCohomology.instAdditiveActionTopModuleCatInvariants, Action.nsmul_hom, Action.instFaithfulForget, classifyingSpaceUniversalCover_map, Action.diagonalSuccIsoTensorTrivial_inv_hom_apply, Rep.coindMap'_hom, Action.preservesLimitsOfShape_of_preserves, CategoryTheory.PreGaloisCategory.exists_lift_of_mono_of_isConnected, CategoryTheory.Functor.mapAction_linear, groupHomology.H0π_comp_map_assoc, CategoryTheory.FintypeCat.instGaloisCategoryActionFintypeCat, Action.instIsEquivalenceFunctorSingleObjFunctor, Action.res_additive, groupCohomology.H1InfRes_X₃, Rep.instEpiModuleCatAppActionCoinvariantsMk, groupCohomology.cocyclesMap_comp, Action.forget_δ, ContinuousCohomology.MultiInd.d_comp_d_assoc, Action.FunctorCategoryEquivalence.inverse_obj_ρ_apply, Action.hasLimitsOfShape, ContAction.res_obj_obj, Action.id_hom, Action.sub_hom, CategoryTheory.PreGaloisCategory.instPreservesColimitsOfShapeActionFintypeCatAutFunctorSingleObjFunctorToActionOfFinite, Action.hasColimitsOfShape, groupCohomology.resNatTrans_app, Action.preservesLimits_forget, CategoryTheory.Functor.mapAction_ε_hom, CategoryTheory.Functor.mapAction_obj_V, groupCohomology.mapShortComplexH2_zero, Rep.resIndAdjunction_homEquiv_apply, groupHomology.d₁₀_comp_coinvariantsMk, Action.instPreservesLimitForgetOfHasLimitComp, groupHomology.mapCycles₂_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.linearization_η_hom_apply, Action.res_obj_V, Rep.quotientToInvariantsFunctor_map_hom, groupHomology.chainsMap_id_comp, Action.forget_obj, Rep.quotientToCoinvariantsFunctor_map_hom, groupHomology.mapShortComplexH1_id_comp, groupHomology.mapShortComplexH1_comp, Rep.coindResAdjunction_homEquiv_apply, Action.rightDual_v, Rep.resIndAdjunction_counit_app, ContAction.resComp_hom, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_assoc, CategoryTheory.Functor.mapAction_preadditive, Action.leftRegularTensorIso_hom_hom, Action.preservesColimitsOfSize_of_preserves, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, ContinuousCohomology.I_map_hom, CategoryTheory.Functor.mapAction_μ_hom, Representation.coind'_apply_apply, Action.FintypeCat.quotientToEndHom_mk, CategoryTheory.Functor.instFullActionMapActionOfFaithful, Action.forget_additive, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, groupCohomology.mapShortComplexH2_id_comp_assoc, groupHomology.mapCycles₂_id_comp_assoc, Rep.coindIso_inv_hom_hom, Action.zero_hom, groupHomology.mapShortComplexH2_comp, groupHomology.mapCycles₁_id_comp, Action.Functor.instPreservesFiniteColimitsMapActionOfHasFiniteColimits, Action.instPreservesFiniteColimitsForgetOfHasFiniteColimits, ContAction.resEquiv_functor, Action.res_map_hom, Rep.linearization_obj_ρ, groupHomology.lsingle_comp_chainsMap_f, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, Action.instIsIsoHomHom, groupHomology.cyclesMap_comp_cyclesIso₀_hom, groupCohomology.cochainsMap_f, Rep.coind'_ext_iff, Action.instReflectsColimitsForget, groupHomology.chainsMap_comp, CategoryTheory.PreGaloisCategory.functorToAction_map, Action.instReflectsColimitsOfShapeForget, groupCohomology.map_id_comp_assoc, Rep.linearizationTrivialIso_inv_hom, groupHomology.chainsMap_f_0_comp_chainsIso₀_assoc, Action.instPreservesLimitsOfShapeForgetOfHasLimitsOfShape, Action.add_hom, Rep.coinvariantsTensorIndNatIso_hom_app, groupHomology.congr, Action.instHasFiniteColimits, CategoryTheory.FintypeCat.Action.isConnected_iff_transitive, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f, CategoryTheory.Functor.mapActionCongr_inv, groupCohomology.H1InfRes_g, CategoryTheory.PreGaloisCategory.instPreservesFiniteCoproductsActionFintypeCatAutFunctorFunctorToAction, Rep.coinvariantsMk_app_hom, Action.functorCategoryEquivalence_counitIso, groupCohomology.mapShortComplexH1_id_comp, groupCohomology.cocyclesMap_comp_assoc, Action.forget_ε, Rep.coindResAdjunction_homEquiv_symm_apply, Rep.coindVEquiv_apply_hom, groupCohomology.mapShortComplexH1_comp, Action.FunctorCategoryEquivalence.inverse_obj_V, Action.resComp_inv_app_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom, groupHomology.cyclesIso₀_inv_comp_cyclesMap_assoc, Action.FunctorCategoryEquivalence.unitIso_hom_app_hom, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv, groupCohomology.map_id_comp, Action.hom_inv_hom_assoc, Action.tensorHom_hom, Action.inv_hom_hom, Action.associator_hom_hom, Action.res_obj_ρ, CategoryTheory.PreGaloisCategory.instPreservesMonomorphismsActionFintypeCatAutFunctorFunctorToAction, Action.Functor.preservesLimitsOfSize_of_preserves, Action.full_res, Action.instReflectsLimitsForget, CategoryTheory.PreGaloisCategory.has_decomp_quotients, CategoryTheory.Functor.mapActionCongr_hom, CategoryTheory.PreGaloisCategory.instFaithfulContActionFintypeCatHomCarrierAutFunctorFunctorToContAction, groupHomology.chainsMap_f_hom, Action.mkIso_inv_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, groupHomology.H1CoresCoinfOfTrivial_f, Action.FunctorCategoryEquivalence.inverse_map_hom, Rep.linearization_δ_hom, ContAction.resCongr_inv, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀, Action.whiskerLeft_hom, groupCohomology.mapCocycles₁_comp_i_apply, groupHomology.mapCycles₂_id_comp_apply, Action.zsmul_hom, CategoryTheory.PreGaloisCategory.instEssSurjContActionFintypeCatHomCarrierAutFunctorFunctorToContActionOfFiberFunctor, CategoryTheory.PreGaloisCategory.instReflectsIsomorphismsActionFintypeCatAutFunctorFunctorToAction, Rep.MonoidalClosed.linearHomEquiv_hom, Action.preservesLimitsOfSize_of_preserves, groupCohomology.cochainsMap_f_hom, groupHomology.H1CoresCoinfOfTrivial_g, Action.FunctorCategoryEquivalence.counitIso_hom_app_app, groupHomology.π_comp_H0Iso_hom, groupCohomology.mapShortComplexH1_id_comp_assoc, groupCohomology.mapShortComplexH1_zero, ContinuousCohomology.instLinearActionTopModuleCatI, groupCohomology.mapShortComplexH1_comp_assoc, groupHomology.cyclesIso₀_inv_comp_cyclesMap, Action.tensorUnit_V, ContinuousCohomology.I_obj_V_topologicalSpace, groupHomology.H0π_comp_H0Iso_hom, Rep.homEquiv_symm_apply_hom, Action.instMonoidalPreadditive, Action.FunctorCategoryEquivalence.functor_μ, Rep.instIsRightAdjointActionModuleCatRes, Action.tensor_ρ, groupCohomology.mapShortComplexH2_id_comp, ContinuousCohomology.MultiInd.d_comp_d, Rep.resIndAdjunction_unit_app, Action.resEquiv_inverse, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Action.Functor.preservesColimitsOfSize_of_preserves, Rep.ihom_coev_app_hom, Action.β_inv_hom, groupHomology.chainsMap_zero, Action.forget_linear, CategoryTheory.PreGaloisCategory.exists_lift_of_mono, Action.diagonalSuccIsoTensorDiagonal_hom_hom, Action.resId_hom_app_hom, Action.instHasColimits, groupHomology.mapShortComplexH2_id_comp, Action.rightUnitor_hom_hom, Action.forget_μ, Action.diagonalSuccIsoTensorTrivial_hom_hom_apply, Action.leftDual_v, CategoryTheory.PreGaloisCategory.functorToContAction_obj_obj, groupHomology.mapCycles₂_comp_i_apply, Action.isContinuous_def, CategoryTheory.Functor.mapAction_map_hom, Action.Functor.mapActionPreservesColimitsOfShapeOfPreserves, groupCohomology.cocyclesMap_id_comp, Rep.res_obj_ρ, Action.associator_inv_hom, Action.resEquiv_functor, groupHomology.shortComplexH0_g, Action.leftDual_ρ, Action.instFaithfulRes, Action.functorCategoryEquivalence_linear, Rep.coinvariantsAdjunction_unit_app_hom, CategoryTheory.PreGaloisCategory.exists_lift_of_quotient_openSubgroup, Action.instReflectsLimitForget, groupHomology.d₁₀_comp_coinvariantsMk_assoc, CategoryTheory.FintypeCat.instPreGaloisCategoryActionFintypeCat, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, Action.functorCategoryEquivalence_preservesZeroMorphisms, groupHomology.H0π_comp_H0Iso_hom_assoc, Action.Iso.conj_ρ, groupHomology.cyclesMap_comp, Action.preservesColimit_of_preserves, Action.rightUnitor_inv_hom, Rep.indResHomEquiv_apply_hom, groupHomology.mapShortComplexH1_τ₃, Action.res_linear, Action.instPreservesColimitsOfShapeForgetOfHasColimitsOfShape, groupHomology.cyclesMap_comp_cyclesIso₀_hom_assoc, groupHomology.lsingle_comp_chainsMap_f_assoc, Rep.linearizationTrivialIso_hom_hom, ContinuousCohomology.MultiInd.d_succ, Rep.coinvariantsAdjunction_homEquiv_apply_hom, groupHomology.H1CoresCoinf_f, Action.instMonoidalLinear, Action.resComp_hom_app_hom, groupCohomology.cochainsMap_id_comp_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_assoc, groupCohomology.map_H0Iso_hom_f_assoc, CategoryTheory.FintypeCat.instFiberFunctorActionFintypeCatForget₂HomSubtypeHomCarrierV, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, Action.functorCategoryEquivalence_additive, Action.preservesColimitsOfShape_of_preserves, Action.forget₂_linear, Action.isIso_hom_mk, Action.FunctorCategoryEquivalence.functor_obj_map, CategoryTheory.PreGaloisCategory.instReflectsMonomorphismsActionFintypeCatAutFunctorFunctorToAction, Rep.linearization_map_hom_single, Action.comp_hom_assoc, ContinuousCohomology.const_app_hom, ContAction.resComp_inv, Action.instHasFiniteLimits, Rep.coindIso_hom_hom_hom, ContAction.res_map, groupHomology.coinvariantsMk_comp_H0Iso_inv_assoc, Rep.linearization_ε_hom, CategoryTheory.Equivalence.mapAction_inverse, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, Action.resCongr_hom, CategoryTheory.PreGaloisCategory.instIsPretransitiveAutCarrierVFintypeCatFunctorObjActionFunctorToActionOfIsGalois, groupHomology.mapCycles₁_quotientGroupMk'_epi, groupHomology.H0π_comp_map_apply, groupCohomology.mapShortComplexH1_τ₁, Rep.linearization_map_hom, Action.β_hom_hom, CategoryTheory.FintypeCat.Action.isConnected_of_transitive, Action.instReflectsColimitForget, CategoryTheory.PreGaloisCategory.functorToAction_full, Action.leftUnitor_hom_hom, Action.FunctorCategoryEquivalence.functor_η, Rep.indResHomEquiv_symm_apply_hom, ContinuousCohomology.instAdditiveActionTopModuleCatI, Action.forget₂_additive, Action.forget_map, groupHomology.chainsMap_f_0_comp_chainsIso₀, classifyingSpaceUniversalCover_obj, Action.FintypeCat.toEndHom_trivial_of_mem, CategoryTheory.Functor.instFaithfulActionMapAction, Action.FunctorCategoryEquivalence.functor_ε, Rep.linearization_μ_hom, CategoryTheory.PreGaloisCategory.instPreservesFiniteProductsActionFintypeCatAutFunctorFunctorToAction, Action.preservesLimit_of_preserves, groupHomology.chainsMap_f, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, groupCohomology.map_comp_assoc, CategoryTheory.PreGaloisCategory.functorToAction_comp_forget₂_eq
|