Documentation Verification Report

IntervalAverage

πŸ“ Source: Mathlib/MeasureTheory/Integral/IntervalAverage.lean

Statistics

MetricCount
Definitions_,_Β»
1
Theoremsexists_eq_interval_average, exists_eq_interval_average_of_measure, exists_eq_interval_average_of_noAtoms, intervalAverage_congr_codiscreteWithin, interval_average_eq, interval_average_eq_div, interval_average_symm
7
Total8

(root)

Definitions

NameCategoryTheorems
Β«term⨍_In_.._,_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_eq_interval_average πŸ“–mathematicalContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.uIcc
Real.lattice
Set
Set.instMembership
Set.uIoo
Real.linearOrder
MeasureTheory.average
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.uIoc
β€”exists_eq_interval_average_of_noAtoms
Real.noAtoms_volume
Real.volume_uIoc
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
sub_ne_zero
exists_eq_interval_average_of_measure πŸ“–mathematicalContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.uIcc
Real.lattice
Set
Set.instMembership
Set.uIoc
Real.linearOrder
MeasureTheory.average
Real.measurableSpace
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.Measure.restrict
β€”MeasureTheory.exists_eq_setAverage
MeasureTheory.nonempty_of_measure_ne_zero
isPreconnected_Ioc
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
ContinuousOn.mono
Set.uIoc_subset_uIcc
ContinuousOn.integrableOn_of_subset_isCompact
BorelSpace.opensMeasurable
Real.borelSpace
isCompact_uIcc
ConditionallyCompleteLinearOrder.toCompactIccSpace
measurableSet_uIoc
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
exists_eq_interval_average_of_noAtoms πŸ“–mathematicalContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.uIcc
Real.lattice
Set
Set.instMembership
Set.uIoo
Real.linearOrder
MeasureTheory.average
Real.measurableSpace
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.Measure.restrict
Set.uIoc
β€”ContinuousOn.integrableOn_of_subset_isCompact
BorelSpace.opensMeasurable
Real.borelSpace
isCompact_uIcc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
measurableSet_uIoc
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Set.uIoc_subset_uIcc
Set.uIoc_of_le
Set.Ioc_eq_empty
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Ioo_ae_eq_Ioc
MeasureTheory.measure_congr
MeasureTheory.exists_eq_setAverage
isConnected_uIoo
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
ContinuousOn.mono
Set.uIoo_subset_uIcc_self
MeasureTheory.IntegrableOn.mono_set
MeasureTheory.measure_ne_top_of_subset
MeasureTheory.setAverage_congr
intervalAverage_congr_codiscreteWithin πŸ“–mathematicalFilter.EventuallyEq
Real
Filter.codiscreteWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.uIoc
Real.linearOrder
MeasureTheory.average
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
β€”interval_average_eq
intervalIntegral.integral_congr_codiscreteWithin
interval_average_eq πŸ“–mathematicalβ€”MeasureTheory.average
Real
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.uIoc
Real.linearOrder
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
Real.instInv
Real.instSub
intervalIntegral
β€”le_or_gt
MeasureTheory.setAverage_eq
Set.uIoc_of_le
Real.volume_real_Ioc_of_le
intervalIntegral.integral_of_le
Set.uIoc_of_ge
LT.lt.le
intervalIntegral.integral_of_ge
smul_neg
neg_smul
inv_neg
neg_sub
interval_average_eq_div πŸ“–mathematicalβ€”MeasureTheory.average
Real
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.uIoc
Real.linearOrder
DivInvMonoid.toDiv
Real.instDivInvMonoid
intervalIntegral
Real.instSub
β€”interval_average_eq
smul_eq_mul
div_eq_inv_mul
interval_average_symm πŸ“–mathematicalβ€”MeasureTheory.average
Real
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.uIoc
Real.linearOrder
β€”MeasureTheory.setAverage_eq
Set.uIoc_comm

---

← Back to Index