Documentation Verification Report

Periodic

πŸ“ Source: Mathlib/MeasureTheory/Integral/IntervalIntegral/Periodic.lean

Statistics

MetricCount
DefinitionsmeasurableEquivIco, measurableEquivIoc, measureSpace
3
Theoremsadd_projection_respects_measure, instAddQuotientMeasureEqMeasurePreimageSubtypeAddOppositeRealMemAddSubgroupOpZmultiplesVolume, instHasAddFundamentalDomainSubtypeAddOppositeRealMemAddSubgroupOpZmultiples, instIsAddHaarMeasureRealVolume, instIsUnifLocDoublingMeasureRealVolume, integral_liftIoc_eq_intervalIntegral, integral_preimage, intervalIntegral_preimage, isFiniteMeasure, lintegral_preimage, measurable_mk', measurePreserving_equivIoc, measurePreserving_mk, measure_univ, volume_closedBall, integral_le_sSup_add_zsmul_of_pos, intervalIntegrable, intervalIntegrableβ‚€, intervalIntegral_add_eq, intervalIntegral_add_eq_add, intervalIntegral_add_eq_of_pos, intervalIntegral_add_zsmul_eq, sInf_add_zsmul_le_integral_of_pos, tendsto_atBot_intervalIntegral_of_pos, tendsto_atBot_intervalIntegral_of_pos', tendsto_atTop_intervalIntegral_of_pos, tendsto_atTop_intervalIntegral_of_pos', memLp_liftIoc, integral_preimage, intervalIntegral_preimage, lintegral_preimage, measurePreserving_mk, measure_univ, isAddFundamentalDomain_Ioc, isAddFundamentalDomain_Ioc'
35
Total38

AddCircle

Definitions

NameCategoryTheorems
measurableEquivIco πŸ“–CompOpβ€”
measurableEquivIoc πŸ“–CompOpβ€”
measureSpace πŸ“–CompOp
31 mathmath: measure_univ, UnitAddCircle.lintegral_preimage, UnitAddCircle.intervalIntegral_preimage, volume_eq_smul_haarAddCircle, integral_haarAddCircle, intervalIntegral_preimage, instIsAddHaarMeasureRealVolume, MeasureTheory.memLp_haarAddCircle_iff, ergodic_nsmul_add, add_projection_respects_measure, MeasureTheory.MemLp.memLp_liftIoc, ergodic_add_left, ergodic_add_right, UnitAddCircle.measure_univ, instIsUnifLocDoublingMeasureRealVolume, volume_closedBall, ergodic_nsmul, measurePreserving_equivIoc, UnitAddCircle.measurePreserving_mk, ergodic_zsmul, addWellApproximable_ae_empty_or_univ, isFiniteMeasure, instAddQuotientMeasureEqMeasurePreimageSubtypeAddOppositeRealMemAddSubgroupOpZmultiplesVolume, MeasureTheory.MemLp.of_haarAddCircle, lintegral_preimage, measurePreserving_mk, integral_liftIoc_eq_intervalIntegral, closedBall_ae_eq_ball, UnitAddCircle.integral_preimage, integral_preimage, ergodic_zsmul_add

Theorems

NameKindAssumesProvesValidatesDepends On
add_projection_respects_measure πŸ“–mathematicalMeasurableSet
AddCircle
Real
Real.instAddCommGroup
QuotientAddGroup.measurableSpace
AddCommGroup.toAddGroup
Real.measurableSpace
AddSubgroup.zmultiples
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Set.instInter
Set.preimage
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
Set.Ioc
Real.instPreorder
Real.instAdd
β€”MeasureTheory.IsAddFundamentalDomain.addProjection_respects_measure_apply
instAddQuotientMeasureEqMeasurePreimageSubtypeAddOppositeRealMemAddSubgroupOpZmultiplesVolume
isAddFundamentalDomain_Ioc'
Fact.out
instAddQuotientMeasureEqMeasurePreimageSubtypeAddOppositeRealMemAddSubgroupOpZmultiplesVolume πŸ“–mathematicalβ€”MeasureTheory.AddQuotientMeasureEqMeasurePreimage
AddOpposite
Real
AddSubgroup
AddOpposite.instAddGroup
AddCommGroup.toAddGroup
Real.instAddCommGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
AddSubgroup.zmultiples
AddSubgroup.toAddGroup
AddAction.instAddAction
AddMonoid.toOppositeAddAction
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.MeasureSpace.volume
AddCircle
measureSpace
β€”MeasureTheory.leftInvariantIsAddQuotientMeasureEqMeasurePreimage
instIsTopologicalAddGroupReal
Real.borelSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Real.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
AddSubgroup.normal_of_comm
TopologicalSpace.t2Space_of_metrizableSpace
QuotientAddGroup.instSecondCountableTopology
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
MeasureTheory.Measure.IsAddHaarMeasure.toIsAddLeftInvariant
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
AddSubgroup.instCountableSubtypeMemZMultiples
MeasureTheory.IsAddLeftInvariant.isAddRightInvariant
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
instIsAddHaarMeasureRealVolume
CompactSpace.sigmaCompact
compactSpace
isFiniteMeasure
instHasAddFundamentalDomainSubtypeAddOppositeRealMemAddSubgroupOpZmultiples
MeasureTheory.IsAddFundamentalDomain.covolume_eq_volume
AddSubgroup.instCountableSubtypeAddOppositeMemOp
AddSubgroup.instMeasurableConstVAdd
AddOpposite.instMeasurableConstVAdd
AddCommSemigroup.isCentralVAdd
MeasurableVAdd.toMeasurableConstVAdd
measurableVAdd_of_add
ContinuousAdd.measurableAdd
MeasureTheory.Subgroup.vaddInvariantMeasure
MeasureTheory.Measure.IsAddRightInvariant.toVAddInvariantMeasure_op
isAddFundamentalDomain_Ioc'
Fact.out
zero_add
Real.volume_Ioc
sub_zero
measure_univ
instHasAddFundamentalDomainSubtypeAddOppositeRealMemAddSubgroupOpZmultiples πŸ“–mathematicalβ€”MeasureTheory.HasAddFundamentalDomain
AddOpposite
Real
AddSubgroup
AddOpposite.instAddGroup
Real.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
AddSubgroup.zmultiples
AddSubgroup.zero
AddSubgroup.instVAdd
Real.measurableSpace
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”isAddFundamentalDomain_Ioc'
Fact.out
instIsAddHaarMeasureRealVolume πŸ“–mathematicalβ€”MeasureTheory.Measure.IsAddHaarMeasure
AddCircle
Real
Real.instAddCommGroup
QuotientAddGroup.Quotient.addGroup
AddCommGroup.toAddGroup
AddSubgroup.zmultiples
AddSubgroup.normal_of_comm
QuotientAddGroup.instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
MeasureTheory.MeasureSpace.volume
β€”MeasureTheory.Measure.IsAddHaarMeasure.smul
AddSubgroup.normal_of_comm
compactSpace
MeasureTheory.Measure.isAddHaarMeasure_addHaarMeasure
Fact.out
ENNReal.ofReal_ne_top
instIsUnifLocDoublingMeasureRealVolume πŸ“–mathematicalβ€”IsUnifLocDoublingMeasure
AddCircle
Real
Real.instAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
QuotientAddGroup.instSeminormedAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
AddSubgroup.zmultiples
AddCommGroup.toAddGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
MeasureTheory.MeasureSpace.volume
β€”Nat.instAtLeastTwoHAddOfNat
Filter.Eventually.of_forall
volume_closedBall
ENNReal.ofReal_mul
zero_le_two
Real.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
ENNReal.ofReal_le_ofReal
mul_min_of_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
min_le_min
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Fact.out
le_refl
integral_liftIoc_eq_intervalIntegral πŸ“–mathematicalβ€”MeasureTheory.integral
AddCircle
Real
Real.instAddCommGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
MeasureTheory.MeasureSpace.volume
liftIoc
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
intervalIntegral
Real.instAdd
Real.measureSpace
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
intervalIntegral_preimage
intervalIntegral.integral_congr_ae
Filter.Eventually.of_forall
MeasureTheory.Measure.instOuterMeasureClass
liftIoc_coe_apply
Set.uIoc_of_le
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Fact.out
integral_preimage πŸ“–mathematicalβ€”MeasureTheory.integral
Real
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioc
Real.instPreorder
Real.instAdd
AddCommGroup.toAddGroup
Real.instAddCommGroup
AddSubgroup.zmultiples
AddCircle
measureSpace
β€”measurableSet_Ioc
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
MeasureTheory.integral_map_equiv
MeasureTheory.MeasurePreserving.map_eq
MeasureTheory.integral_subtype
MeasureTheory.Measure.map_map
measurable_mk'
measurable_subtype_coe
map_comap_subtype_coe
intervalIntegral_preimage πŸ“–mathematicalβ€”intervalIntegral
Real
AddCommGroup.toAddGroup
Real.instAddCommGroup
AddSubgroup.zmultiples
Real.instAdd
MeasureTheory.MeasureSpace.volume
Real.measureSpace
MeasureTheory.integral
AddCircle
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
β€”intervalIntegral.integral_of_le
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Fact.out
integral_preimage
isFiniteMeasure πŸ“–mathematicalβ€”MeasureTheory.IsFiniteMeasure
AddCircle
Real
Real.instAddCommGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
MeasureTheory.MeasureSpace.volume
β€”measure_univ
lintegral_preimage πŸ“–mathematicalβ€”MeasureTheory.lintegral
Real
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioc
Real.instPreorder
Real.instAdd
AddCommGroup.toAddGroup
Real.instAddCommGroup
AddSubgroup.zmultiples
AddCircle
measureSpace
β€”measurableSet_Ioc
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
MeasureTheory.lintegral_map_equiv
MeasureTheory.MeasurePreserving.map_eq
map_comap_subtype_coe
MeasurableEmbedding.lintegral_map
MeasurableEmbedding.subtype_coe
MeasureTheory.Measure.map_map
measurable_mk'
measurable_subtype_coe
measurable_mk' πŸ“–mathematicalβ€”Measurable
Real
AddCircle
Real.instAddCommGroup
Real.measurableSpace
QuotientAddGroup.measurableSpace
AddCommGroup.toAddGroup
AddSubgroup.zmultiples
β€”Continuous.measurable
BorelSpace.opensMeasurable
Real.borelSpace
QuotientAddGroup.borelSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Real.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
instIsTopologicalAddGroupReal
AddSubgroup.normal_of_comm
AddSubgroup.isClosed_of_discrete
TopologicalSpace.t2Space_of_metrizableSpace
Int.instDiscreteTopologySubtypeRealMemAddSubgroupZmultiples
continuous_mk'
measurePreserving_equivIoc πŸ“–mathematicalβ€”MeasureTheory.MeasurePreserving
AddCircle
Real
Real.instAddCommGroup
Set.Elem
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.linearOrder
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
Subtype.instMeasurableSpace
Set
Set.instMembership
Real.measurableSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equivIoc
Real.instIsOrderedAddMonoid
Real.instArchimedean
MeasureTheory.MeasureSpace.volume
MeasureTheory.Measure.comap
Real.measureSpace
β€”MeasurableEquiv.measurable
Real.instIsOrderedAddMonoid
Real.instArchimedean
MeasureTheory.Measure.ext
MeasureTheory.Measure.comap_apply
Subtype.val_injective
MeasurableSet.subtype_image
measurableSet_Ioc
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
MeasureTheory.Measure.map_apply
add_projection_respects_measure
Set.ext
equivIoc_coe_eq
measurePreserving_mk πŸ“–mathematicalβ€”MeasureTheory.MeasurePreserving
Real
AddCircle
Real.instAddCommGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
QuotientAddGroup.measurableSpace
AddCommGroup.toAddGroup
Real.measurableSpace
AddSubgroup.zmultiples
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioc
Real.instPreorder
Real.instAdd
measureSpace
β€”measurePreserving_quotientAddGroup_mk_of_AddQuotientMeasureEqMeasurePreimage
isAddFundamentalDomain_Ioc'
Fact.out
instAddQuotientMeasureEqMeasurePreimageSubtypeAddOppositeRealMemAddSubgroupOpZmultiplesVolume
measure_univ πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
AddCircle
Real
Real.instAddCommGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
Set.univ
ENNReal.ofReal
β€”compactSpace
TopologicalSpace.PositiveCompacts.coe_top
MeasureTheory.Measure.addHaarMeasure_self
AddSubgroup.normal_of_comm
QuotientAddGroup.instIsTopologicalAddGroup
instIsTopologicalAddGroupReal
QuotientAddGroup.borelSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Real.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
Real.borelSpace
AddSubgroup.isClosed_of_discrete
TopologicalSpace.t2Space_of_metrizableSpace
Int.instDiscreteTopologySubtypeRealMemAddSubgroupZmultiples
mul_one
volume_closedBall πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
AddCircle
Real
Real.instAddCommGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
Metric.closedBall
SeminormedAddCommGroup.toPseudoMetricSpace
QuotientAddGroup.instSeminormedAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
AddSubgroup.zmultiples
AddCommGroup.toAddGroup
ENNReal.ofReal
Real.instMin
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”abs_eq_self
Real.instIsOrderedAddMonoid
LT.lt.le
Fact.out
Nat.instAtLeastTwoHAddOfNat
Set.inter_eq_left
Real.closedBall_eq_Icc
zero_sub
zero_add
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
CancelDenoms.neg_subst
le_of_not_gt
Mathlib.Tactic.Linarith.add_neg
if_ctx_congr
coe_real_preimage_closedBall_inter_eq
Set.Ioc_subset_Icc_self
MeasureTheory.Measure.addHaar_closedBall_center
QuotientAddGroup.borelSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Real.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
instIsTopologicalAddGroupReal
Real.borelSpace
AddSubgroup.normal_of_comm
AddSubgroup.isClosed_of_discrete
TopologicalSpace.t2Space_of_metrizableSpace
Int.instDiscreteTopologySubtypeRealMemAddSubgroupZmultiples
instIsAddHaarMeasureRealVolume
add_projection_respects_measure
measurableSet_closedBall
BorelSpace.opensMeasurable
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
CancelDenoms.add_subst
Real.volume_closedBall
ENNReal.ofReal_mul
ENNReal.ofReal_ofNat
min_eq_right
Real.volume_Ioc
sub_neg_eq_add
add_halves
CharZero.NeZero.two
min_eq_left
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg

Function.Periodic

Theorems

NameKindAssumesProvesValidatesDepends On
integral_le_sSup_add_zsmul_of_pos πŸ“–mathematicalFunction.Periodic
Real
Real.instAdd
IntervalIntegrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NormedAddGroup.toENormedAddMonoid
NormedAddCommGroup.toNormedAddGroup
Real.normedAddCommGroup
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instZero
Real.instLT
Real.instLE
intervalIntegral
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
SupSet.sSup
Real.instSupSet
Set.image
Set.Icc
Real.instPreorder
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Real.instAddGroup
Int.floor
Real.instRing
Real.linearOrder
Real.instFloorRing
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”intervalIntegrableβ‚€
Int.fract_div_mul_self_add_zsmul_eq
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
sub_eq_zero_of_eq
intervalIntegral.integral_add_adjacent_intervals
intervalIntegral_add_zsmul_eq
intervalIntegral_add_eq
zero_add
add_le_add_iff_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
ContinuousOn.le_sSup_image_Icc
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Continuous.continuousOn
intervalIntegral.continuous_primitive
Real.noAtoms_volume
Set.mem_Icc_of_Ico
Int.fract_div_mul_self_mem_Ico
intervalIntegrable πŸ“–β€”Function.Periodic
Real
Real.instAdd
Real.instLT
Real.instZero
ENNReal
ENorm.enorm
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
Real.instMin
Top.top
instTopENNReal
IntervalIntegrable
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddGroup.toENormedAddMonoid
NormedAddCommGroup.toNormedAddGroup
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”β€”exists_nat_ge
Real.instIsOrderedRing
Real.instArchimedean
Set.uIcc_subset_uIcc_iff_le
min_le_left
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.sub_nonpos_of_le
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_max_right
IntervalIntegrable.mono_set
PseudoEMetricSpace.pseudoMetrizableSpace
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.mul_one
Nat.cast_add
add_sub_cancel_left
IntervalIntegrable.trans_iterate
Int.cast_sub
Int.cast_natCast
sub_int_mul_eq
Nat.cast_one
Mathlib.Tactic.Ring.cast_pos
IntervalIntegrable.comp_sub_right
intervalIntegrableβ‚€ πŸ“–β€”Function.Periodic
Real
Real.instAdd
Real.instLT
Real.instZero
IntervalIntegrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddGroup.toENormedAddMonoid
NormedAddCommGroup.toNormedAddGroup
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”β€”intervalIntegrable
enorm_ne_top
zero_add
intervalIntegral_add_eq πŸ“–mathematicalFunction.Periodic
Real
Real.instAdd
intervalIntegral
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”lt_trichotomy
intervalIntegral_add_eq_of_pos
add_zero
intervalIntegral.integral_same
intervalIntegral.integral_symm
add_sub_cancel_right
neg
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
intervalIntegral_add_eq_add πŸ“–mathematicalFunction.Periodic
Real
Real.instAdd
IntervalIntegrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddGroup.toENormedAddMonoid
NormedAddCommGroup.toNormedAddGroup
MeasureTheory.MeasureSpace.volume
Real.measureSpace
intervalIntegral
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”intervalIntegral_add_eq
intervalIntegral.integral_add_adjacent_intervals
intervalIntegral_add_eq_of_pos πŸ“–mathematicalFunction.Periodic
Real
Real.instAdd
Real.instLT
Real.instZero
intervalIntegral
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”intervalIntegral.integral_of_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
LT.lt.le
MeasureTheory.IsAddFundamentalDomain.setIntegral_eq
AddSubgroup.instMeasurableConstVAdd
MeasurableVAdd.toMeasurableConstVAdd
measurableVAdd_of_add
ContinuousAdd.measurableAdd
Real.borelSpace
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
MeasureTheory.measure_preimage_add
MeasureTheory.Measure.IsAddHaarMeasure.toIsAddLeftInvariant
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
AddSubgroup.instCountableSubtypeMemZMultiples
isAddFundamentalDomain_Ioc
map_vadd_zmultiples
intervalIntegral_add_zsmul_eq πŸ“–mathematicalFunction.Periodic
Real
Real.instAdd
IntervalIntegrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddGroup.toENormedAddMonoid
NormedAddCommGroup.toNormedAddGroup
MeasureTheory.MeasureSpace.volume
Real.measureSpace
intervalIntegral
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Real.instAddGroup
NormedAddGroup.toAddGroup
β€”zero_nsmul
intervalIntegral.integral_same
succ_nsmul
intervalIntegral_add_eq_add
zero_add
zsmul_eq_mul
Int.cast_natCast
natCast_zsmul
nsmul_eq_mul
negSucc_zsmul
Int.cast_negSucc
Nat.cast_add
Nat.cast_one
neg_add_rev
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
intervalIntegral.integral_symm
funext
nsmul
intervalIntegral.integral_comp_add_right
add_comm
intervalIntegral_add_eq
zsmul
sInf_add_zsmul_le_integral_of_pos πŸ“–mathematicalFunction.Periodic
Real
Real.instAdd
IntervalIntegrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NormedAddGroup.toENormedAddMonoid
NormedAddCommGroup.toNormedAddGroup
Real.normedAddCommGroup
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instZero
Real.instLT
Real.instLE
InfSet.sInf
Real.instInfSet
Set.image
intervalIntegral
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Set.Icc
Real.instPreorder
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
Real.instAddGroup
Int.floor
Real.instRing
Real.linearOrder
Real.instFloorRing
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”intervalIntegrableβ‚€
Int.fract_div_mul_self_add_zsmul_eq
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
sub_eq_zero_of_eq
intervalIntegral.integral_add_adjacent_intervals
intervalIntegral_add_zsmul_eq
intervalIntegral_add_eq
zero_add
add_le_add_iff_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
ContinuousOn.sInf_image_Icc_le
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Continuous.continuousOn
intervalIntegral.continuous_primitive
Real.noAtoms_volume
Set.mem_Icc_of_Ico
Int.fract_div_mul_self_mem_Ico
tendsto_atBot_intervalIntegral_of_pos πŸ“–mathematicalFunction.Periodic
Real
Real.instAdd
Real.instLT
Real.instZero
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Filter.Tendsto
Filter.atBot
Real.instPreorder
β€”intervalIntegral.intervalIntegrable_of_integral_ne_zero
LT.lt.ne'
Filter.tendsto_atBot_mono
integral_le_sSup_add_zsmul_of_pos
Filter.tendsto_atBot_add_const_left
Real.instIsOrderedAddMonoid
Filter.Tendsto.atBot_zsmul_const
Real.instArchimedean
Filter.Tendsto.comp
tendsto_floor_atBot
Real.instIsStrictOrderedRing
Filter.Tendsto.atBot_mul_const
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Filter.tendsto_id
tendsto_atBot_intervalIntegral_of_pos' πŸ“–mathematicalFunction.Periodic
Real
Real.instAdd
IntervalIntegrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NormedAddGroup.toENormedAddMonoid
NormedAddCommGroup.toNormedAddGroup
Real.normedAddCommGroup
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instZero
Real.instLT
Filter.Tendsto
intervalIntegral
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Filter.atBot
Real.instPreorder
β€”tendsto_atBot_intervalIntegral_of_pos
intervalIntegral.intervalIntegral_pos_of_pos
tendsto_atTop_intervalIntegral_of_pos πŸ“–mathematicalFunction.Periodic
Real
Real.instAdd
Real.instLT
Real.instZero
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Filter.Tendsto
Filter.atTop
Real.instPreorder
β€”intervalIntegral.intervalIntegrable_of_integral_ne_zero
LT.lt.ne'
Filter.tendsto_atTop_mono
sInf_add_zsmul_le_integral_of_pos
Filter.tendsto_atTop_add_const_left
Real.instIsOrderedAddMonoid
Filter.Tendsto.atTop_zsmul_const
Real.instArchimedean
Filter.Tendsto.comp
tendsto_floor_atTop
Real.instIsStrictOrderedRing
Filter.Tendsto.atTop_mul_const
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Filter.tendsto_id
tendsto_atTop_intervalIntegral_of_pos' πŸ“–mathematicalFunction.Periodic
Real
Real.instAdd
IntervalIntegrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NormedAddGroup.toENormedAddMonoid
NormedAddCommGroup.toNormedAddGroup
Real.normedAddCommGroup
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instZero
Real.instLT
Filter.Tendsto
intervalIntegral
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Filter.atTop
Real.instPreorder
β€”tendsto_atTop_intervalIntegral_of_pos
intervalIntegral.intervalIntegral_pos_of_pos

MeasureTheory.MemLp

Theorems

NameKindAssumesProvesValidatesDepends On
memLp_liftIoc πŸ“–mathematicalMeasureTheory.MemLp
Real
Complex
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
SeminormedAddGroup.toContinuousENorm
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioc
Real.instPreorder
Real.instAdd
AddCircle
Real.instAddCommGroup
AddCircle.measureSpace
AddCircle.liftIoc
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
comp_measurePreserving
MeasureTheory.MeasurePreserving.comp
MeasureTheory.measurePreserving_subtype_coe
measurableSet_Ioc
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
AddCircle.measurePreserving_equivIoc

UnitAddCircle

Theorems

NameKindAssumesProvesValidatesDepends On
integral_preimage πŸ“–mathematicalβ€”MeasureTheory.integral
Real
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioc
Real.instPreorder
Real.instAdd
Real.instOne
AddCommGroup.toAddGroup
Real.instAddCommGroup
AddSubgroup.zmultiples
UnitAddCircle
AddCircle.measureSpace
ZeroLEOneClass.factZeroLtOne
Real.instZero
Real.partialOrder
Real.instZeroLEOneClass
NeZero.charZero_one
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
RCLike.charZero_rclike
Real.instRCLike
β€”AddCircle.integral_preimage
ZeroLEOneClass.factZeroLtOne
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
intervalIntegral_preimage πŸ“–mathematicalβ€”intervalIntegral
Real
AddCommGroup.toAddGroup
Real.instAddCommGroup
AddSubgroup.zmultiples
Real.instOne
Real.instAdd
MeasureTheory.MeasureSpace.volume
Real.measureSpace
MeasureTheory.integral
UnitAddCircle
MeasureTheory.MeasureSpace.toMeasurableSpace
AddCircle.measureSpace
ZeroLEOneClass.factZeroLtOne
Real.instZero
Real.partialOrder
Real.instZeroLEOneClass
NeZero.charZero_one
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
RCLike.charZero_rclike
Real.instRCLike
β€”AddCircle.intervalIntegral_preimage
ZeroLEOneClass.factZeroLtOne
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
lintegral_preimage πŸ“–mathematicalβ€”MeasureTheory.lintegral
Real
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioc
Real.instPreorder
Real.instAdd
Real.instOne
AddCommGroup.toAddGroup
Real.instAddCommGroup
AddSubgroup.zmultiples
UnitAddCircle
AddCircle.measureSpace
ZeroLEOneClass.factZeroLtOne
Real.instZero
Real.partialOrder
Real.instZeroLEOneClass
NeZero.charZero_one
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
RCLike.charZero_rclike
Real.instRCLike
β€”AddCircle.lintegral_preimage
ZeroLEOneClass.factZeroLtOne
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
measurePreserving_mk πŸ“–mathematicalβ€”MeasureTheory.MeasurePreserving
Real
UnitAddCircle
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
QuotientAddGroup.measurableSpace
AddCommGroup.toAddGroup
Real.instAddCommGroup
Real.measurableSpace
AddSubgroup.zmultiples
Real.instOne
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioc
Real.instPreorder
Real.instAdd
AddCircle.measureSpace
ZeroLEOneClass.factZeroLtOne
Real.instZero
Real.partialOrder
Real.instZeroLEOneClass
NeZero.charZero_one
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
RCLike.charZero_rclike
Real.instRCLike
β€”ZeroLEOneClass.factZeroLtOne
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
measure_univ πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
UnitAddCircle
MeasureTheory.MeasureSpace.toMeasurableSpace
AddCircle.measureSpace
Real
Real.instOne
ZeroLEOneClass.factZeroLtOne
Real.instZero
Real.partialOrder
Real.instZeroLEOneClass
NeZero.charZero_one
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
RCLike.charZero_rclike
Real.instRCLike
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
Set.univ
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”ZeroLEOneClass.factZeroLtOne
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
AddCircle.measure_univ
ENNReal.ofReal_one

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isAddFundamentalDomain_Ioc πŸ“–mathematicalReal
Real.instLT
Real.instZero
MeasureTheory.IsAddFundamentalDomain
AddSubgroup
Real.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.zmultiples
AddSubgroup.zero
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
AddSubgroup.normedAddCommGroup
Real.normedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddAction.toAddSemigroupAction
AddAction.instAddAction
AddTorsor.toAddAction
NormedAddTorsor.toAddTorsor
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
SeminormedAddCommGroup.toNormedAddTorsor
Real.measurableSpace
Set.Ioc
Real.instPreorder
Real.instAdd
β€”MeasureTheory.IsAddFundamentalDomain.mk'
nullMeasurableSet_Ioc
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Equiv.bijective
StrictMono.injective
zsmul_left_strictMono
Function.Bijective.existsUnique_iff
add_comm
existsUnique_add_zsmul_mem_Ioc
Real.instArchimedean
isAddFundamentalDomain_Ioc' πŸ“–mathematicalReal
Real.instLT
Real.instZero
MeasureTheory.IsAddFundamentalDomain
AddOpposite
AddSubgroup
AddOpposite.instAddGroup
Real.instAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
AddSubgroup.op
AddSubgroup.zmultiples
AddSubgroup.zero
AddSubgroup.instVAdd
Real.measurableSpace
Set.Ioc
Real.instPreorder
Real.instAdd
β€”MeasureTheory.IsAddFundamentalDomain.mk'
nullMeasurableSet_Ioc
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Equiv.bijective
StrictMono.injective
zsmul_left_strictMono
Function.Bijective.existsUnique_iff
Function.Bijective.comp
zsmul_eq_mul
Set.codRestrict.congr_simp
existsUnique_add_zsmul_mem_Ioc
Real.instArchimedean

---

← Back to Index